Роль эндогенных пептидных элиситоров в устойчивости растений к биотическим стрессам
Аннотация
Пептидные элиситоры (Peps) представляют собой один из классов веществ-элиситоров, образующихся в клетках растений в ответ на действие различных биотических стрессоров и способствующих формированию неспецифической устойчивости. Они широко распространены у различных представителей покрытосеменных, включая важные сельскохозяйственные культуры, и могут рассматриваться как перспективный класс соединений для создания экологически безопасных препаратов, индуцирующих фитоиммунитет и повышающих устойчивость растительных организмов к стрессовым воздействиям. В работе проведен анализ современных литературных данных о функциональной активности эндогенных пептидных элиситоров растений, механизмах Pep-сигналинга и их роли в устойчивости к биотическим стрессорам.
Литература
- Albert M. Peptides as trigger of plant defence. Journal of Experimental Botany. 2013;64:5269–5279. DOI: 10.1093/jxb/ert275.
- Bartels S, Boller T. Quo vadis, Pep? Plant elicitor peptides at the crossroads of immunity, stress, and development. Journal of Experimental Botany. 2015;66:5183–5193. DOI: 10.1093/jxb/erv180.
- Boller T, Felix G. A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annual Review of Plant Biology. 2009;60:379–406. DOI: 10.1146/annurev.arplant.57.032905.105346.
- Jones JD, Dangl JL. The plant immune system. Nature. 2006;444:323–329. DOI: 10.1038/nature05286.
- Huffaker A, Pearce G, Ryan CA. An endogenous peptide signal in Arabidopsis activates components of the innate immune response. PNAS USA. 2006;103(26):10098–10103. DOI: 10.1073/pnas.0603727103.
- Ferrari S, Savatin DV, Sicilia F, Gramegna G, Cervone F, Lorenzo GD. Oligogalacturonides: plant damage-associated molecular patterns and regulators of growth and development. Frontiers in Plant Science. 2013;4:49. DOI: 10.3389/fpls.2013.00049.
- Ryan CA, Pearce G. Systemins: a functionally defined family of peptide signal that regulate defensive genes in Solanaceae species. PNAS USA. 2003;100. Supplement 2:14577–14580. DOI: 10.1073/pnas.1934788100.
- Yamaguchi Y, Huffaker A. Endogenous peptide elicitors in higher plants. Current Opinion in Plant Biology. 2011;14(4):351–357. DOI: 10.1016/j.pbi.2011.05.001.
- Huffaker A, Ryan A. Endogenous peptide defense signals in Arabidopsis differentially amplify signaling for the innate immune response. PNAS USA. 2007;104(25):10732–10736. DOI: 10.1073/pnas.0703343104.
- Huffaker A, Dafoe NJ, Schmelz EA. ZmPep1, an ortholog of Arabidopsis elicitor peptide 1, regulates maize innate immunity and enhances disease resistance. Plant Physiology. 2011;155(3):1325–1338. DOI: 10.1104/pp.110.166710.
- Huffaker A, Pearce G, Veyrat N, Erb M, Turlings TCJ, Sartor R, et al. Plant elicitor peptides are conserved signals regulating direct and indirect antiherbivore defense. PNAS USA. 2013;110(14):5707–5712. DOI: 10.1073/pnas.1214668110.
- Bartels S, Lori M, Mbengue M, van Verk M, Klauser D, Hander T, et al. The family of Peps and their precursors in Arabidopsis: differential expression and localization but similar induction of pattern-triggered immune responses. Journal of Experimental Botany. 2013;64(17):5309–5321. DOI: 10.1093/jxb/ert330.
- Gully K, Hander T, Boller T, Bartels S. Perception of Arabidopsis AtPep peptides, but not bacterial elicitors, accelerates starvation-induced senescence. Frontiers in Plant Science. 2015;6(14):1–10. DOI: 10.3389/fpls.2015.00014.
- Trivilin AP, Hartke S, Moraes MG. Components of different signaling pathways regulated by a new orthologue of AtPROPEP1 in tomato following infection by pathogens. Plant Pathology. 2014;63(5):1110–1118. DOI: 10.1111/ppa.12190.
- Lori M, van Verk MC, Hander T, Schatowitz H, Klauser D, Flury P, et al. Evolutionary divergence of the plant elicitor peptides (Peps) and their receptors: interfamily incompatibility of perceptionbut downstream signaling. Journal of Experimental Botany. 2015;66(17):5315–5325. DOI: 10.1093/jxb/erv236.
- Ruiz C, Nadal A, Montesinos E, Pla M. Novel Rosaceae plant elicitor peptides as sustainable tools to control Xanthomonas arboricola pv. pruni in Prunus spp. Molecular Plant Pathology. 2018;19(2):418–431. DOI: 10.1111/mpp.12534.
- Krol E, Mentzel T, Chinchilla D, Boller T, Felix G, Kemmerling B, et al. Perception of the Arabidopsis danger signal peptide 1 involves the pettern recognition receptor AtPEPR1 and its close homologue AtPEPR2. Journal of Biological Chemistry. 2010;285(18):13471–13479. DOI: 10.1074/jbc.M109.097394.
- Ross A, Yamada K, Hiruma K, Yamashita-Yamada M, Lu X, Takano Y, et al. The Arabidopsis PEPR pathway couples local and systemic plant immunity. EMBO Journal. 2014;33(1):62–75. DOI: 10.1002/embj.201284303.
- Liu Z, Wu Y, Yang F, Zhang Y, Chen S, Xie Q, et al. BIK1 interacts with PEPRs to mediate ethylene-induced immunity. PNAS USA. 2013;110(15):6205–6210. DOI: 10.1073/pnas.1215543110.
- Klauser D, Desurmont GA, Glauser G, Vallat A, Flury P, Boller T, et al. The Arabidopsis Pep – PEPR system is induced herbivore feeding and contributes to JA-mediated plant defense against herbivore. Journal of Experimental Botany. 2015;66(17):5327–5336. DOI: 10.1093/jxb/erv250.
- Tintor N, Ross A, Kanehara K, Yamada K, Fan L, Kemmerling B, et al. Layered pattern receptor signaling via ethylene and endogenous elicitor peptides during Arabidopsis immunity to bacterial infection. PNAS USA. 2013;110(15):6211–6216. DOI: 10.1073/pnas.1216780110.
- Yamaguchi Y, Pearce G, Ryan CA. The cell surface leucine-rich repeat receptor for AtPep1, an endogenous peptide elicitor in Arabidopsis, is functional in transgenic tobacco cells. PNAS USA. 2006;103(15):10104–10109. DOI: 10.1073/pnas.0603729103.
- Yamaguchi Y, Huffaker A, Bryan AC, Tax FE, Ryan CA. PEPR2 is a second receptor for the Pep1 and Pep2 peptides and contributes to defense responses in Arabidopsis. Plant Cell. 2010;22(2):508–522. DOI: 10.1105/tpc.109.068874.
- Poncini L, Wyrsch I, Dénervaud TV, Vorley T, Boller T, Geldner N, et al. In root of Arabidopsis thaliana, the damage-associated molecular pattern AtPep1 is a stronger elicitor of immune signaling than flg22 or the chitin heptamer. PLOS ONE. 2017;12(10):e0185808.
- DOI: 10.1371/journal.pone.0185808.
- Wrzaczek M, Vainonen JP, Stae S, Tsiatsiani L, Help-Rinta-Rahko H, Gauthier A, et al. GRIM REAPER peptide binds to receptor kinase PRK5 to trigger cell death in Arabidopsis. EMBO Journal. 2015;34(1):55–66. DOI: 10.15252/embj.201488582.
- Pearce G, Yamaguchi Y, Munske G, Ryan CA. Structure-activity studies of AtPep1, a plant peptide signal involved in the innate immune response. Peptides. 2008;29(12):2083–2089. DOI: 10.1016/j.peptides.2008.08.019.
- Roux M, Schwessinger B, Albrecht C, Chinchilla D, Jones A, Holton N, et al. The Arabidopsis leucine-rich reapeat receptor-like kinases BAK1/SERK3 and BKK1/SERK4 are required for innate immunity to hemibiotrophic and biotrophic pathogens. Plant Cell. 2011;23(6):2440–2455. DOI: 10.1105/tpc.111.084301.
- Tang J, Han Z, Sun Y, Zhang H, Gong X, Chai J. Structural basis for recognition of an endogenous peptide by the plant receptor kinase PEPR1. Cell Research. 2015;25(1):110–120. DOI: 10.1038/cr.2014.161.
- Schulze B, Mentzel T, Jehle AK, Mueller K, Beeler S, Boller T, et al. Rapid heteromerization and phosphorylation of ligandactivated plant transmembrane receptors and their associated kinase BAK1. Journal of Biological Chemistry. 2010;285(13):9444 –9451. DOI: 10.1074/jbc.M109.096842.
- Lal NK, Nagalakshmi U, Hurlburt NK, Flores R, Bak A, Sone P, et al. The receptor-like cytoplasmic kinase BIK1 localizes to the nucleus and regulates defense hormone expression during plant innate immunity. Cell Host Microbe. 2018;23(4):485–497. DOI: 10.1016/j.chom.2018.03.010.
- Ma Y, Walker RK, Zhao Y, Berkowitz GA. Linking ligand perception by PEPR pattern recognition receptors to cytosolic Ca2+elevation and downstream immune signaling in plants. PNAS USA. 2012;109(48):19852–19857. DOI: 10.1073/pnas.1205448109.
- Ma Y, Zhao Y, Walker RK, Berkowitz GA. Molecular steps in the immune signaling pathway evoked by plant elicitor peptides: Ca2+-dependent protein kinases, nitric oxide, and reactive oxygen species are downstream from the early Ca2+ signal. Plant Physiology. 2013;163(3):1459–1471. DOI: 10.1104/pp.113.226068.
- Guo FQ, Okamoto M, Crawford NM. Identification of a plant nitricoxide synthase gene involved in hormonal signaling. Science. 2003;302(5642):100–103. DOI: 10.1126/science.1086770.
- Moreau M, Lindermayr C, Durner J, Klessig DF. NO synthesis and signaling in plants – where do we stand? Physiologia Plantarum. 2010;138(4):372–383. DOI: 10.1111/j.1399-3054.2009.01308.x.
- Flury P, Klauser D, Schulze B, Boller T, Bartels S. The anticipation of danger: microbe-associated molecular pattern perception enhances AtPep-triggered oxidative burst. Plant Physiology. 2013;161(4):2023–2035. DOI: 10.1104/pp.113.216077.
- Mishina TE, Zeier J. Pathogen-associated molecular pattern recognition rather than development of tissue necrosis contributes to bacterial induction of systemic acquired resistance in Arabidopsis. Plant Journal. 2007;50(3):500–513. DOI: 10.1111/j.1365-313X.2007.03067.x.
- Tintor N, Ross A, Kanehara K, Yamada K, Fan L, Kemmerling B, et al. Layered pattern receptor signaling via ethylene and endogenous elicitor peptides during Arabidopsis immunity to bacterial infection. PNAS USA. 2013;110(15):6211–6216. DOI: 10.1073/pnas.1216780110.
- Howe GA, Jander G. Plant immunity to insect herbivores. Annual Review of Plant Biology. 2008;59:41–66. DOI: 10.1146/annurev.arplant.59.032607.092825.
- Huffaker A, Kaplan F, Vaughan MM, Dafoe NJ, Ni X, Rocca JR, et al. Novel acidic sesquiterpenoids constitute a dominant class of pathogen-induced phytoalexins in maize. Plant Physiology. 2011;156(4):2082–2097. DOI: 10.1104/pp.111.179457.
- Oikawa A, Ishihara A, Hasegawa M, Kodama O, Iwamura H. Induced accumulation of 2-hydroxy-4,7-dimethoxy-1,4-benzoxazin-3-one glucoside (HDMBOA-Glc) in maize leaves. Phytochemistry. 2001;56(7):669–675.
- Glauser G, Marti G, Villard N, Doyen GA, Wolfender JL, Turlings TC, et al. Induction and detoxification of maize 1,4-benzoxazin-3-ones by insect herbivores. Plant Journal. 2011;68(5):901–911. DOI: 10.1111/j.1365-313X.2011.04740.x.
- Turlings TC, Tumlinson JH, Lewis WJ. Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps. Science. 1990;250(4985):1251–1253. DOI: 10.1126/science.250.4985.1251.
Copyright (c) 2019 Журнал Белорусского государственного университета. Биология

Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial» («Атрибуция — Некоммерческое использование») 4.0 Всемирная.
Авторы, публикующиеся в данном журнале, соглашаются со следующим:
- Авторы сохраняют за собой авторские права на работу и предоставляют журналу право первой публикации работы на условиях лицензии Creative Commons Attribution-NonCommercial. 4.0 International (CC BY-NC 4.0).
- Авторы сохраняют право заключать отдельные контрактные договоренности, касающиеся неэксклюзивного распространения версии работы в опубликованном здесь виде (например, размещение ее в институтском хранилище, публикацию в книге) со ссылкой на ее оригинальную публикацию в этом журнале.
- Авторы имеют право размещать их работу в интернете (например, в институтском хранилище или на персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу. (См. The Effect of Open Access).