Современные феномные платформы и их применение в биологии растений и сельском хозяйстве
Аннотация
Феномные платформы – аппаратно-программные комплексы, обеспечивающие сбор и обработку информации о фенотипе растений или других организмов. В представленном исследовании дан аналитический обзор феномных платформ основных мировых изготовителей, их компонентов, характеристик и применения в биологии, сельском хозяйстве и биотехнологии. Проведено сравнение феномных установок по ключевым параметрам, выявлены тенденции развития их сенсорной и программно-аналитической составляющих. Дана оценка современного состояния мирового рынка феномных систем. Приводятся наиболее важные примеры использования феномных установок для фенотипирования в полевых и лабораторных условиях, фундаментальных и практических исследованиях в различных областях биологии растений.
Литература
2. Yang W, Feng H, Zhang X, Zhang J, Doonan JH, Batchelor WD, et al. Crop phenomics and high-throughput phenotyping: past decades, current challenges and future perspectives. Molecular Plant. 2020;13:187–214. DOI: 10.1016/j.molp.2020.01.008.
3. Demidchik VV, Shashko AYu, Bondarenko VYu, Smolikova GN, Przheval’skaya DA, Chernysh MA, et al. Fenomika rastenii: fundamentalʼnye osnovy, programmno-apparatnye platformy i metody mashinnogo obucheniya [Plant phenomics: fundamental principles, software and hardware platforms and machine learning methods.]. Fiziologiya rastenii. 2020;67(3):227–245. DOI: 10.31857/S0015330320030069.
4. Zhou J, Tardieu F, Pridmore T, Doonan JH, Reynolds D, Hall N, et al. Plant phenomics: history, present status and challenges. Journal of Nanjing Agricultural University. 2018;41(4):580–588. DOI: 10.7685/jnau.201805100.
5. Tardieu F, Cabrera-Bosquet L, Pridmore T, Bennett M. Plant phenomics, from sensors to knowledge. Current Biology. 2017; 27(15):R770–R783. DOI: 10.1016/j.cub.2017.05.055.
6. Coppens F, Wuyts N, Inze D, Dhondt S. Unlocking the potential of plant phenotyping data through integration and data-driven approaches. Current Opinion in Systems Biology. 2017;4:58–63. DOI: 10.1016/j.coisb.2017.07.002.
7. Mishra KB, Mishra A, Klem K, Govindjee G. Plant phenotyping: a perspective. Indian Journal of Plant Physiology. 2016;21(4): 514–527. DOI: 10.1007/s40502-016-0271-y.
8. Golbach F, Kootstra G, Damjanovic S, Otten G, van de Zedde R. Validation of plant part measurements using a 3D reconstruction method suitable for high-throughput seedling phenotyping. Machine Vision and Applications. 2016;27:663–680. DOI: 10.1007/s00138-015-0727-5.
9. Tisne S, Serrand Y, Bach L, Gilbault E, Ben Ameur R, Balasse H, et al. Phenoscope: an automated large-scale phenotyping platform offering high spatial homogeneity. Plant Journal. 2013;74(3):534–544. DOI: 10.1111/tpj.12131.
10. Kikkawa M, Fujita S, Matsuo T, Ishiura M. High-throughput phenotyping of Chlamydomonas swimming mutants based on nanoscale video analysis. Biophysical Journal. 2014;107(2):336–345. DOI: 10.1016/j.bpj.2014.05.033.
11. Li L, Zhang Q, Huang D. A review of imaging techniques for plant phenotyping. Sensors. 2014;14(11):20078–20111. DOI: 10.3390/s141120078.
12. Singh A, Ganapathysubramanian B, Sarkar S. Machine learning for high-throughput stress phenotyping in plants. Trends in Plant Science. 2016;21:110–124. DOI: 10.1016/j.tplants.2015.10.015.
13. Berry JC, Fahlgren N, Pokorny AA, Bart RS, Veley KM. An automated, high-throughput method for standardizing image color profiles to improve image-based plant phenotyping. PeerJ. 2018;6:1–12. DOI: 10.7717/peerj.5727.
14. Perez-Sanz F, Navarro PJ, Egea-Cortines M. Plant phenomics: an overview of image acquisition technologies and image data analysis algorithms. Gigascience. 2017;6(11):1–18. DOI: 10.1093/gigascience/gix092.
15. Zhang J, Naik HS, Assefa T, Sarkar S, Chowda Reddy RV, Singh A, et al. Computer vision and machine learning for robust phenotyping in genome-wide studies. Scientific Reports. 2017;7:1–11. DOI: 10.1038/srep44048.
16. Czedik-Eysenberg A, Seitner S, Guldener U, Koemeda S, Jez J, Colombini M. The «PhenoBox», a flexible, automated, opensource plant phenotyping solution. The New Phytologist. 2018;219(2):808–823. DOI: 10.1111/nph.15129.
17. Ghosal S, Blystone D, Singh AK, Ganapathysubramanian B, Sarkar S. An explainable deep machine vision framework for plant stress phenotyping. Proceedings of the National Academy of Sciences of the USA. 2018;115:4613–4618. DOI: 10.1073/pnas.1716999115.
18. Rouphael Y, Spichal L, Panzarova K, Casa R, Colla G. High-throughput plant phenotyping for developing novel biostimulants: from lab to field or from field to lab? Frontiers in Plant Science. 2018;9:1–6. DOI: 10.3389/fpls.2018.02297.
19. Dhondt S, Wuyts N, Inze D. Cell to whole-plant phenotyping: the best is yet to come. Trends in Plant Science. 2013;18(8):428–439. DOI: 10.1016/j.tplants.2013.04.008.
20. Granier C, Vile D. Phenotyping and beyond: modeling the relationships between traits. Current Opinion in Plant Biology. 2014;18:96–102. DOI: 10.1016/j.pbi.2014.02.009.
21. Ghanem ME, Marrou H, Sinclair TR. Physiological phenotyping of plants for crop improvement. Trends in Plant Science. 2015;20(3):139–144. DOI: 10.1016/j.tplants.2014.11.006.
22. Fahlgren N, Gehan MA, Baxter I. Lights, camera, action: high-throughput plant phenotyping is ready for a close-up. Current Opinion in Plant Biology. 2015;24:93–99. DOI: https://doi.org/10.1016/j.pbi.2015.02.006.
23. Roitsch T, Cabrer-Bosquet L, Fournier A, Ghamkhar K, Jimenez-Berni J, Pinto F. Review: new sensors and data-driven approaches – a path to next generation phenomics. Plant Science. 2019;282:2–10. DOI: 10.1016/j.plantsci.2019.01.011.
24. Pound MP, Atkinson JA, Townsend AJ, Wilson MH, Griffits M, Jackson AS. Erratum to: Deep machine learning provides stateof-the-art performance in image-based plant phenotyping. Gigascience. 2018;7(7):1–9. DOI: 10.1093/gigascience/giy042.
25. Finkel E. With «phenomics» plant scientists hope to shift breeding into overdrive. Science. 2009;325:380–381. DOI: 10.1126/science.325_380.
26. Humplik JF, Lazar D, Husickova A, Spichal L. Automated phenotyping of plant shoots using imaging methods for analysis of plant stress responses – a review. Plant Methods. 2015;11:1–10. DOI: 10.1186/s13007-015-0072-8.
27. Pratar A, Tomar R, Kumar J. High-throughput plant phenotyping platforms. In: Phenomics in crop plants: trends, options and limitations. New Delhi: Springer; 2015. DOI: 10.1007/978-81-322-2226-2_19.
28. Fiorani F, Schurr U. Future scenarios for plant phenotyping. Annual Review of Plant Biology. 2013;64;267–291. DOI: 10.1146/annurev-arplant-050312-12013.
29. Reuzeau C. TraitMill (TM): a high throughput functional genomics platform for the phenotypic analysis of cereals. In Vitro Cellular & Developmental Biology. 2007;43:1–8.
30. Reuzeau C, Pen J, Frankard V, de Wolf J, Peerbolte R, Broekaert W, et al. TraitMill: a discovery engine for identifying yield-enhancement genes in cereals. Plant Gene and Trait. 2010;1(1). DOI: 10.5376/pgt.2010.01.0001.
31. Fabre J, Dauzat M, Negre V, Granier C. Phenopsis DB: an information system for Arabidopsis thaliana phenotypic data in an environmental context. BMC Plant Biology. 2011;11:1–7. DOI: 10.1186/1471-2229-11-77.
32. Neilson EH, Edwards AM, Blomstedt CK, Berger B, Lindberg Moller B, Gleadow RM. Utilization of a high-throughput shoot imaging system to examine the dynamic phenotypic responses of a C4 cereal crop plant to nitrogen and water deficiency over time. Journal of Experimental Botany. 2015;66(7):1817–1832. DOI: 10.1093/jxb/eru526.
33. Coneva V, Frank MH, de Luis Balaguer MA, Li M, Sozzani R, Chitwood DH. Genetic architecture and molecular networks underlying leaf thickness in desert-adapted tomato Solanum pennellii. Plant Physiology. 2017;175(1):376–391. DOI: 10.1104/pp.17.00790.
34. Tschiersch H, Junker A, Meyer RC, Altman T. Establishment of integrated protocols for automated high throughput kinetic chlorophyll fluorescence analyses. Plant Methods. 2017;13:1–16. DOI: 10.1186/s13007-017-0204-4.
35. Van De Velde K, Chandler PM, Van Der Straeten D, Rohde A. Differential coupling of gibberellin responses by Rht-B1c suppressor alleles and Rht-B1b in wheat highlights a unique role for the DELLA N-terminus in dormancy. Journal of Experimental Botany. 2017;68(3):443–455. DOI: 10.1093/jxb/erw471.
36. Fahlgren N, Feldman M, Gehan MA, Wilson MS, Shyu C, Bryant DW, et al. A Versatile phenotyping system and analytics platform reveals diverse temporal responses to water availability in Setaria. Molecular Plant. 2015;8(10):1520–1535. DOI: 10.1016/j.molp.2015.06.005.
37. Cabrera-Bosquet L, Fournier C, Brichet N, Welcker C, Suard B, Tardieu F. High-throughput estimation of incident light, light interception and radiation-use efficiency of thousands of plants in a phenotyping platform. New Fytologist. 2016;212:269–282. DOI: 10.1111/nph.14027.
38. De Diego N, Furst T, Humplik JF, Ugena L, Podlesakova K, Spichal L. An automated method for high-throughput screening of Arabidopsis rosette growth in multi-well plates and its validation in stress conditions. Frontiers in Plant Science. 2017;8:1702. DOI: 10.3389/fpls.2017.01702.
39. Adhikari ND, Simko I, Mou B. Phenomic and physiological analysis of salinity effects on lettuce. Sensors. 2019;19(21):1–25. DOI: 10.3390/s19214814.
40. Skirycz A, Vandenbroucke K, Clauw P, Maleux K, De Meyer B, Dhondt S, et al. Survival and growth of Arabidopsis plants given limited water are not equal. Nature Biotechnology. 2011;29(3):212–214. DOI: 10.1038/nbt.1800.
41. Viaud G, Loudet O, Cournede PH. Leaf segmentation and tracking in Arabidopsis thaliana combined to an organ-scale plant model for genotypic differentiation. Frontiers in Plant Science. 2017;7:1–14. DOI: 10.3389/fpls.2016.02057.
42. Perich G, Hund A, Anderegg J, Roth L, Boer MP, Walter A, et al. Assessment of multi-image unmanned aerial vehicle based high-throughput field phenotyping of canopy temperature. Frontiers in Plant Science. 2020;11:1–17. DOI: 10.3389/fpls.2020.00150.
43. Bukowiecki J, Rose T, Ehlers R, Kage H. High-throughput prediction of whole season green area index in winter wheat with an airborne multispectral sensor. Frontiers in Plant Science. 2020;10:1–14. DOI: 10.3389/fpls.2019.01798.
44. Prey L, Hu Y, Schmidhalter U. High-throughput field phenotyping traits of grain yield formation and nitrogen use efficiency: optimizing the selection of vegetation indices and growth stages. Frontiers in Plant Science. 2019;10:1–20. DOI: 10.3389/fpls.2019.01672.
45. Zhang C, Kovacs JM. The application of small unmanned aerial systems for precision agriculture: a review. Precision Agriculture. 2012;13:693–712. DOI: 10.1007/s11119-012-9274-5.
46. Sadeghi-Tehran P, Sabermanesh K, Virlet N, Hawkesford MJ. Automated method to determine two critical growth stages of wheat: heading and flowering. Frontiers in Plant Science. 2017;8:1–14. DOI: 10.3389/fpls.2017.00252.
47. Virlet N, Sabermanesh K, Sadeghi-Tehran P, Hawkesford M. Field Scanalyzer: an automated robotic field phenotyping platform for detailed crop monitoring. Functional Plant Biology. 2016;44(1):143–153. DOI: 10.1071/FP16163.
48. Cendrero-Mateo MP, Muller O, Albrecht H, Burkart A, Gatzke S, Janssen B, et al. Field phenotyping: challenges and opportunities. In: Chabbi A, Loescher HW, editors. Terrestrial ecosystem research infrastructures. Boca Raton: CRC Press; 2017. DOI: 10.1201/9781315368252-4.
49. Humplik JF, Lazar D, Furst T, Husickova A, Hybl M, Spichal L. Automated integrative high-throughput phenotyping of plant shoots: a case study of the cold-tolerance of pea (Pisum sativum L.). Plant Methods. 2015;11:1–11. DOI: 10.1186/s13007-015-0063-9.
50. Yang G, Liu J, Zhao C, Li Z, Huang Y, Yu H, et al. Unmanned aerial vehicle remote sensing for field-based crop phenotyping: current status and perspectives. Frontiers in Plant Science. 2017;8:1–26. DOI: 10.3389/fpls.2017.01111.
51. Ballesteros R, Ortega JF, Hernandez D, Moreno MA. Applications of georeferenced high-resolution images obtained with unmanned aerial vehicles. Part I: Description of image acquisition and processing. Precision Agriculture. 2014;15(6):579–592. DOI: 10.1007/s11119-014-9355-8.
52. Candiago S, Remondino F, De Giligo M, Dubbini M, Gattelli M. Evaluating multispectral images and vegetation indices for precision farming applications from UAV images. Remote Sensing. 2015;7(4):4026–4047. DOI: 10.3390/rs70404026.
53. Sankaran S, Khot LR, Espinoza CZ, Jarolmasjed S, Sathuvalli VR, Vandemark GJ, et al. Low-altitude, high-resolution aerial imaging systems for row and field crop phenotyping: a review. European Journal of Agronomy. 2015;70:112–123. DOI: 10.1016/j.eja.2015.07.004.
54. Araus JL, Cairns JE. Field high-throughput phenotyping: the new crop breeding frontier. Trends in Plant Science. 2014;19(1): 52–61. DOI: 10.1016/j.tplants.2013.09.008.
55. Cobb JN, Declerck G, Greenberg A, Clarck R, McCouch S. Next-generation phenotyping: requirements and strategies for enhancing our understanding of genotype-phenotype relationships and its relevance to crop improvement. Theoretical and Applied Genetics. 2013;126(4):867–887. DOI: 10.1007/s00122-013-2066-0.
56. Kirchgessner N, Liebisch F, Yu K, Pfeifer J, Friedli M, Hund A. The ETH field phenotyping platform FIP: a cable-suspended multi-sensor system. Functional Plant Biology. 2016(44):154–168. DOI: 10.1071/F.P.16165.
57. Gevaert C, Suomalainen J, Tang J, Kooistra L. Generation of spectral-temporal response surfaces by combining multispectral satellite and hyperspectral UAV imagery for precision agriculture applications. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 2015;1(6):1–9. DOI: 10.1109/JSTARS.2015.2406339.
58. Kyratzis AC, Skarlatos DP, Menexes GC, Vamvakousis VF, Katsiotis A. Assessment of vegetation indices derived by UAV imagery for durum wheat phenotyping under a water limited and heat stressed mediterranean environment. Frontiers in Plant Science. 2017;8:1–14. DOI: 10.3389/fpls.2017.01114.
59. Kefauver SC, Vicente R, Vergara-Diaz O, Fermnandez-Gallego JA, Kerfal S, Lopez A, et al. Comparative UAV and field phenotyping to assess yield and nitrogen use efficiency in hybrid and conventional barley. Frontiers in Plant Science. 2017;8:1–15. DOI: 10.3389/fpls.2017.01733.
60. Potgieter AB, George-Jaeggli B, Chapman SC, Laws K, Suarez Cadavid LA, Wixted J, et al. Multi-spectral imaging from an unmanned aerial vehicle enables the assessment of seasonal leaf area dynamics of sorghum breeding lines. Frontiers in Plant Science. 2017;8:1–11. DOI: 10.3389/fpls.2017.01532.
61. Watanabe K, Guo W, Arai K, Takanashi H, Kajiya-Kanegae H, Kobayashi M, et al. High-throughput phenotyping of sorghum plant height using an unmanned aerial vehicle and its application to genomic prediction modeling. Frontiers in Plant Science. 2017;8:1–11. DOI: 10.3389/fpls.2017.00421.
62. Ludovisi R, Tauro F, Salvati R, Khoury S, Scarascia GM, Harfouche A. UAV-based thermal imaging for high-throughput field phenotyping of black poplar response to drought. Frontiers in Plant Science. 2017;8:1–18. DOI: 10.3389/fpls.2017.01681.
Copyright (c) 2020 Журнал Белорусского государственного университета. Биология
Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial» («Атрибуция — Некоммерческое использование») 4.0 Всемирная.
Авторы, публикующиеся в данном журнале, соглашаются со следующим:
- Авторы сохраняют за собой авторские права на работу и предоставляют журналу право первой публикации работы на условиях лицензии Creative Commons Attribution-NonCommercial. 4.0 International (CC BY-NC 4.0).
- Авторы сохраняют право заключать отдельные контрактные договоренности, касающиеся неэксклюзивного распространения версии работы в опубликованном здесь виде (например, размещение ее в институтском хранилище, публикацию в книге) со ссылкой на ее оригинальную публикацию в этом журнале.
- Авторы имеют право размещать их работу в интернете (например, в институтском хранилище или на персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу. (См. The Effect of Open Access).