Physcomitrella patens как модельный организм в экспериментальной биологии растений

  • Сергей Николаевич Звонарёв Белорусский государственный университет, пр. Независимости, 4, 220030, г. Минск, Республика Беларусь
  • Вадим Викторович Демидчик Белорусский государственный университет, пр. Независимости, 4, 220030, г. Минск, Республика Беларусь

Аннотация

В работе обобщены анатомо-морфологические, молекулярно-генетические и физиологические характеристики мха Physcomitrella patens, представляющего собой наиболее важный растительный модельный объект, не относящийся к покрытосеменным растениям. Приводятся данные о фундаментальных открытиях в экспериментальной биологии растений с использованием данного объекта за 80 лет с момента введения его в качестве лабораторной модели. Детально проработаны вопросы изучения механизмов роста, развития, генетической стабильности, устойчивости растений к абиотическим и биотическим стрессам при помощи P. patens. Оценен потенциал и проанализированы примеры применения P. patens в качестве биотехнологического объекта. Рассмотрены перспективы дальнейших работ на основе модельной системы P. patens.

Биографии авторов

Сергей Николаевич Звонарёв, Белорусский государственный университет, пр. Независимости, 4, 220030, г. Минск, Республика Беларусь

младший научный сотрудник научно-исследовательской лаборатории физиологии и биотехнологии растений биологического факультета

Вадим Викторович Демидчик, Белорусский государственный университет, пр. Независимости, 4, 220030, г. Минск, Республика Беларусь

доктор биологических наук; заведующий кафедрой клеточной биологии и биоинженерии растений биологического факультета

Литература

  1. Markert BA, Breure AM, Zechmeister HG (eds.) Bioindicators and Biomonitors: Principles, Concepts and Applications. Oxford: Elsevier; 2003.
  2. Lakatos M. Lichens and Bryophytes: Habitats and Species. Plant Desiccation Tolerance Ecological Studies. 2011;215:65–87. DOI: 10.1007/978-3-642-19106-0_5.
  3. Pharo EJ, Zartman CE. Bryophytes in a changing landscape: The hierarchical effects of habitat fragmentation on ecological and evolutionary processes. Biological conservation. 2007;135(3):315–325. DOI: 10.1016/j.biocon.2006.10.016.
  4. Harmens H, Foan L, Simon V, Mills G. Terrestrial mosses as biomonitors of atmospheric POPs pollution: A review. Environmental Pollution. 2013;173:245–254. DOI: 10.1016/j.envpol.2012.10.005.
  5. Cove D, Bezanilla M, Harries P, Quatrano R. Mosses as Model Systems for the Study of Metabolism and Development. Annual Review of Plant Biology. 2006;57:497–520. DOI: 10.1146/annurev.arplant.57.032905.105338.
  6. Oliver MJ, Velten J, Wood AJ. Bryophytes as experimental models for the study of environmental stress tolerance: Tortula ruralis and desiccation-tolerance in mosses. Plant Ecology. 2000;151(1):73–84. DOI: 10.1023/A:1026598724487.
  7. Perroud PF, Quatrano RS. The role of ARPC4 in tip growth and alignment of the polar axis in filaments of Physcomitrella patens. Cell Motility and the Cytoskeleton. 2006;63(3):162–171. DOI: 10.1002/cm.20114.
  8. Perroud PF, Quatrano RS. BRICK1 is required for apical cell growth in filaments of the moss Physcomitrella patens but not for gametophore morphology. Plant Cell. 2008;20(2):411– 422. DOI: 10.1105/tpc.107.053256.
  9. Menand B, Yi K, Jouannic S, Hoffmann L, Ryan E, Linstead P, et al. An ancient mechanism controls the development of cells with a rooting function in land plants. Science. 2007;316(5830):1477–1480. DOI: 10.1126/science.1142618.
  10. Khandelwal A, Chandu D, Roe CM, Kopan R, Quatrano RS. Moonlighting activity of presenilin in plants is independent of γ-secretase and evolutionarily conserved. Proceedings of the National Academy of Sciences of the United States of America. 2007;104(33):13337–13342. DOI: 10.1073/pnas.0702038104.
  11. Knight C, Perroud P, Cove D (eds.) The Moss Physcomitrella patens. Oxford, UK: Wiley-Blackwell; 2009. DOI: 10.1093/aob/mcp228. (Annual Plant Reviews; volume 36.)
  12. Rensing SA, Lang D, Zimmer AD, Terry A, Salamov A, Shapiro H, et al. The Physcomitrella Genome Reveals Evolutionary Insights into the Conquest of Land by Plants. Science. 2008;319(5859):64 – 69. DOI: 10.1126/science.1150646.
  13. Terasawa K, Odahara M, Kabeya Yu, Kikugawa T, Sekine Y, Fujiwara M, et al. The mitochondrial genome of the moss Physcomitrella patens sheds new light on mitochondrial evolution in land plants. Molecular Biology and Evolution. 2006;24(3):699 –709. DOI: 10.1093/molbev/msl198.
  14. Mueller J, Hoernstein SN, Reski R. The mitochondrial proteome of the moss Physcomitrella patens. Mitochondrion. 2017;33:38 – 44. DOI: 10.1016/j.mito.2016.07.007.
  15. Rupnik A, Lowndes NF, Grenon M. MRN and the race to the break. Chromosoma. 2010;119:115–135. DOI: 10.1007/s00412-009-0242-4.
  16. Kamisugi Y. MRE11 and RAD50, but not NBS1, are essential for gene targeting in the moss Physcomitrella patens. Nucleic Acids Research. 2012;40:3496 –3510. DOI: 10.1093/nar/gkr1272.
  17. Flowers TJ, Galal HK, Bromham L. Evolution of halophytes: multiple origins of salt tolerance in land plants. Functional Plant Biology. 2010;37:604 – 612. DOI: 10.1071/FP09269.
  18. Saavedra L, Svensson J, Carballo V, Izmendi D, Welin B, Vidal S. A dehydrin gene in Physcomitrella patens is required for salt and osmotic stress tolerance. The Plant Journal. 2006;45:237–249. DOI: 10.1111/j.1365-313X.2005.02603.x.
  19. Fraile-Escanciano A, Kamisugi Y, Cuming AC, Rodríguez-Navarro A, Benito B. The SOS1 transporter of Physcomitrella patens mediates sodium efflux in planta. New Phytologist. 2010;188(3):750 –761. DOI: 10.1111/j.1469-8137.2010.03405.x.
  20. Benito B, Rodríguez-Navarro A. Molecular cloning and characterization of a sodium-pump ATPase of the moss Physcomitrella patens. The Plant Journal. 2003;36(3):382–389.
  21. Frank W, Ratnadewi D, Reski R. Physcomitrella patens is highly tolerant against drought, salt and osmotic stress. Planta. 2005;220(3):384 –394. DOI: 10.1007/s00425-004-1351-1.
  22. Gerotto C, Alboresi A, Giacometti GM, Bassi R, Morosinotto T. Role of PSBS and LHCSR in Physcomitrella patens acclimation to high light and low temperature. Plant Cell Environ. 2011;34(6):922–932. DOI: 10.1111/j.1365-3040.2011.02294.x.
  23. de León IP, Montesano M. Activation of Defense Mechanisms against Pathogens in Mosses and Flowering Plants. International Journal of Molecular Sciences. 2013;14(2):3178–3200. DOI: 10.3390/ijms14023178.
  24. de León IP. The moss Physcomitrella patens as a model system to study interactions between plants and phytopathogenic fungi and oomycetes. Journal of Pathogens. 2011;2011:1– 6. DOI: 10.4061/2011/719873.
  25. de León IP, Oliver JP, Castro A, Gaggero C, Bentancor M, Vidal S. Erwinia carotovora elicitors and Botrytis cinerea activate defense responses in Physcomitrella patens. BMC Plant Biology. 2007;7:52. DOI: 10.1186/1471-2229-7-52.
  26. Lehtonen MT, Akita M, Frank W, Reski R, Valkonen JP. Involvement of a class III peroxidase and the mitochondrial protein TSPO in oxidative burst upon treatment of moss plants with a fungal elicitor. Molecular Plant-Microbe Interactions. 2012;25(3):363–371. DOI: 10.1094/MPMI-10-11-0265.
  27. Overdijk EJ, Keijzer JDE, de Groot D, Schoina C, Bouwmeester K, Ketelaar T, et al. Interaction between the moss Physcomitrella patens and Phytophthora: a novel pathosystem for live-cell imaging of subcellular defense. Journal of Microscopy. 2016;263(2):171–180. DOI: 10.1111/jmi.12395.
  28. Lawton M, Saidasan H. Pathogenesis in mosses. In: Knight C, Perroud P-F, Cove D (eds.) The Moss Physcomitrella patens. Oxford, UK: Wiley-Blackwell; 2009. p.298–339. (Annual Plant Reviews; volume 36.) DOI: 10.1002/9781444316070.ch12.
  29. Koselski M, Trebacz K, Dziubinska H. Cation-permeable vacuolar ion channels in the moss Physcomitrella patens: a patchclamp study. Planta. 2013;238(2):357–367. DOI: 10.1007/s00425-013-1902-4.
  30. Finka A, Cuendet AFH, Maathuis FJM, Saidi Y, Goloubinoff P. Plasma Membrane Cyclic Nucleotide Gated Calcium Channels Control Land Plant Thermal Sensing and Acquired Thermotolerance. The Plant Cell. 2012;24:3333–3348. DOI: 10.1105/tpc.112.095844.
  31. Koselski M, Dziubinska H, Seta-Koselska A, Trebacz K. A nitrate-permeable ion channel in the tonoplast of the moss Physcomitrella patens. Planta. 2015;241(5):1207–1219. DOI: 10.1007/s00425-015-2250-3. PMID: 19812738.
  32. Simonsen HT, Drew DP, Lunde C. Perspectives on Using Physcomitrella patens as an Alternative Production Platform for Thapsigargin and Other Terpenoid Drug Candidates. Perspectives in Medicinal Chemistry. 2009;3:1– 6.
  33. Rosales-Mendoza S, Orellana-Escobedo L, Romero-Maldonado A, Decker EL, Reski R. The potential of a as a platform for the production of plant-based vaccines. Expert Review of Vaccines. 2014;13(2):203–212. DOI: 10.1586/14760584.2014.872987.
  34. Michelfelder S, Parsons J, Bohlender LL, Hoernstein SNW, Niederkrüger H, Busch A, et al. Moss-Produced, Glycosylation-Optimized Human Factor H for Therapeutic Application in Complement Disorders. Journal of the American Society of Nephrology. 2017;28(5):1462–1474. DOI: 10.1681/ASN.2015070745.
  35. Khairul Ikram NKB, Beyraghdar Kashkooli A, Peramuna AV, van der Krol AR, Bouwmeester H, Simonsen HT. Stable Production of the Antimalarial Drug Artemisinin in the Moss Physcomitrella patens. Frontiers in Bioengineering and Biotechnology. 2017;5:47. DOI: 10.3389/fbioe.2017.00047.
  36. Bascom CSJr, Winship LJ, Bezanilla M. Simultaneous imaging and functional studies reveal a tight correlation between calcium and actin networks. Plant biology. 2018;115(12):1–10. DOI: 10.1073/pnas.1711037115.
  37. Yokota Y, Sakamoto AN. The Moss Physcomitrella patens is Hyperresistant to DNA Double-Strand Breaks Induced by γ-Irradiation. Genes. 2018;9(2):1–11. DOI: 10.3390/genes9020076.
  38. Yin X, Wang L, Liu Y, Jiang T, Gao J. Characterization of Arsenic Biotransformation by a Typical Bryophyte Physcomitrella patens. Bull Environ Contam Toxicol. 2017;98(2):251–256. DOI: 10.1007/s00128-016-1997-y.
  39. Nishiyama T, Fujita T, Shin-I T, Seki M, Nishide H, Uchiyama I, et al. Comparative genomics of Physcomitrella patens gametophytic transcriptome and Arabidopsis thaliana: implication for land plant evolution. Proceedings of the National Academy of Sciences of the United States of America. 2003;100(13):8007–8012. DOI: 10.1073/pnas.0932694100.
  40. Sugiura C, Kobayashi Y, Aoki S, Sugita C, Sugita M. Complete chloroplast DNA sequence of the moss Physcomitrella patens: evidence for the loss and relocation of rpoA from the chloroplast to the nucleus. Nucleic Acids Research. 2003;31(18):5324 –5331. DOI: 10.1093/nar/gkg726.
  41. Cuming AC, Cho SH, Kamisugi Y, Graham H, Quatrano RS. Microarray analysis of transcriptional responses to abscisic acid and osmotic, salt, and drought stress in the moss, Physcomitrella patens. New Phytologist. 2007;176(2):275–287. DOI: 10.1111/j.1469-8137.2007.02187.x.
  42. Imaizumi T, Kadota A, Hasebe M, Wada M. Cryptochrome light signals control development to suppress auxin sensitivity in the moss Physcomitrella patens. The Plant Cell. 2002;14(2):373–386. DOI: 10.1105/tpc.010388.
  43. Hohe A, Rensing SA, Mildner M, Lang D, Reski R. Day length and temperature strongly influence sexual reproduction and expression of a novel MADS‐box gene in the moss Physcomitrella patens. Plant biology. 2002;4:595– 602. DOI: 10.1055/s-2002-35440.
  44. Alboresi A, Gerotto C, Giacometti GM, Bassi R, Morosinotto T. Physcomitrella patens mutants affected on heat dissipation clarify the evolution of photoprotection mechanisms upon land colonization. Proceedings of the National Academy of Sciences of the United States of America. 2010;107(24):11128–11133. DOI: 10.1073/pnas.1002873107.
Опубликован
2019-01-18
Ключевые слова: мох, мохообразные, Physcomitrella patens
Как цитировать
Звонарёв, С. Н., & Демидчик, В. В. (2019). Physcomitrella patens как модельный организм в экспериментальной биологии растений. Экспериментальная биология и биотехнология, 2, 39-47. Доступно по https://journals.bsu.by/index.php/biology/article/view/2507
Раздел
Клеточная биология и биотехнология растений