Стимуляция биосинтеза вторичных метаболитов фенольной природы в суспензионных культурах клеток Еchinacea purpurea L. Moench под влиянием элиситоров дрожжевого экстракта

  • Гражина Владимировна Нестер Белорусский государственный университет, пр. Независимости, 4, 220030, г. Минск, Беларусь https://orcid.org/0000-0003-3587-3752
  • Татьяна Ивановна Дитченко Белорусский государственный университет, пр. Независимости, 4, 220030, г. Минск, Беларусь https://orcid.org/0000-0001-8224-3193

Аннотация

Исследована способность 50 ‒500 мг/л дрожжевого экстракта в качестве комплексного биотического элиситора индуцировать повышение уровней накопления вторичных метаболитов фенольной природы в суспензионных культурах клеток эхинацеи пурпурной (Echinacea purpurea L. Moench), инициированных из каллусов листового и корневого происхождения. Установлено, что стимулирующий эффект компонентов дрожжевого экстракта более выражен для слабоагрегированной суспензионной культуры листового происхождения по сравнению с культурой корневого происхождения высокоагрегированного типа. Рост содержания фенилпропаноидов (в 2,5 раза) и флавоноидов (в 2,0 раза) в водно-спиртовых экстрактах из культуры листового происхождения в результате 2-суточного воздействия 100 ‒500 мг/л дрожжевого экстракта коррелирует с увеличением их антирадикальной активности в модельной системе по ингибированию радикалов 2,2ʹ-дифенил-1-пикрилгидразила. Экспозиция клеток суспензионных культур листового и корневого происхождения в присутствии 250 ‒500 мг/л дрожжевого экстракта приводит к повышению активности ключевого фермента биосинтеза фенольных соединений L-фенилаланинаммонийлиазы в 2,1‒2,7 и 1,2‒1,3 раза соответственно.

Биографии авторов

Гражина Владимировна Нестер, Белорусский государственный университет, пр. Независимости, 4, 220030, г. Минск, Беларусь

магистрант кафедры клеточной биологии и биоинженерии растений биологического факультета. Научный руководитель – Т. И. Дитченко

Татьяна Ивановна Дитченко, Белорусский государственный университет, пр. Независимости, 4, 220030, г. Минск, Беларусь

кандидат биологических наук, доцент; доцент кафедры клеточной биологии и биоинженерии растений биологического факультета

Литература

  1. Angelova Z, Georgiev S, Roos W. Elicitation of plants. Biotechnology and Biotechnological Equipment. 2006;20(2):72–83. DOI: 10.1080/13102818.2006.10817345.
  2. Ramirez-Estrada K, Vidal-Limon H, Hidalgo D, Moyano E, Golenioswki M, Cusidó RM, et al. Elicitation, an effective strategy for the biotechnological production of bioactive high-added value compounds in plant cell factories. Molecules [Internet]. 2016 [cited 2020 March 1];21(2):182. Available from: https://www.mdpi.com/1420-3049/21/2/182/pdf. DOI: 10.3390/molecules21020182.
  3. Ochoa-Villarreal M, Howat S, Hong S, Jang MO, Jin Y-W, Lee E-K, et al. Plant cell culture strategies for the production of natural products. BMB Reports. 2016;49(3):149–158. DOI: 10.5483/bmbrep.2016.49.3.264.
  4. Halder M, Sarkar S, Jha S. Elicitation: a biotechnological tool for enhanced production of secondary metabolites in hairy root cultures. Engineering in Life Sciences. 2019;19(12):880–895. DOI: 10.1002/elsc.201900058.
  5. Isah T, Umar S, Mujib A, Sharma MP, Rajasekharan PE, Zafar N, et al. Secondary metabolism of pharmaceuticals in the plant in vitro cultures: strategies, approaches, and limitations to achieving higher yield. Plant Cell, Tissue and Organ Culture (PCTOC). 2018;132(2):239–265. DOI: 10.1007/s11240-017-1332-2.
  6. Vasconsuelo A, Boland R. Molecular aspects of the early stages of elicitation of secondary metabolites in plants. Plant Science. 2007;172(5):861–875. DOI: 10.1016/j.plantsci.2007.01.006.
  7. Baenas N, García-Viguera C, Moreno DA. Elicitation: a tool for enriching the bioactive composition of foods. Molecules [Internet]. 2014 [cited 2020 March 1];19(9):13541–13563. Available from: https://www.mdpi.com/1420-3049/19/9/13541/pdf. DOI: 10.3390/molecules190913541.
  8. Namdeo AG. Plant cell elicitation for production of secondary metabolites: a review. Pharmacognosy Reviews. 2007;1(1):69–79.
  9. Mishra AK, Sharma K, Misra RS. Elicitor recognition, signal transduction and induced resistance in plants. Journal of Plant Interactions. 2012;7(2):95–120. DOI: 10.1080/17429145.2011.597517.
  10. Zhai X, Jia M, Chen L, Zheng C-J, Rahman K, Han T, et al. The regulatory mechanism of fungal elicitor‐induced secondary metabolite biosynthesis in medical plants. Critical Reviews in Microbiology. 2017;43(2):238–261. DOI: 10.1080/1040841X.2016.1201041.
  11. Naik PM, Al-Khayri JM. Abiotic and biotic elicitors – role in secondary metabolites production through in vitro culture of medicinal plants. In: Shanker AK, Shanker C, editors. Abiotic and biotic stress in plants: recent advances and future perspectives. Rijeka: InTech; 2016. p. 247–277. DOI: 10.5772/61442.
  12. Baldi A, Srivastava AK, Bisaria VS. Fungal elicitors for enhanced production of secondary metabolites in plant cell suspension cultures. In: Varma A, Kharkwal AC, editors. Symbiotic fungi: principles and practice. Berlin: Springer-Verlag; 2009. p. 373–380. (Soil Biology; volume 18). DOI: 10.1007/978-3-540-95894-9_23.
  13. Sokolov YuA. Elicitors and their application. Proceedings of the National Academy of Sciences of Belarus. Chemical Series. 2014;4:109–121. Russian.
  14. Shasmita, Singh NR, Rath SK, Behera S, Naik SK. In vitro secondary metabolite production through fungal elicitation: an approach for sustainability. In: Prasad R, Kumar V, Kumar M, Wang S, editors. Fungal nanobionics: principles and applications. Singapore: Springer Nature Singapore; 2018. p. 215–242. DOI: 10.1007/978-981-10-8666-3_9.
  15. Netala VR, Kotakadi VS, Gaddam SA, Ghosh SB, Tartte V. Elicitation of gymnemic acid production in cell suspension cultures of Gymnema sylvestre R. Br. through endophytic fungi. 3 Biotech [Internet]. 2016 [cited 2020 March 1];6(2):232. Available from: https://link.springer.com/article/10.1007%2Fs13205-016-0555-y. DOI: 10.1007/s13205-016-0555-y.
  16. Tonk D, Mujib A, Maqsood M, Ali M, Zafar N. Aspergillus flavus fungus elicitation improves vincristine and vinblastine yield by augmenting callus biomass growth in Catharanthus roseus. Plant Cell, Tissue and Organ Culture (PCTOC). 2016;126(2):291–303. DOI: 10.1007/s11240-016-0998-1.
  17. Parsons JL, Cameron SI, Harris CS, Smith ML. Echinacea biotechnology: advances, commercialization and future considerations. Pharmaceutical Biology. 2018;56(1):485–494. DOI: 10.1080/13880209.2018.1501583.
  18. Murthy HN, Kim Y-S, Park S-Y, Paek K-Y. Biotechnological production of caffeic acid derivatives from cell and organ cultures of Echinacea species. Applied Microbiology and Biotechnology. 2014;98(18):7707–7717. DOI: 10.1007/s00253-014-5962-6.
  19. Abbasi BH, Liu R, Saxena PK, Liu C-Z. Cichoric acid production from hairy root cultures of Echinacea purpurea grown in a modified airlift bioreactor. Journal of Chemical Technology and Biotechnology. 2009;84(11):1697–1701. DOI: 10.1002/jctb.2233.
  20. Ramezannezhad R, Aghdasi M, Fatemi M. Enhanced production of cichoric acid in cell suspension culture of Echinacea purpurea by silver nanoparticle elicitation. Plant Cell, Tissue and Organ Culture (PCTOC). 2019;139(2):261–273. DOI: 10.1007/s11240-019-01678-4.
  21. Yurin VM, Ditchenko TI, Filipava SN, Molchan OV, Lohvina HO, Glushakova DYu, et al. Collection of callus cultures of medicinal plants. In: Role of botanical gardens and arboretums in conservation, investigation and sustainable using diversity of the plant world. Proceedings of the International conference dedicated to 85th anniversary of the Central Botanical Garden of the National Academy of Sciences of Belarus; 2017 June 6–8; Minsk, Belarus. Part 1. Minsk: Medisont; 2017. p. 481–486. Russian.
  22. Ditchenko TI, Shabunya PS, Fatykhova SA, Molchan OV, Yurin VM. Analysis of caffeic acid derivatives in Echinacea purpurea callus culture. Proceedings of Universities. Applied Chemistry and Biotechnology. 2017;7(2):55–63. Russian. DOI: 10.21285/2227-2925-2017-7-2-55-63.
  23. Ditchenko TI, Yurin VM. Regulation of phenolic secondary metabolites production by Echinacea purpurea L. Moench callus culture of root origin. Journal of the Belarusian State University. Biology. 2018;2:57–64. Russian.
  24. Yue W, Ming Q-L, Lin B, Rahman K, Zheng C-J, Han T, et al. Medicinal plant cell suspension cultures: pharmaceutical applications and high-yielding strategies for the desired secondary metabolites. Critical Reviews in Biotechnology. 2016;36(2):215–232. DOI: 10.3109/07388551.2014.923986.
  25. Murashige T, Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum. 1962;15(3):473–497. DOI: 10.1111/j.1399-3054.1962.tb08052.x.
  26. Zaprometov MN. [Phenolic compounds and methods for their research]. In: Pavlinova OA, editor. Biokhimicheskie metody v fiziologii rastenii [Biochemical methods in plant physiology]. Moscow: Nauka; 1971. p. 185–197. Russian.
  27. Kurkin VA, Avdeeva OI, Avdeeva EV, Mizina PG. [Quantative determination of the amount of hydroxycinnamic acids in the aerial part of Echinacea purpurea]. Rastitel’nye resursy. 1998;34(2):81–85. Russian.
  28. Volkov VA, Dorofeeva NA, Pakhomov PM. Kinetic method for studying the antiradical activity of medicinal plant extracts. Khimiko-farmatsevticheskii zhurnal. 2009;43(6):27–31. Russian.
  29. Filippenko TA, Belaya NI, Nikolaevskiy AN. [Phenolic compounds of plant extracts and their activity in reaction with diphenylpicrylhydrazyl]. Khimiko-farmatsevticheskii zhurnal. 2004;38(8):34–36. Russian.
  30. Zucker M. Sequential induction of phenylalanine ammonia-lyase and a lyase-inactivating system in potato tuber disks. Plant Physiology. 1968;43(3):365–374. DOI: 10.1104/pp.43.3.365.
  31. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. 1976;72(1–2):248–254. DOI: 10.1006/abio.1976.9999.
  32. Yurin VM, Ditchenko TI, Filipava SN, Klyuchankova MV, Lohvina HO. Characterization of cell suspension culture as an object for industrial production of pharmacologically active substances. Trudy Belorusskogo gosudarstvennogo universiteta. Seriya: Fiziologicheskie, biokhimicheskie i molekulyarnye osnovy funktsionirovaniya biosistem. 2016;11(1):9–31. Russian.
  33. Kurkin VA, Akushskaya AS, Avdeeva EV, Vel’myaikina EI, Daeva ED, Kadentsev VI. [Echinacea purpurea herb flavonoids]. Khimiya rastitel’nogo syr’ya. 2010;4:87–89. Russian.
  34. Loc NH, Anh NHT, Khuyen LTM, An TNT. Effects of yeast extract and methyl jasmonate on the enhancement of solasodine biosynthesis in cell cultures of Solanum hainanense Hance. Journal of BioScience and Biotechnology [Internet]. 2014 [cited 2020 March 1];3(1):1–6. Available from: http://www.jbb.uni-plovdiv.bg/documents/27807/352484/jbb_2014-3(1)-pages_1-6.pdf/.
  35. Correa-Higuera LJ, Sepúlveda-García EB, Ponce-Noyola T, Trejo-Espino JL, Jiménez-Aparicio AR, Luna-Palencia GR, et al. Glucoindole alkaloid accumulation induced by yeast extract in Uncaria tomentosa root cultures is involved in defense response. Biotechnology Letters. 2019;41(10):1233–1244. DOI: 10.1007/s10529-019-02714-1.
  36. Yuan Y-J, Li C, Hu Z-D, Wu J-C, Zeng A-P. Fungal elicitor-induced cell apoptosis in suspension cultures of Taxus chinensis var. mairei for taxol production. Process Biochemistry. 2002;38(2):193–198. DOI: 10.1016/S0032-9592(02)00071-7.
  37. Putalun W, Luealon W, De-Eknamkul W, Tanaka H, Shoyama Y. Improvement of artemisinin production by chitosan in hairy root cultures of Artemisia annua L. Biotechnology Letters. 2007;29(7):1143–1146. DOI: 10.1007/s10529-007-9368-8.
  38. Xu X, Hu X, Neill SJ, Fang J, Cai W. Fungal elicitor induces singlet oxygen generation, ethylene release and saponin synthesis in cultured cells of Panax ginseng C. A. Meyer. Plant and Cell Physiology. 2005;46(6):947–954. DOI: 10.1093/pcp/pci103.
  39. Roat C, Ramawat KG. Elicitor-induced accumulation of stilbenes in cell suspension cultures of Cayratia trifolia (L.) Domin. Plant Biotechnology Reports. 2009;3(2):135–138. DOI: 10.1007/s11816-009-0082-y.
  40. Shinde AN, Malpathak N, Fulzele DP. Optimized production of isoflavones in cell cultures of Psoralea corylifolia L. using elicitation and precursor feeding. Biotechnology and Bioprocess Engineering. 2009;14(5):612. DOI: 10.1007/s12257-008-0316-9.
  41. Cakir O, Ari S. Defensive and secondary metabolism in Astragalus chrysochlorus cell cultures, in response to yeast extract stressor. Journal of Environmental Biology. 2009;30(1):51–55.
  42. Bahabadi SE, Sharifi M, Behmanesh M, Safaie N, Murata J, Araki R, et al. Time-course changes in fungal elicitor-induced lignan synthesis and expression of the relevant genes in cell cultures of Linum album. Journal of Plant Physiology. 2012;169(5):487–491. DOI: 10.1016/j.jplph.2011.12.006.
  43. Gadzovska Simic S, Tusevski O, Maury S, Hano C, Delaunay A, Chabbert B, et al. Fungal elicitor-mediated enhancement in phenylpropanoid and naphtodianthrone contents of Hypericum perforatum L. cell cultures. Plant Cell, Tissue and Organ Culture (PCTOC). 2015;122(1):213–226. DOI: 10.1007/s11240-015-0762-y.
  44. Kikowska M, Kędziora I, Krawczyk A, Thiem B. Methyl jasmonate, yeast extract and sucrose stimulate phenolic acids accumulation in Eryngium planum L. shoot cultures. Acta Biochimica Polonica. 2015;62(2):197–200. DOI: 10.18388/abp.2014_880.
  45. Yan Q, Shi M, Ng J, Wu JY. Elicitor-induced rosmarinic acid accumulation and secondary metabolism enzyme activities in Salvia miltiorrhiza hairy roots. Plant Science. 2006;170(4):853–858. DOI: 10.1016/j.plantsci.2005.12.004.
  46. Leopoldini M, Marino T, Russo N, Toscano M. Antioxidant properties of phenolic compounds: H-atom versus electron transfer mechanism. The Journal of Physical Chemistry A. 2004;108(22):4916–4922. DOI: 10.1021/jp037247d.
  47. Kumar N, Goel N. Phenolic acids: natural versatile molecules with promising therapeutic applications. Biotechnology Reports [Internet]. 2019 [cited 2020 March 1];24:e00370. Available from: https://reader.elsevier.com/reader/sd/pii/S2215017X19302383?token=67262F1C86CB4FEDE5B5D42FA891AC21D1B658CF599F9A2C4845FA40EA3101F18397AD015842CE2B786C7BC7A4E20FE9. DOI: 10.1016/j.btre.2019.e00370.
Опубликован
2020-09-12
Ключевые слова: Echinacea purpurea L. Moench, суспензионная культура клеток, дрожжевой экстракт, фенольные соединения, гидроксикоричные кислоты, флавоноиды, антирадикальная активность, L-фенилаланинаммонийлиаза
Как цитировать
Нестер, Г. В., & Дитченко, Т. И. (2020). Стимуляция биосинтеза вторичных метаболитов фенольной природы в суспензионных культурах клеток Еchinacea purpurea L. Moench под влиянием элиситоров дрожжевого экстракта. Экспериментальная биология и биотехнология, 2, 37-48. https://doi.org/10.33581/2521-1722-2020-2-37-48