Dynamics of gut microbiota in patients suffering from hematologic malignancies after allogeneic hematopoietic stem cell transplantation

  • Katsiaryna V.  Akhremchuk Institute of Microbiology, National Academy of Sciences of Belarus, 2 Akademika Kupreviča Street, Minsk 220141, Belarus
  • Katsiaryna Y. Skapavets Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, 43 Frunzienskaja Street, Baraŭliany 223053, Minsk District, Belarus
  • Artur E. Akhremchuk Institute of Microbiology, National Academy of Sciences of Belarus, 2 Akademika Kupreviča Street, Minsk 220141, Belarus
  • Natallia Kirsanava Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, 43 Frunzienskaja Street, Baraŭliany 223053, Minsk District, Belarus
  • Anastasiya V. Sidarenka Institute of Microbiology, National Academy of Sciences of Belarus, 2 Akademika Kupreviča Street, Minsk 220141, Belarus
  • Leonid N. Valentovich Institute of Microbiology, National Academy of Sciences of Belarus, 2 Akademika Kupreviča Street, Minsk 220141, Belarus

Abstract

In this study, we described the dynamics of intestinal microbiota of 32 patients after allogeneic hematopoietic stem cell transplantation (HSCT). After HSCT, on 14th day and 30th day, the inverse Simpson index value was more than 3 times lower compared to the pre-HSCT period. Biodiversity became more similar to the pre-HSCT level by 100th day. The correlation between diversity of microbiota and development of post-HSCT complications wasn’t observed. Our findings indicated individual-specific changes in the taxonomic structure of patients’ microbiota after HSCT. Changes in the relative abundance of the bacterial families Streptococcaceae, Actinomycetaceae, Acidaminococcaceae, Akkermansiaceae, Desulfovibrionaceae, Prevotellaceae, genera Streptococcus, Clostridioides, Phascolarctobacterium, Paraprevotella, Bilophila, Akkermansia, Coprococcus, Sutterella, Alistipes appear to be associated with the development of post-HSCT complications. High abundance of phylum Proteobacteria, families Actinomycetaceae and Streptococcaceae, genus Streptococcus before HSCT can be considered as a potential predictor of graft-versus-host disease development in the post-HSCT period.

Author Biographies

Katsiaryna V.  Akhremchuk, Institute of Microbiology, National Academy of Sciences of Belarus, 2 Akademika Kupreviča Street, Minsk 220141, Belarus

researcher at the laboratory «Center of analytical and genetic engineering research»

Katsiaryna Y. Skapavets, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, 43 Frunzienskaja Street, Baraŭliany 223053, Minsk District, Belarus

junior researcher at the laboratory of molecular genetic research

Artur E. Akhremchuk, Institute of Microbiology, National Academy of Sciences of Belarus, 2 Akademika Kupreviča Street, Minsk 220141, Belarus

junior research fellow, laboratory “Center of Analytical and Genetic Engineering Research”

Natallia Kirsanava, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, 43 Frunzienskaja Street, Baraŭliany 223053, Minsk District, Belarus

PhD (medicine); hematologist at the department of transplantation

Anastasiya V. Sidarenka, Institute of Microbiology, National Academy of Sciences of Belarus, 2 Akademika Kupreviča Street, Minsk 220141, Belarus

PhD (biology); head of the laboratory «Microbial collection»

Leonid N. Valentovich, Institute of Microbiology, National Academy of Sciences of Belarus, 2 Akademika Kupreviča Street, Minsk 220141, Belarus

PhD (biology); head of the laboratory «Center of analytical and genetic engineering research».

References

  1. Ferrara JLM, Levine JE, Reddy P, Holler E. Graft-versus-host disease. The Lancet. 2009;373(9674):1550–1561. DOI: 10.1016/S0140-6736(09)60237-3.
  2. Anasetti C, Logan BR, Lee SJ, Waller EK, Weisdorf DJ, Wingard JR, et al. Peripheral-blood stem cells versus bone marrow from unrelated donors. The New England Journal of Medicine. 2012;367:1487–1496. DOI: 10.1056/NEJMoa1203517.
  3. Taur Y, Jenq RR, Perales M-A, Littmann ER, Morjaria S, Ling L, et al. The effects of intestinal tract bacterial diversity on mortality following allogeneic hematopoietic stem cell transplantation. Blood. 2014;124(7):1174–1182. DOI: 10.1182/blood-2014-02-554725.
  4. Peled JU, Gomes ALC, Devlin SM, Littmann ER, Taur Ying, Sung AD, et al. Microbiota as predictor of mortality in allogeneic hematopoietic-cell transplantation. The New England Journal of Medicine. 2020;382:822–834. DOI: 10.1056/NEJMoa1900623.
  5. Shono Y, Docampo MD, Peled JU, Perobelli SM, Jenq RR. Intestinal microbiota-related effects on graft-versus-host disease. International Journal of Hematology. 2015;101:428–437. DOI: 10.1007/s12185-015-1781-5.
  6. Bekker V, Zwittink RD, Knetsch CW, Sanders IMJG, Berghuis D, Heidt PJ, et al. Dynamics of the gut microbiota in children receiving selective or total gut decontamination treatment during hematopoietic stem cell transplantation. Biology of Blood and Marrow Transplantation. 2019;25(6):1164–1171. DOI: 10.1016/j.bbmt.2019.01.037.
  7. Golob JL, Pergam SA, Srinivasan S, Fiedler TL, Liu С, Garcia K, et al. Stool microbiota at neutrophil recovery is predictive for severe acute graft vs host disease after hematopoietic cell transplantation. Clinical Infectious Diseases. 2017;65(12):1984–1991. DOI: 10.1093/cid/cix699.
  8. McLaren MR. Silva SSU taxonomic training data formatted for DADA2 (Silva version 138) [Internet]. Geneva: CERN; 2020 March 27 [cited 2022 February 20]. Available from: https://zenodo.org/record/3731176#.YrK8unZByUk. DOI: 10.5281/zenodo.3731176.
  9. Simpson EH. Measurement of diversity. Nature. 1949;163(4148):688. DOI: 10.1038/163688a0.
  10. Wilcoxon F. Individual comparisons by ranking methods. Biometrics Bulletin. 1945;1:80–83. DOI: 10.2307/3001968.
  11. Benjamini Y, Hochberg Y. Сontrolling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B (Methodological). 1995;57(1):289–300.
  12. Mancini N, Greco R, Pasciuta R, Barbanti MC, Pini G, Morrow OB, et al. Enteric microbiome markers as early predictors of clinical outcome in allogeneic hematopoietic stem cell transplant: results of a prospective study in adult patients. Open Forum Infectious Diseases. 2017;4(4):ofx215. DOI: 10.1093/ofid/ofx215.
  13. Ingham AC, Kielsen K, Cilieborg MS, Lund O, Holmes S, Aarestrup FM, et al. Specific gut microbiome members are associated with distinct immune markers in pediatric allogeneic hematopoietic stem cell transplantation. Microbiome. 2019;7(1):131. DOI: 10.1186/s40168-019-0745-z.
  14. Ilett EE, Jørgensen M, Noguera-Julian M, Nørgaard JC, Daugaard G, Helleberg M, et al. Associations of the gut microbiome and clinical factors with acute GVHD in allogeneic HSCT recipients. Blood Advances. 2020;4(22):5797–5809. DOI: 10.1182/bloodadvances.2020002677.
  15. Han L, Zhang H, Chen S, Zhou L, Li Y, Zhao K, et al. Intestinal microbiota can predict acute graft-versus-host disease following allogeneic hematopoietic stem cell transplantation. Biology of Blood and Marrow Transplantation. 2019;25(10):1944–1955. DOI: 10.1016/j.bbmt.2019.07.006.
  16. Han L, Jin H, Zhou L, Zhang X, Fan Z, Dai M, et al. Intestinal microbiota at engraftment influence acute graft-versus-host disease via the Treg /Th17 balance in allo-HSCT recipients. Frontiers in Immunology. 2018;9:669. DOI: 10.3389/fimmu.2018.00669.
  17. Jenq RR, Ubeda C, Taur Y, Menezes CC, Khanin R, Dudakov JA, et al. Regulation of intestinal inflammation by microbiota following allogeneic bone marrow transplantation. Journal of Experimental Medicine. 2012;209(5):903–911. DOI: 10.1084/jem.20112408.
  18. Laterza L, Rizzatti G, Gaetani E, Chiusolo P, Gasbarrini A. The gut microbiota and immune system relationship in human graftversus-host disease. Mediterranean Journal of Hematology and Infectious Diseases. 2016;8(1):e2016025. DOI: 10.4084/MJHID.2016.025.
  19. Kouidhi S, Souai N, Zidi O, Mosbah A, Lakhal A, Othmane TB, et al. High throughput analysis reveals changes in gut microbiota and specific fecal metabolomic signature in hematopoietic stem cell transplant patients. Microorganisms. 2021;9(9):1845. DOI: 10.3390/microorganisms9091845.
  20. Akhremchuk KV, Skapavets KY, Akhremchuk AE, Kirsanava NP, Sidarenka AV, Valentovich LN. Gut microbiome of healthy people and patients with hematological malignancies in Belarus. Microbiology Independent Research Journal (MIR Journal). 2022;9(1):18–30. DOI: 10.18527/2500-2236-2022-9-1-18-30.
  21. Jenq RR, Taur Y, Devlin SM, Ponce DM, Goldberg JD, Ahr KF, et al. Intestinal Blautia is associated with reduced death from graft-versus-host disease. Biology of Blood and Marrow Transplantation. 2015;21(8):1373–1383. DOI: 10.1016/j.bbmt.2015.04.016.
  22. Chen J, Ryu E, Hathcock M, Ballman K, Chia N, Olson JE, et al. Impact of demographics on human gut microbial diversity in a US Midwest population. PeerJ. 2016;4:e1514. DOI: 10.7717/peerj.1514.
  23. Kasai C, Sugimoto K, Moritani I, Tanaka J, Oya Y, Inoue H, et al. Comparison of the gut microbiota composition between obese and non-obese individuals in a Japanese population, as analyzed by terminal restriction fragment length polymorphism and next-generation sequencing. BMC Gastroenterology. 2015;15:100. DOI: 10.1186/s12876-015-0330-2.
  24. Yi M, Yu S, Qin S, Liu Q, Xu H, Zhao W, et al. Gut microbiome modulates efficacy of immune checkpoint inhibitors. Journal of Hematology & Oncology. 2018;11(1):47. DOI: 10.1186/s13045-018-0592-6.
  25. Shono Y, Docampo MD, Peled JU, Perobelli SM, Velardi E, Tsai JJ, et al. Increased GVHD-related mortality with broad-spectrum antibiotic use after allogeneic hematopoietic stem cell transplantation in human patients and mice. Science Translational Medicine. 2016;8(339):339ra71. DOI: 10.1126/scitranslmed.aaf2311.
  26. Apisarnthanarak A, Fraser VJ, Dunne WM, Little JR, Hoppe-Bauer J, Mayfield JL, et al. Stenotrophomonas maltophilia intestinal colonization in hospitalized oncology patients with diarrhea. Clinical Infectious Diseases. 2003;37(8):1131–1135. DOI: 10.1086/378297.
  27. Labarca JA, Leber AL, Kern VL, Territo MC, Brankovic LE, Bruckner DA, et al. Outbreak of Stenotrophomonas maltophilia bacteremia in allogenic bone marrow transplant patients: role of severe neutropenia and mucositis. Clinical Infectious Diseases. 2000;30(1):195–197. DOI: 10.1086/313591.
  28. Apisarnthanarak A, Mayfield JL, Garison T, McLendon PM, DiPersio JF, Fraser VJ, et al. Risk factors for Stenotrophomonas maltophilia bacteremia in oncology patients: a case-control study. Infection Control & Hospital Epidemiology. 2003;24(4):269–274. DOI: 10.1086/502197.
  29. Rizzatti G, Lopetuso LR, Gibiino G, Binda C, Gasbarrini A. Proteobacteria: a common factor in human diseases. BioMed Research International. 2017;2017:9351507. DOI: 10.1155/2017/9351507.
  30. Lähteenmäki K, Wacklin P, Taskinen M, Tuovinen E, Lohi O, Partanen J, et al. Haematopoietic stem cell transplantation induces severe dysbiosis in intestinal microbiota of paediatric ALL patients. Bone Marrow Transplant. 2017;52:1479–1482. DOI: 10.1038/bmt.2017.168.
  31. Lazar V, Ditu L-M, Pircalabioru GG, Gheorghe I, Curutiu C, Holban AM, et al. Aspects of gut microbiota and immune system interactions in infectious diseases, immunopathology, and cancer. Frontiers in Immunology. 2018;9:1830. DOI: 10.3389/fimmu.2018.01830.
  32. Gaboriau-Routhiau V, Cerf-Bensussan N. [Gut microbiota and development of the immune system]. Medecine Sciences (Paris). 2016;32(11):961–967. French. DOI: 10.1051/medsci/20163211011.
  33. Lin D, Hu B, Li P, Zhao Y, Xu Y, Wu D. Roles of the intestinal microbiota and microbial metabolites in acute GVHD. Experimental Hematology & Oncology. 2021;10:49. DOI: 10.1186/s40164-021-00240-3.
  34. Taur Y, Xavier JB, Lipuma L, Ubeda C, Goldberg J, Gobourne A, et al. Intestinal domination and the risk of bacteremia in patients undergoing allogeneic hematopoietic stem cell transplantation. Clinical Infectious Diseases. 2012;55(7):905–914. DOI: 10.1093/cid/cis580.
  35. Louis P, Flint HJ. Formation of propionate and butyrate by the human colonic microbiota. Environmental Microbiology. 2017;19(1):29–41. DOI: 10.1111/1462-2920.13589.
  36. Youssef O, Lahti L, Kokkola A, Karla T, Tikkanen M, Ehsan H, et al. Stool microbiota composition differs in patients with stomach, colon, and rectal neoplasms. Digestive Diseases and Sciences. 2018;63:2950–2958. DOI: 10.1007/s10620-018-5190-5.
  37. Hänninen A, Toivonen R, Pöysti S, Belzer C, Plovier H, Ouwerkerk JP, et al. Akkermansia muciniphila induces gut microbiota remodelling and controls islet autoimmunity in NOD mice. Gut. 2018;67(8):1445–1453. DOI: 10.1136/gutjnl-2017-314508.
  38. Plovier H, Everard A, Druart C, Depommier C, Van Hul M, Geurts L, et al. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nature Medicine. 2017;23(1):107–113. DOI: 10.1038/nm.4236.
  39. Png CW, Lindén SK, Gilshenan KS, Zoetendal EG, McSweeney CS, Sly LI, et al. Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria. The American Journal of Gastroenterology. 2010;105(11):2420–2428. DOI: 10.1038/ajg.2010.281.
  40. Depommier C, Everard A, Druart C, Plovier H, Van Hul M, Vieira-Silva S, et al. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nature Medicine. 2019;25(7):1096–1103. DOI: 10.1038/s41591-019-0495-2.
  41. Belzer C, de Vos WM. Microbes inside – from diversity to function: the case of Akkermansia. The ISME Journal. 2012;6(8):1449–1458. DOI: 10.1038/ismej.2012.6.
  42. Zhang X, Shen D, Fang Z, Jie Z, Qiu X, Zhang C, et al. Human gut microbiota changes reveal the progression of glucose intolerance. PLoS One. 2013;8(8):e71108. DOI: 10.1371/journal.pone.0071108.
  43. van der Lelie D, Oka A, Taghavi S, Umeno J, Fan T-J, Merrell KE, et al. Rationally designed bacterial consortia to treat chronic immune-mediated colitis and restore intestinal homeostasis. Nature Communications. 2021;12:3105. DOI: 10.1038/s41467-021-23460-x.
  44. Larsen JM. The immune response to Prevotella bacteria in chronic inflammatory disease. Immunology. 2017;151(4):363–374. DOI: 10.1111/imm.12760.
  45. Liu X, Lieberman J. Chapter three – a mechanistic understanding of pyroptosis: the fiery death triggered by invasive infection. In: Alt FW, editor. Advances in immunology. Volume 135. Cambridge: Academic Press; 2017. p. 81–117. DOI: 10.1016/bs.ai.2017.02.002.
  46. Tanoue T, Morita S, Plichta DR, Skelly AN, Suda W, Sugiura Y, et al. A defined commensal consortium elicits CD8 T cells and anti-cancer immunity. Nature. 2019;565(7741):600–605. DOI: 10.1038/s41586-019-0878-z.
Published
2022-07-08
Keywords: microbiome, graft-versus-host disease, dysbiosis, metagenomics
Supporting Agencies This work was supported by the state program «Science-intensive technologies and equipment» for 2016 –2020 (subprogram «Innovative biotechnologies – 2020», measure 67-1).
How to Cite
Akhremchuk, K. V., Skapavets, K. Y., Akhremchuk, A. E., Kirsanava, N., Sidarenka, A. V., & Valentovich, L. N. (2022). Dynamics of gut microbiota in patients suffering from hematologic malignancies after allogeneic hematopoietic stem cell transplantation. Experimental Biology and Biotechnology, 2, 48-59. https://doi.org/10.33581/2957-5060-2022-2-48-59
Section
Biotechnology and Microbiology