Клонирование кДНК глюкоамилазы Aspergillus awamori в дрожжевой интегративный экспрессионный вектор

  • Елена Вячеславовна Кулик Белорусский государственный университет, пр. Независимости, 4, 220030, г. Минск, Беларусь https://orcid.org/0000-0003-4651-7497
  • Ольга Борисовна Русь Белорусский государственный университет, пр. Независимости, 4, 220030, г. Минск, Беларусь
  • Анатолий Николаевич Евтушенков Белорусский государственный университет, пр. Независимости, 4, 220030, г. Минск, Беларусь

Аннотация

На основе дрожжевого вектора pKLAC2 сконструирована плазмида pKGLA-1 с кДНК глюкоамилазы гриба Aspergillus awamori 466. В результате проведенного клонирования нуклеотидной последовательности гена glaA в клетках Kluyveromyces lactis GG799 синтезируется рекомбинантный фермент с нативным N-концом. С помощью реакции амплификации целевого гена и рестрикционного анализа генетической конструкции подтверждено успешное создание плазмиды pKGLA-1. Эффективность экспрессии целевого гена в дрожжевых клетках, обусловленной интеграцией экспрессионной кассеты в область промотора LAC4 геномной ДНК вследствие гомологичной рекомбинации, доказана чашечным методом. Рекомбинантные клетки K. lactis росли на селективной минимальной среде с добавлением 5 ммоль/л ацетамида и секретировали глюкоамилазу, о чем свидетельствовали зоны гидролиза крахмала вокруг колоний. Практическое применение сконструированной плазмиды может быть реализовано при создании различных дрожжевых штаммов-продуцентов глюкоамилаз гриба A. awamori с определенными промышленно значимыми свойствами.

Биографии авторов

Елена Вячеславовна Кулик, Белорусский государственный университет, пр. Независимости, 4, 220030, г. Минск, Беларусь

кандидат биологических наук; заведующий научно-исследовательской лабораторией трансгенных растений кафедры молекулярной биологии биологического факультета

Ольга Борисовна Русь , Белорусский государственный университет, пр. Независимости, 4, 220030, г. Минск, Беларусь

кандидат химических наук, доцент; доцент кафедры молекулярной биологии биологического факультета

Анатолий Николаевич Евтушенков , Белорусский государственный университет, пр. Независимости, 4, 220030, г. Минск, Беларусь

доктор биологических наук, профессор; заведующий кафедрой молекулярной биологии биологического факультета

Литература

  1. Swinkels BW, van Ooyen AJ, Bonekamp FJ. The yeast Kluyveromyces lactis as an efficient host for heterologous gene expression. Antonie Van Leeuwenhoek. 1993;64(2):187–201. DOI: 10.1007/bf00873027.
  2. van den Berg JA, van der Laken KJ, van Ooyen AJ, Renniers TC, Rietveld K, Schaap A, et al. Kluyveromyces as a host for heterologous gene expression: expression and secretion of prochymosin. Biotechnology (N Y). 1990;8(2):135–139. DOI: 10.1038/nbt0290-135.
  3. Breunig KD, de Steensma HY. Kluyveromyces lactis: genetics, physiology, and application. In: de Winde JH, editor. Functional genetics of industrial yeast. Topics in Current Genetics. Volume 2. Berlin: Springer; 2003. DOI: 10.1007/3-540-37003-X_6.
  4. Read JD, Colussi PA, Ganatra MB, Taron CH. Acetamide selection of Kluyveromyces lactis cells transformed with an integrative vector leads to high-frequency formation of multicopy strains. Applied and Environmental Microbiology. 2007;73(16):5088–5096. DOI: 10.1128/AEM.02253-06.
  5. Yeast Protocols Handbook [Internet]. S. a.: Clontech; 2009 [cited 2019 March 10]. Available from: http://www.takara.co.kr/file/ manual/pdf/PT3024-1.pdf.
  6. De Silva C, Dhanapala P, King S, Doran T, Tang M, Suphioglu C. Immunological Comparison of Native and Recombinant Henʼs Egg Yolk Allergen, Chicken Serum Albumin (Gal d 5), Produced in Kluyveromyces lactis. Nutrients. 2018;10(6):E757. DOI: 10.3390/ nu10060757.
  7. Stressler T, Leisibach D, Lutz-Wahl S, Kuhn A, Fischer L. Homologous expression and biochemical characterization of the arylsulfatase from Kluyveromyces lactis and its relevance in milk processing. Applied Microbiology and Biotechnology. 2016;100(12): 5401–5414. DOI: 10.1007/s00253-016-7366-2.
  8. Jiménez JJ, Borrero J, Diep DB, Gútiez L, Nes IF, Herranz C, et al. Cloning, production, and functional expression of the bacteriocin sakacin A (SakA) and two SakA-derived chimeras in lactic acid bacteria (LAB) and the yeasts Pichia pastoris and Kluyveromyces lactis. Journal of Industrial Microbiology & Biotechnology. 2013;40(9):977– 993. DOI: 10.1007/s10295-013-1302-6.
  9. Jo HJ, Noh JS, Kong KH. Efficient secretory expression of the sweet-tasting protein brazzein in the yeast Kluyveromyces lactis. Protein Expression Purification. 2013;90(2):84 – 89. DOI: 10.1016/j.pep.2013.05.001.
  10. Rodicio R, Heinisch JJ. Yeast on the milky way: genetics, physiology and biotechnology of Kluyveromyces lactis. Yeast. 2013; 30(5):165–177. DOI: 10.1002/yea.2954.
  11. Bui DM, Kunze I, Horstmann C, Schmidt T, Breunig KD, Kunze G. Expression of the Arxula adeninivorans glucoamylase gene in Kluyveromyces lactis. Applied Microbiology and Biotechnology. 1996;45(1–2):102–106. DOI: 10.1007/s002530050655.
  12. Fleer R, Chen XJ, Amellal N, Yeh P, Fournier A, Guinet F, et al. High-level secretion of correctly processed recombinant interleukin-1b in Kluyveromyces lactis. Gene. 1991;107(2):285–295. DOI: 10.1016/0378-1119(91)90329-a.
  13. Saliola M, Mazzoni C, Solimando N, Crisa A, Falcone C, Jung G, Fleer R. Use of the KlADH4 promoter for ethanol-dependent production of recombinant human serum albumin in Kluyveromyces lactis. Applied Microbiology and Biotechnology. 1999;65(1):53– 60. PMCID: PMC90982.
  14. Fleer R, Yeh P, Ammellal N, Maury I, Fournier A, Bacchetta F, et al. Stable multicopy vectors for high-level secretion of recombinant human serum albumin by Kluyveromyces yeasts. Biotechnology (N Y). 1991;9(10):968–975. DOI: 10.1038/nbt1091-968.
  15. Rossoloini GM, Riccio ML, Gallo E, Galeotti CL. Kluyveromyces lactis rDNA as a target for multiple integration by homologous recombination. Gene. 1992;119(1):75–81. DOI: 10.1016/0378-1119(92)90068-z.
  16. Tanaka R, Ishibashi M, Tokunaga H, Tokunaga M. Secretion of hen egg white lysozyme from Kluyveromyces lactis. Bioscience Biotechnology and Biochemistry. 2000;64(12):2716 –2718. DOI: 10.1271/bbb.64.2716.
  17. Walsh DJ, Bergquist PL. Expression and secretion of a thermostable bacterial xylanase in Kluyveromyces lactis. Applied and Environmental Microbiology. 1997;63(8):3297–3300.
  18. Colussi PA, Taron CH. Kluyveromyces lactis LAC4 promoter variants that lack function in bacteria but retain full function in K. lactis. Applied and Environmental Microbiology. 2005;71(11):7092–7098. DOI: 10.1128/AEM.71.11.7092-7098.2005.
  19. Hershberg R, Petrov DA. Selection on codon bias. Annual Review of Genetics. 2008;42:287–299. DOI: 10.1146/annurev.genet. 42.110807.091442.
  20. Lloyd AT, Sharp PM. Synonymous codon usage in Kluyveromyces lactis. Yeast. 1993;9(11):1219 –1228. DOI: 10.1002/yea. 320091109.
  21. Freire-Picos MA, González-Siso MI, Rodríguez-Belmonte E, Rodríguez-Torres AM, Ramil E, Cerdán ME. Codon usage in Kluyveromyces lactis and in yeast cytochrome c-encoding genes. Gene. 1994;139(1):43– 49. DOI: 10.1016/0378-1119(94)90521-5.
  22. Cripwell RA, Rose SH, van Zyl WH. Expression and comparison of codon optimized Aspergillus tubingensis amylase variants in Saccharomyces cerevisiae. FEMS Yeast Research. 2017;17(4):1–12. DOI: 10.1093/femsyr/fox040.
  23. Puigbo P, Bravo IG, Garcia-Vallve S. CAIcal: a combined set of tools to assess codon usage adaptation. Biology Direct. [Internet] 2008 [cited 2019 August 24];3:38. Available from: http://genomes.urv.es/CAIcal.
Опубликован
2019-10-30
Ключевые слова: клонирование, глюкоамилаза, интегративный экспрессионный вектор, Kluyveromyces lactis
Как цитировать
Кулик, Е. В., Русь , О. Б., & Евтушенков , А. Н. (2019). Клонирование кДНК глюкоамилазы Aspergillus awamori в дрожжевой интегративный экспрессионный вектор. Экспериментальная биология и биотехнология, 3, 59-66. https://doi.org/10.33581/2521-1722-2019-3-59-66
Раздел
Генетика и молекулярная биология