Inclusion complexes of cyclodextrin with whey peptides: characteristic of antioxidant activity

  • Tatsiana M. Halavach Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus
  • Ekaterina I. Tarun International Sakharov Environmental Institute, Belarusian State University, 23/1 Daŭhabrodskaja Street, Minsk 220070, Belarus
  • Vasiliy G. Zhygankov Scientific Practical Centre of Hygiene, 8 Akademičnaja Street, Minsk 220012, Belarus
  • Anastasia D. Butina Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus
  • Vladimir P. Kurchenko Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus

Abstract

A comparative analysis of organoleptic and antioxidant properties of β­cyclodextrin clathrates with peptides of whey proteins was carried out. According to the data of thermogravimetric analysis the formation of inclusion complexes was confirmed and the increase in thermal stability of peptides in composition of clathrates was established. The reduction in bitter taste of the experimental complexes by 20 –70 % and the increase in antiradical activity in 1.3–1.6 times compared to initial hydrolysate was shown. With the raise in complexation temperature from 25 to 50 °C the increase in antioxidant effect and the improvement in organoleptic properties of clathrates were achieved. Perspective is the use of milk protein hydrolysates with pronounced bitter taste in the composition of biologically active inclusion complexes with β­cyclodextrin which have acceptable organoleptic properties and high antioxidant potential.

Author Biographies

Tatsiana M. Halavach, Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus

PhD (biology); senior researcher at the laboratory of applied biology, faculty of biology

Ekaterina I. Tarun, International Sakharov Environmental Institute, Belarusian State University, 23/1 Daŭhabrodskaja Street, Minsk 220070, Belarus

PhD (chemistry), docent; associate professor at the department of environmental chemistry and biochemistry, faculty of environmental medicine

Vasiliy G. Zhygankov, Scientific Practical Centre of Hygiene, 8 Akademičnaja Street, Minsk 220012, Belarus

PhD (medicine), docent; leading researcher at the laboratory of complex problems of food hygiene

Anastasia D. Butina, Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus

student at the faculty of biology

Vladimir P. Kurchenko, Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus

PhD (biology), docent; head of the laboratory of applied biology, faculty of biology

References

  1. Sánchez A, Vázquez A. Bioactive peptides: a review. Food Quality and Safety. 2017;1(1):29 – 46. DOI: 10.1093/fqs/fyx006.
  2. Cho MJ, Unklesbay N, Hsieh FH, Clarke AD. Hydrophobicity of bitter peptides from soy protein hydrolysates. Journal of Agricultural and Food Chemistry. 2004;52(19):5895–5501. DOI: 10.1021/jf0495035.
  3. Raksakulthai R, Haard NF. Exopeptidases and their application to reduce bitterness in food: a review. Critical Reviews in Food Science and Nutrition. 2003;43(4):401– 445. DOI: 10.1080/10408690390826572.
  4. Saha BC, Hayashi K. Debittering of protein hydrolyzates. Biotechnology Advances. 2001;19(5):355–370. DOI: 10.1016/S0734­9750(01)00070­2.
  5. Helbig NB, Ho L, Christy GE, Nakai S. Debittering of skim milk hydrolysates by adsorption for into acidic beverages. Journal of Food Science. 1980;45(2):331–335. DOI: 10.1111/j.1365­2621.1980.tb02608.x.
  6. Murray TK, Baker BE. Studies on protein hydrolysis: I. Preliminary observations on the taste of enzymic protein hydrolyzates. Journal of the Science of Food and Agriculture. 1952;3(10):470 – 475. DOI: 10.1002/jsfa.2740031006.
  7. Kanekanian A, Gallagher J, Evans EP. Casein hydrolysis and peptide mapping. International Journal of Dairy Technology. 2000;53(1):1–5. DOI: 10.1111/j.1471­0307.2000.tb02648.x.
  8. Ge SJ, Zhang LX. The immobilized porcine pancreatic exopeptidases and its application in casein hydrolysates debittering. Applied Biochemistry and Biotechnology. 1996;59(2):159 –165. DOI: 10.1007/BF02787817.
  9. Adler­Nissen J. Control of proteolytic reaction and of the level of bitterness in protein hydrolysis process. Journal of Chemical Technology and Biotechnology. 1984;34(3):215–222. DOI: 10.1002/jctb.280340311.
  10. Szente L, Szejtli J. Cyclodextrins as food ingredients. Trends in Food Science & Technology. 2004;15(3– 4):137–142. DOI: 10.1016/j.tifs.2003.09.019.
  11. Yuliani S, Torleya PJ, D’Arcya B, Nicholson T, Bhandari B. Extrusion of mixtures of starch and D­limonene encapsulated with β­cyclodextrin: flavour retention and physical properties. Food Research International. 2006;39(3):318–331. DOI: 10.1016/j.foodres.2005.08.005.
  12. Martin Del Valle EM. Cyclodextrins and their uses: a review. Process Biochemistry. 2004;39(9):1033–1046. DOI: 10.1016/S0032­9592(03)00258­9.
  13. Tamura M, Mori N, Miyoshi T, Koyama S, Kohri H, Oka H. Practical debittering using model peptides and related compounds. Agricultural and Biological Chemistry. 1990;54(1):41–51. DOI: 10.1080/00021369.1990.10869906.
  14. Nishijo J, Tsuchitani M. Interaction of L­tryptophan with a­cyclodextrin: studies with calorimetry and proton nuclear magnetic resonance spectroscopy. Journal of Pharmaceutical Sciences. 2001;90(2):134 –140. DOI: 10.1002/1520­6017(200102)90:2<134::AIDJPS4>3.0.CO;2­T.
  15. Linde GA, Junior AL, deFaria EV, Zanin GM. Taste modification of amino acids and protein hydrolysate by a­cyclodextrin. Food Research International. 2009;42:814 – 818. DOI: 10.1016/j.foodres.2009.03.016.
  16. Linde GA, Junior AL, deFaria EV, Zanin GM. The use of 2D NMR to study β­cyclodextrin complexation and debittering of amino acids and peptides. Food Research International. 2010;43:187–192. DOI: 10.1016/j.foodres.2009.09.025.
  17. Rattan SI. Theories of biological aging: genes, proteins, and free radicals. Free Radical Research. 2006;40(12):1230 –1238. DOI: 10.1080/10715760600911303.
  18. Nguyen TA, Liu B, Zhao J, Thomas DS, Hook JM. An investigation into the supramolecular structure, solubility, stability and antioxidant activity of rutin/cyclodextrin inclusion complex. Food Chemistry. 2013;136:186 –192. DOI: 10.1016/j.foodchem.2012.07.104.
  19. Lu Z, Cheng B, Hu Y, Zhang Y, Zou G. Complexation of resveratrol with cyclodextrins: Solubility and antioxidant activity. Food Chemistry. 2009;113:17–20. DOI: 10.1016/j.foodchem.2008.04.04.2.
  20. Naksuriya O, Okonogi S, Schiffelers RM, Hennink WE. Curcumin nanoformulations: a review of pharmaceutical properties and preclinical studies and clinical data related to cancer treatment. Biomaterials. 2014;35:3365–3383. DOI: 10.1016/j.biomaterials.2013.12.090.
  21. Valarini O, Dantas JH, Barao CE, Zanoelo EF, Cardozo L, de Moraes FF. Formation of inclusion compounds of (+)catechin with β­cyclodextrin in different complexation media: spectral, thermal and antioxidant properties. Journal of Supercritical Fluids. 2017;121:10 –18. DOI: 10.1016/j.supflu.2016.06.005.
  22. Shiozawa R, Inoue Y, Murata I, Kanamoto I. Effect of antioxidant activity of caffeic acid with cyclodextrins using ground mixture method. Asian Journal of Pharmaceutical Sciences. 2018;13(1):24 –33. DOI: 10.1016/j.ajps.2017.08.006.
  23. Stražišar M, Andrenšek S, Šmidovnik А. Effect of β­cyclodextrin on antioxidant activity of coumaric. Food Chemistry. 2008;110:636 – 642. DOI: 10.1016/j.foodchem.2008.02.051.
  24. Hernández­Ledesma B, Dávalos A, Bartolomé B, Amigo L. Preparation of antioxidant enzymatic hydrolysates from alphalactalbumin and beta­lactoglobulin. Identification of active peptides by HPLC­MS/MS. Journal of Agricultural and Food Chemistry. 2005;53(3):588–593. DOI: 10.1021/jf048626m.
  25. Zulueta A, Maurizi A, Frígola A, Esteve MJ, Coli R, Burini G. Antioxidant capacity of cow milk, whey and deproteinized milk. International Dairy Journal. 2009;19(6 –7):380 –385. DOI: 10.1016/j.idairyj.2009.02.003.
  26. Kim SB, Seo IS, Khan MA, Ki KS, Lee WS, Lee HJ, et al. Enzymatic hydrolysis of heated whey: iron­binding ability of peptides and antigenic protein fractions. Journal of Dairy Science. 2007;90(9):4033– 4042. DOI: 10.3168/jds.2007­0228.
  27. Broido A. A simple, sensitive graphical method of treating thermogravimetric analysis date. Journal of Polymer Science. Part B: Polymer Physics. 1969;7(10):1761–1773. DOI: 10.1002/pol.1969.160071012.
  28. Tarun EI. [Comparison of antioxidant activities of gallic, coffee and chlorogenic acids]. Trudy Belorusskogo gosudarstvennogo universiteta. Fiziologicheskie, biokhimicheskie i molekulyarnye osnovy funktsionirovaniya biosistem [Proceedings of the Belarusian State University. Physiological, biochemical and molecular basis of functioning of biosystems] [Internet]. [Cited 2018 January 4];2014;9(1):186 –191. Available from: http://elib.bsu.by/handle/123456789/121910. Russian.
Published
2019-01-18
Keywords: whey protein hydrolysates, bitter peptides, β-­cyclodextrin, cyclodextrin clathrates with peptides, thermogravimetry, organoleptic properties, antioxidant activity
How to Cite
Halavach, T. M., Tarun, E. I., Zhygankov, V. G., Butina, A. D., & Kurchenko, V. P. (2019). Inclusion complexes of cyclodextrin with whey peptides: characteristic of antioxidant activity. Experimental Biology and Biotechnology, 3, 3-13. Retrieved from https://journals.bsu.by/index.php/biology/article/view/2529