Негеномные эффекты стероидных гормонов: роль ионных каналов

  • Дарья Евгеньевна Стрельцова Белорусский государственный университет, пр. Независимости, 4, 220030, г. Минск, Беларусь https://orcid.org/0000-0002-6576-8403
  • Мария Александровна Черныш Белорусский государственный университет, пр. Независимости, 4, 220030, г. Минск, Беларусь
  • Полина Вацлавовна Гриусевич Белорусский государственный университет, пр. Независимости, 4, 220030, г. Минск, Беларусь
  • Вадим Викторович Демидчик Белорусский государственный университет, пр. Независимости, 4, 220030, г. Минск, Беларусь

Аннотация

В организме животных стероидные гормоны реализуют физиологическое действие при помощи геномного и негеномного механизмов. Стероидные гормоны растений – брассиностероиды – способны индуцировать экспрессию ряда генов, но для них практически не описаны негеномные пути запуска физиологических эффектов. В настоящей работе выдвигается и теоретически обосновывается теория, согласно которой брассиностероиды, как и стероидные гормоны животных, могут реализовывать свои эффекты через негеномный путь в результате модулирования активности ионных каналов и мембранных рецепторов.

Биографии авторов

Дарья Евгеньевна Стрельцова, Белорусский государственный университет, пр. Независимости, 4, 220030, г. Минск, Беларусь

ассистент кафедры клеточной биологии и биоинженерии растений биологического факультета

Мария Александровна Черныш , Белорусский государственный университет, пр. Независимости, 4, 220030, г. Минск, Беларусь

аспирантка кафедры клеточной биологии и биоинженерии растений биологического факультета. Научный руководитель – В. В. Демидчик

Полина Вацлавовна Гриусевич , Белорусский государственный университет, пр. Независимости, 4, 220030, г. Минск, Беларусь

аспирантка кафедры клеточной биологии и биоинженерии растений биологического факультета. Научный руководитель – В. В. Демидчик

Вадим Викторович Демидчик , Белорусский государственный университет, пр. Независимости, 4, 220030, г. Минск, Беларусь

доктор биологических наук, доцент; декан биологического факультета

Литература

  1. Rudolph LM, Cornil CA, Mittelman-Smith MA, Rainville JR, Remage-Healey L, Sinchak K, et al. Actions of steroids: new neurotransmitters. The Journal of Neuroscience. 2016;36(45):11449 –11458. DOI: 10.1523/JNEUROSCI.2473-16.2016.
  2. Bulun SE. Steroids, cytokines, and implantation. Endocrinology. 2017;158(6):1575 –1576. DOI: 10.1210/en.2017-00407.
  3. Wehling M. Specific, nongenomic actions of steroid hormones. Annual Review of Physiology. 1997;59:365–393. DOI: 10.1146/ annurev.physiol.59.1.365.
  4. Falkenstein E, Tillmann HC, Christ M, Feuring M, Wehling M. Multiple actions of steroid hormones – a focus on rapid, nongenomic effects. Pharmacological Reviews. 2000;52(4):513–556. PMID: 11121509.
  5. Rolf L, Damoiseaux J, Hupperts R, Huitinga I, Smolders J. Network of nuclear receptor ligands in multiple sclerosis: common pathways and interactions of sex-steroids, corticosteroids and vitamin D3-derived molecules. Autoimmunity Reviews. 2016;15(9): 900 – 910. DOI: 10.1016/j.autrev.2016.07.002.
  6. Barabás K, Godó S, Lengyel F, Ernszt D, Pál J, Ábrahám IM. Rapid non-classical effects of steroids on the membrane receptor dynamics and downstream signaling in neurons. Hormones and Behavior. 2018;104:183–191. DOI: 10.1016/j.yhbeh.2018.05.008.
  7. Wang C, Liu Y, Cao J-M. G protein-coupled receptors: extranuclear mediators for the non-genomic actions of steroids. International Journal of Molecular Sciences. 2014;15(9):15412–15425. DOI: 10.3390/ijms150915412.
  8. Hampl R, Kubátová J, Stárka L. Steroids and endocrine disruptors – history, recent state of art and open questions. The Journal of Steroid Biochemistry and Molecular Biology. 2016;155(Part B):217–223. DOI: 10.1016/j.jsbmb.2014.04.013.
  9. Weng JH, Chung BC. Nongenomic actions of neurosteroid pregnenolone and its metabolites. Steroids. 2016;111:54 –59. DOI: 10.1016/j.steroids.2016.01.017.
  10. Falkenstein E, Wehling M. Nongenomically initiated steroid actions. European Journal of Clinical Investigation. 2000;30 Supplement 3:51–54. DOI: 10.1046/j.1365-2362.2000.0300s3051.x.
  11. Simoncini T, Genazzani AR. Non-genomic actions of sex steroid hormones. European Journal of Endocrinology. 2003;148(3): 281–292. DOI: 10.1530/eje.0.1480281.
  12. Whiting KP, Restall CJ, Brain PF. Steroid hormone-induced effects on membrane fluidity and their potential roles in non-genomic mechanisms. Life Sciences. 2000;67(7):743–757. DOI: 10.1016/S0024-3205(00)00669-X.
  13. Abboud R, Charcosset C, Greige-Gerges H. Biophysical methods: complementary tools to study the influence of human steroid hormones on the liposome membrane properties. Biochimie. 2018;153:13–25. DOI: 10.1016/j.biochi.2018.02.005.
  14. Kelly MJ, Lagrange AH, Wagner EJ, Rønnekleiv OK. Rapid effects of estrogen to modulate G protein-coupled receptors via activation of protein kinase A and protein kinase C pathways. Steroids. 1999;64(1–2):64 –75. DOI: 10.1016/S0039-128X(98)00095-6.
  15. Estrada M, Liberona JL, Miranda M, Jaimovich E. Aldosterone- and testosterone-mediated intracellular calcium response in skeletal muscle cell cultures. American Journal of Physiology. Endocrinology and Metabolism. 2000;279(1):132–139. DOI: 10.1152/ ajpendo.2000.279.1.E132.
  16. Kelly MJ, Qiu J, Wagner EJ, Rønnekleiv OK. Rapid effects of estrogen on G protein-coupled receptor activation of potassium channels in the central nervous system (CNS). Journal of Steroid Biochemistry and Molecular Biology. 2002;83(1–5):187–193. DOI: 10.1016/S0960-0760(02)00249-2.
  17. Wenz JJ. Molecular properties of steroids involved in their effects on the biophysical state of membranes. Biochimica et Biophysica Acta (BBA) – Biomembranes. 2015;1848(10 Part A):2448–2459. DOI: 10.1016/j.bbamem.2015.07.017.
  18. Deliconstantinos G, Fotiou S. Sex steroid and prostaglandin interactions upon the purified rat myometrial plasma membranes. Molecular and Cellular Endocrinology. 1986;45(2–3):149 –156. DOI: 10.1016/0303-7207(86)90142-5.
  19. Deliconstantinos G. Structure activity relationship of cholesterol and steroid hormones with respect to their effects on the Ca2+-stimulated ATPase and lipid fluidity of synaptosomal plasma membranes from dog and rabbit brain. Comparative Biochemistry & Physiology. Part B: Comparative Biochemistry. 1988;89(3):585–594. DOI: 10.1016/0305-0491(88)90178-2.
  20. Wenz JJ. Predicting the effect of steroids on membrane biophysical properties based on the molecular structure. Biochimica et Biophysica Acta (BBA) – Biomembranes. 2012;1818(3):896 – 906. DOI: 10.1016/j.bbamem.2011.12.021.
  21. Straltsova D, Chykun P, Subramaniam S, Sosan A, Kolbanov D, Sokolik A, et al. Cation channels are involved in brassinosteroid signalling in higher plants. Steroids. 2015;97:98 –106. DOI: 10.1016/j.steroids.2014.10.008.
  22. Cheng WWL, Chen ZW, Bracamontes JR, Budelier MM, Krishnan K, Shin DJ, et al. Mapping two neurosteroid-modulatory sites in the prototypic pentameric ligand-gated ion channel GLIC. Journal of Biological Chemistry. 2018;293(8):3013–3027. DOI: 10.1074/jbc.RA117.000359.
  23. Chen ZW, Bracamontes JR, Budelier MM, Germann AL, Shin DJ, Kathiresan K, et al. Multiple functional neurosteroid binding sites on GABAA receptors. PLOS Biology. 2019;17(3):e3000157. DOI: 10.1371/journal.pbio.3000157.
  24. Carta MG, Paribello P, Preti A. How promising is neuroactive steroid drug discovery? Expert Opinion on Drug Discovery. 2018;13(11):993–995. DOI: 10.1080/17460441.2018.1518974.
  25. Gunn BG, Cunningham L, Mitchell SG, Swinny JD, Lambert JJ, Belelli D. GABAA receptor-acting neurosteroids: a role in the development and regulation of the stress response. Frontiers in Neuroendocrinology. 2015;36:28– 48. DOI: 10.1016/j.yfrne.2014.06.001.
  26. Porcu P, Barron AM, Frye CA, Walf AA, Yang SY, He XY, et al. Neurosteroidogenesis today: novel targets for neuroactive steroid synthesis and action and their relevance for translational research. Journal of Neuroendocrinology. 2016;28(2):12351. DOI: 10.1111/jne.12351.
  27. Joksimovic SL, Covey DF, Jevtovic-Todorovic V, Todorovic SM. Neurosteroids in pain management: a new perspective on an old player. Frontiers in Pharmacology. 2018;9:1127. DOI: 10.3389/fphar.2018.01127.
  28. Wilkenfeld SR, Lin C, Frigo DE. Communication between genomic and non-genomic signaling events coordinate steroid hormone actions. Steroids. 2018;133:2–7. DOI: 10.1016/j.steroids.2017.11.005.
  29. Schverer M, Lanfumey L, Baulieub E-E, Froger N, Villey I. Neurosteroids: non-genomic pathways in neuroplasticity and involvement in neurological diseases. Pharmacology & Therapeutics. 2018;191:190 –206. DOI: 10.1016/j.pharmthera.2018.06.011.
  30. Holubova K, Nekovarova T, Pistovcakova J, Sulcova A, Stuchlík A, Vales K. Pregnanolone glutamate, a novel use-dependent NMDA receptor inhibitor, exerts antidepressant-like properties in animal models. Frontiers in Behavioral Neuroscience. 2014;16(8): 130. DOI: 10.3389/fnbeh.2014.00130.
  31. Vyklicky V, Krausova B, Cerny J, Balik A, Zapotocky M, Novotny M, et al. Block of NMDA receptor channels by endogenous neurosteroids: implications for the agonist induced conformational states of the channel vestibule. Scientific Reports. 2015;5:10935. DOI: 10.1038/srep10935.
  32. Atluri N, Joksimovic SM, Oklopcic A, Milanovic D, Klawitter J, Eggan P, et al. A neurosteroid analogue with T-type calcium channel blocking properties is an effective hypnotic, but is not harmful to neonatal rat brain. British Journal of Anaesthesia. 2018;120(4):768–778. DOI: 10.1016/j.bja.2017.12.039.
  33. Sághy É, Szőke É, Payrits M, Helyes Z, Börzsei R, Erostyák J, et al. Evidence for the role of lipid rafts and sphingomyelin in Ca2+-gating of transient receptor potential channels in trigeminal sensory neurons and peripheral nerve terminals. Pharmacological Research. 2015;100:101–116. DOI: 10.1016/j.phrs.2015.07.028.
  34. Darbandi-Tonkabon R, Manion BD, Hastings WR, Craigen WJ, Akk G, Bracamontes JR, et al. Neuroactive steroid interactions with voltage-dependent anion channels: lack of relationship to GABAA receptor modulation and anesthesia. Journal of Pharmacology and Experimental Therapeutics. 2004;308(2):502–511. DOI: 10.1124/jpet.103.058123.
  35. Tuem KB, Atey TM. Neuroactive steroids: receptor interactions and responses. Frontiers in Neurology. 2017;8:442. DOI: 10.3389/fneur.2017.00442.
  36. Hill M, Dušková M, Stárka L. Dehydroepiandrosterone, its metabolites and ion channels. Journal of Steroid Biochemistry and Molecular Biology. 2015;145:293–314. DOI: 10.1016/j.jsbmb.2014.05.006.
  37. Ogden KK, Traynelis SF. New advances in NMDA receptor pharmacology. Trends in Pharmacological Sciences. 2011;32(12): 726 –733. DOI: 10.1016/j.tips.2011.08.003.
  38. Horak M, Vlcek K, Chodounska H, Vyklicky LJr. Subtype-dependence of N-methyl-d-aspartate receptor modulation by pregnenolone sulfate. Neuroscience. 2006;137(1):93–102. DOI: 10.1016/j.neuroscience.2005.08.058.
  39. Thompson AJ, Lummis SCR. 5-HT3 receptors. Current Pharmaceutical Design. 2006;12(28):3615–3630. DOI: 10.2174/ 138161206778522029.
  40. Wang ZM, Qi YJ, Wu PY, Zhu Y, Dong YL, Cheng ZX, et al. Neuroactive steroid pregnenolone sulphate inhibits long-term potentiation via activation of a2-adrenoreceptors at excitatory synapses in rat medial prefrontal cortex. The International Journal of Neuropsychopharmacology. 2008;11(5):611– 624. DOI: 10.1017/S1461145707008334.
  41. Meyer DA, Carta M, Partridge LD, Covey DF, Valenzuela CF. Neurosteroids enhance spontaneous glutamate release in hippocampal neurons. Possible role of metabotropic s1-like receptors. Journal of Biological Chemistry. 2002;277(32):28725–28732. DOI: 10.1074/jbc.M202592200.
  42. Alvarez E, Cairrão E, Morgado M, Morais C, Verde I. Testosterone and cholesterol vasodilation of rat aorta involves L-type calcium channel inhibition. Advances in Pharmacological Sciences. 2010;2010:534184. DOI: 10.1155/2010/534184.
  43. Montaño LM, Calixto E, Figueroa A, Flores-Soto E, Carbajal V, Perusquía M. Relaxation of androgens on rat thoracic aorta: testosterone concentration dependent agonist/antagonist L-type Ca2+ channel activity, and 5beta-dihydrotestosterone restricted to L-type Ca2+ channel blockade. Endocrinology. 2008;149(5):2517–2526. DOI: 10.1210/en.2007-1288.
  44. Machelon V, Nome F, Tesarik J. Nongenomic effects of androstenedione on human granulosa luteinizing cells. Journal of Clinical Endocrinology & Metabolism. 1998;83(1):263–269. DOI: 10.1210/jcem.83.1.4523.
  45. Scragg JL, Jones RD, Channer KS, Jones TH, Peers C. Testosterone is a potent inhibitor of L-type Ca2+ channels. Biochemical and Biophysical Research Communications. 2004;318(2):503–506. DOI: 10.1016/j.bbrc.2004.04.054.
  46. Perez-Reyes E. Molecular physiology of low-voltage-activated t-type calcium channels. Physiological Reviews. 2003;83(1): 117–161. DOI: 10.1152/physrev.00018.2002.
  47. Chen SC, Chang TJ, Wu FS. Competitive inhibition of the capsaicin receptor mediated current by dehydroepiandrosterone in rat dorsal root ganglion neurons. Journal of Pharmacology and Experimental Therapeutics. 2004;311(2):529–536. DOI: 10.1124/ jpet.104.069096.
  48. Majeed Y, Amer MS, Agarwal AK, McKeown L, Porter KE, O’Regan DJ, et al. Stereo-selective inhibition of transient receptor potential TRPC5 cation channels by neuroactive steroids. British Journal of Pharmacology. 2011;162(7):1509 –1520. DOI: 10.1111/j.1476-5381.2010.01136.x.
  49. King JT, Lovell PV, Rishniw M, Kotlikoff MI, Zeeman ML, McCobb DP. b2 and b4 subunits of BK channels confer differential sensitivity to acute modulation by steroid hormones. Journal of Neurophysiology. 2006;95(5):2878–2888. DOI: 10.1152/ jn.01352.2005.
  50. Horishita T, Ueno S, Yanagihara N, Sudo Y, Uezono Y, Okura D, et al. Inhibition by pregnenolone sulphate, a metabolite of the neurosteroid pregnenolone, of voltage-gated sodium channels expressed in Xenopus Oocytes. Journal of Pharmacological Sciences. 2012;120(1):54 –58. DOI: 10.1254/jphs.12106SC.
  51. Hardy SP, Valverde MA. Novel plasma membrane action of estrogen and antiestrogens revealed by their regulation of a large conductance chloride channel. FASEB Journal. 1994;8(10):760 –765. DOI: 10.1096/fasebj.8.10.8050676.
  52. Li Z, Niwa Y, Sakamoto S, Chen X, Nakaya Y. Estrogen modulates a large conductance chloride channel in cultured porcine aortic endothelial cells. Journal of Cardiovascular Pharmacology. 2000;35(3):506 –510. DOI: 10.1097/00005344-200003000-00023.
  53. Leung GP, Cheng-Chew SB, Wong PY. Nongenomic effect of testosterone on chloride secretion in cultured rat efferent duct epithelia. American Journal of Physiology. Cell Physiology. 2001;280(5):C1160 – C1167. DOI: 10.1152/ajpcell.2001.280.5.C1160.
  54. Kow LM, Pfaff DW. Rapid estrogen actions on ion channels: a survey in search for mechanisms. Steroids. 2016;111:46 –53. DOI: 10.1016/j.steroids.2016.02.018.
  55. Er F, Gassanov N, Brandt MC, Madershahian N, Hoppe UC. Impact of dihydrotestosterone on L-type calcium channels in human ventricular cardiomyocytes. Endocrine Research. 2009;34(3):59 – 67. DOI: 10.1080/07435800903136953.
  56. Na T, Peng JB. TRPV5: a Ca2+ channel for the fine-tuning of Ca2+ reabsorption. Handbook of Experimental Pharmacology. 2014;222:321–357. DOI: 10.1007/978-3-642-54215-2_13.
  57. Majewska MD. Steroids and ion channels in evolution: from bacteria to synapses and mind. Evolutionary role of steroid regulation of GABA(A) receptors. Acta Neurobiologiae Experimentalis Journal. 2007;67(3):219–233. PMID: 17957902.
  58. Li J. Brassinosteroids signal through two receptor-like kinases. Current Opinion in Plant Biology. 2003:6(5):494 – 499. DOI: 10.1016/S1369-5266(03)00088-8.
  59. Jaillais Y, Vert G. Brassinosteroid signaling and BRI1 dynamics went underground. Current Opinion in Plant Biology. 2016; 33:92–100. DOI: 10.1016/j.pbi.2016.06.014.
  60. Wang W, Bai M-Y, Wang Z-Y. The brassinosteroid signaling network – a paradigm of signal integration. Current Opinion in Plant Biology. 2014;21:147–153. DOI: 10.1016/j.pbi.2014.07.012.
  61. Bojar D, Martinez J, Santiago J, Rybin V, Bayliss R, Hothorn M. Crystal structures of the phosphorylated BRI1 kinase domain and implications for brassinosteroid signal initiation. Plant Journal. 2014;78(1):31– 43. DOI: 10.1111/tpj.12445.
  62. Nolan T, Chen J, Yin Y. Cross-talk of brassinosteroid signaling in controlling growth and stress responses. Biochemical Journal. 2017;474(16):2641–2661. DOI: 10.1042/BCJ20160633.
  63. Li Q-F, He J-X. Mechanisms of signaling crosstalk between brassinosteroids and gibberellins. Plant Signaling & Behavior. 2013;8(7):e24686. DOI: 10.4161/psb.24686.
  64. Zhao Y, Qi Z, Berkowitz GA. Teaching an old hormone new tricks: cytosolic Ca2+ elevation involvement in plant brassinosteroid signal transduction cascades. Plant Physiology. 2013;163(2):555–565. DOI: 10.1104/pp.112.213371.
  65. Du L, Poovaiah BW. Ca2+/calmodulin is critical for brassinosteroid biosynthesis and plant growth. Nature. 2005;437(7059): 741–745. DOI: 10.1038/nature03973.
  66. Singla B, Chugh A, Khurana JP, Khurana P. An early auxin-responsive Aux/IAA gene from wheat (Triticum aestivum) is induced by epibrassinolide and differentially regulated by light and calcium. Journal of Experimental Botany. 2006;57(15):4059 – 4070. DOI: 10.1093/jxb/erl182.
  67. Oh MH, Kim HS, Wu X, Clouse SD, Zielinski RE, Huber SC. Calcium/calmodulin inhibition of the Arabidopsis BRASSINOSTEROID-INSENSITIVE 1 receptor kinase provides a possible link between calcium and brassinosteroid signalling. Biochemical Journal. 2012;443(2):515–523. DOI: 10.1042/BJ20111871.
  68. Zhang Z, Ramirez J, Reboutier D, Brault M, Trouverie J, Pennarun AM, et al. Brassinosteroids regulate plasma membrane anion channels in addition to proton pumps during expansion of Arabidopsis thaliana cells. Plant and Cell Physiology. 2005;46(9): 1494 –1504. DOI: 10.1093/pcp/pci162.
  69. Tanaka A, Nakagawa H, Tomita C, Shimatani Z, Ohtake M, Nomura T, et al. BRASSINOSTEROID UPREGULATED1, encoding a helix-loop-helix protein, is a novel gene involved in brassinosteroid signaling and controls bending of the lamina joint in rice. Plant Physiology. 2009;151(2):669 – 680. DOI: 10.1104/pp.109.140806.
  70. Planas-Riverola A, Gupta A, Betegón-Putze I, Bosch N, Ibañes M, Caño-Delgado AI. Brassinosteroid signaling in plant development and adaptation to stress. Development. 2019;146(5):dev151894. DOI: 10.1242/dev.151894.
  71. Lozano-Durán R, Zipfel C. Trade-off between growth and immunity: role of brassinosteroids. Trends in Plant Science. 2015; 20(1):12–19. DOI: 10.1016/j.tplants.2014.09.003.
  72. Wei Z, Li J. Brassinosteroids regulate root growth, development, and symbiosis. Molecular Plant. 2016;9(1):86 –100. DOI: 10.1016/j.molp.2015.12.003.
  73. Chen E, Zhang X, Yang Z, Zhang C, Wang X, Ge X, et al. BR deficiency causes increased sensitivity to drought and yield penalty in cotton. Plant Biology. 2019;19(1):220. DOI: 10.1186/s12870-019-1832-9.
  74. Song X-J. Crop seed size: BR matters. Molecular Plant. 2017;10(5):668 – 669. DOI: 10.1016/j.molp.2017.04.007.
  75. Zhu ZX, Zhu XF, Zhu YT, Yao DN, Xuan YH. Interaction between photoreceptors and BR signaling in Arabidopsis. Acta Biologica Cracoviensia. Series: Botanica. 2014;56(2):126 –135. DOI: 10.2478/abcsb-2014-0027.
  76. Pandey P, Irulappan V, Bagavathiannan MV, Senthil-Kumar M. Impact of combined abiotic and biotic stresses on plant growth and avenues for crop improvement by exploiting physio-morphological traits. Frontiers in Plant Science. 2017;8:537. DOI: 10.3389/ fpls.2017.00537.
  77. Foyer CH, Rasool B, Davey JW, Hancock RD. Cross-tolerance to biotic and abiotic stresses in plants: a focus on resistance to aphid infestation. Journal of Experimental Botany. 2016;67(7):2025–2037. DOI: 10.1093/jxb/erw079.
  78. Oosten MJV, Pepe O, De Pascale S, Silletti S, Maggio A. The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chemical and Biological Technologies in Agriculture. 2017;4:5. DOI: 10.1186/s40538-017-0089-5.
  79. Saitanis CJ, Lekkas DV, Agathokleous E, Flouri F. Screening agrochemicals as potential protectants of plants against ozone phytotoxicity. Environmental Pollution. 2015;197:247–255. DOI: 10.1016/j.envpol.2014.11.013.
  80. Kühn C. Review: post-translational cross-talk between brassinosteroid and sucrose signaling. Plant Science. 2016;248:75–81. DOI: 10.1016/j.plantsci.2016.04.012.
  81. Lanza M, Garcia-Ponce B, Castrillo G, Catarecha P, Sauer M, Rodriguez-Serrano M, et al. Role of actin cytoskeleton in brassinosteroid signaling and in its integration with the auxin response in plants. Developmental Cell. 2012;22(6):1275–1285. DOI: 10.1016/j.devcel.2012.04.008.
  82. Lozano-Elena F, Planas-Riverola A, Vilarrasa-Blasi J, Schwab R, Caño-Delgado AI. Paracrine brassinosteroid signaling at the stem cell niche controls cellular regeneration. Journal of Cell Science. 2018;131:jcs204065. DOI: 10.1242/jcs.204065.
  83. Azhar N, Su N, Shabala L, Shabala S. Exogenously applied 24-epibrassinolide (EBL) ameliorates detrimental effects of salinity by reducing K+ efflux via depolarization-activated K+ channels. Plant and Cell Physiology. 2017;58(4):802–810. DOI: 10.1093/pcp/ pcx026.
  84. Arora N, Bhardwaj R, Sharma P, Arora HK. 28-Homobrassinolide alleviates oxidative stress in salt treated maize (Zea mays L.) plants. Brazilian Journal of Plant Physiology. 2008;20(2):153–157. DOI: 10.1590/S1677-04202008000200007.
  85. Kagale S, Divi UK, Krochko JE, Keller WA, Krishna P. Brassinosteroids confers tolerance in Arabidopsis thaliana and Brassica napus to a range of abiotic stresses. Planta. 2007;225(2):353–364. DOI: 2007225:353-364.
  86. Bajguz A, Piotrowska-Niczyporuk A. Interactive effect of brassinosteroids and cytokinins on growth, chlorophyll, monosaccharide and protein content in the green alga Chlorella vulgaris (Trebouxiophyceae). Plant Physiology and Biochemistry. 2014;80:176 –183. DOI: 10.1016/j.plaphy.2014.04.009.
  87. Kinoshita T, Caño-Delgado A, Seto H, Hiranuma S, Fujioka S, Yoshida S, et al. Binding of brassinosteroids to the extracellular domain of plant receptor kinase BRI1. Nature. 2005;433(7022):167–171. DOI: 10.1038/nature03227.
  88. Savelieva EM, Oslovsky VE, Karlov DS, Kurochkin NN, Getman IA, Lomin SN, et al. Cytokinin activity of N 6-benzyladenine derivatives assayed by interaction with the receptorsin planta, in vitro, and in silico. Phytochemistry. 2018;149:161–177. DOI: 10.1016/j. phytochem.2018.02.008.
  89. Uzunova VV, Quareshy M, del Genio CI, Napier RM. Tomographic docking suggests the mechanism of auxin receptor TIR1 selectivity. Open Biology. 2016;6(10):160139. DOI: 10.1098/rsob.160139.
  90. Quareshy M, Uzunova V, Prusinska JM, Napier RM. Assaying auxin receptor activity using SPR assays with F-box proteins and Aux/IAA degrons. Methods in Molecular Biology. 2017;1497:159 –191. DOI: 10.1007/978-1-4939-6469-7_15.
Опубликован
2019-10-30
Ключевые слова: стероидные гормоны, брассиностероиды, негеномные эффекты, геномные эффекты, ионные каналы
Как цитировать
Стрельцова, Д. Е., Черныш , М. А., Гриусевич , П. В., & Демидчик , В. В. (2019). Негеномные эффекты стероидных гормонов: роль ионных каналов. Экспериментальная биология и биотехнология, 3, 3-12. https://doi.org/10.33581/2521-1722-2019-3-3-12
Раздел
Клеточная биология и физиология