Photosynthetic apparatus of barley plants treated with 5-aminolevulinic acid: mechanisms of adaptation to drought

  • Tatsiana G. Kuryanchyk Institute of Biophysics and Cell Engineering, National Academy of Sciences of Belarus, 27 Akademičnaja Street, Minsk 220072, Belarus
  • Nikolay V. Kozel Institute of Biophysics and Cell Engineering, National Academy of Sciences of Belarus, 27 Akademičnaja Street, Minsk 220072, Belarus

Abstract

A significant effect of soil drought on the morphometric parameters of the leaves of barley plants of the Brovar and Avans varieties, the accumulation of reactive oxygen species, as well as the content of photosynthetic pigments in them has been established. It has been shown that during drought, the treatment of leaves of barley plants of the Brovar variety with 5-aminolevulinic acid causes a decrease in the content of proteins of photosystem antenna complexes, which leads to a decrease in the size of the light-harvesting antenna and is an effective mechanism for protecting the photosynthetic apparatus from oxidative stress. Fine adjustment of the photosynthetic apparatus components of leaves of barley plants of
the Brovar variety to drought may be a key factor in determining the resistance of this variety to this type of abiotic stress. In the Avans variety, these adaptation mechanisms are either absent or manifest to a lesser extent, which leads to a more intensive development of oxidative stress in plants of this variety under the action of soil drought.

Author Biographies

Tatsiana G. Kuryanchyk, Institute of Biophysics and Cell Engineering, National Academy of Sciences of Belarus, 27 Akademičnaja Street, Minsk 220072, Belarus

junior researcher at the laboratory of biophysics and biochemistry of plant cells

Nikolay V. Kozel, Institute of Biophysics and Cell Engineering, National Academy of Sciences of Belarus, 27 Akademičnaja Street, Minsk 220072, Belarus

PhD (biology), docent; leading researcher at the laboratory of biophysics and biochemistry of plant cells

References

  1. Ashraf M, Harris PJC. Photosynthesis under stressful environments: an overview. Photosynthetica. 2013;51(2):163–190. DOI: 10.1007/s11099-013-0021-6.
  2. Noctor G, Reichheld J-P, Foyer CH. ROS-related redox regulation and signaling in plants. Seminars in Cell & Developmental Biology. 2018;80:3–12. DOI: 10.1016/j.semcdb.2017.07.013.
  3. Wang Xuxu, Gao Yangang, Wang Qingjie, Chen Min, Ye Xinlin, Li Dongmei, et al. 24-Epibrassinolide-alleviated drought stress damage influences antioxidant enzymes and autophagy changes in peach (Prunus persicae L.) leaves. Plant Physiology and Biochemistry. 2019;135:30–40. DOI: 10.1016/j.plaphy.2018.11.026.
  4. Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA. Plant drought stress: effects, mechanisms and management. Agronomy for Sustainable Development. 2009;29(1):185–212. DOI: 10.1051/agro:2008021.
  5. Bartels D, Sunkar R. Drought and salt tolerance in plants. Critical Reviews in Plant Sciences. 2005;24(1):23–58. DOI: 10.1080/07352680590910410.
  6. Cominelli E, Conti L, Tonelli C, Galbiati M. Challenges and perspectives to improve crop drought and salinity tolerance. New Biotechnology. 2013;30(4):355–361. DOI: 10.1016/j.nbt.2012.11.001.
  7. Kebede A, Kang MS, Bekele E. Advances in mechanisms of drought tolerance in crops, with emphasis on barley. In: Sparks DL, editor. Advances in agronomy. Volume 156. Cambridge: Elsevier; 2019. p. 265–314. DOI: 10.1016/bs.agron.2019.01.008.
  8. Nabi RBS, Tayade R, Hussain A, Kulkarni KP, Imran QM, Mun B-G, et al. Nitric oxide regulates plant responses to drought, salinity, and heavy metal stress. Environmental and Experimental Botany. 2019;161:120–133. DOI: 10.1016/j.envexpbot.2019.02.003.
  9. Chan Zhulong, Shi Haitao. Improved abiotic stress tolerance of bermudagrass by exogenous small molecules. Plant Signaling & Behavior. 2015;10(3):e991577. DOI: 10.4161/15592324.2014.991577.
  10. Yaronskaya EB, Baluta TV, Kolyago VM, Shalygo NV. [Influence of 5-aminolevulinic acid on the growth of barley plants and pigment content]. In: Zorina TE, editor. Mezhdunarodnaya nauchnaya konferentsiya «Molekulyarnye, membrannye i kletochnye osnovy funktsionirovaniya biosistem». Shestoi s’ezd Belorusskogo obshchestvennogo ob’edineniya fotobiologov i biofizikov; 6–8 oktyabrya 2004 g.; Minsk, Belarus’. Chast’ 1 [International scientific conference «Molecular, membrane and cellular bases of biosystems functioning». Sixth congress of the Belarusian Public Association of Photobiologists and Biophysicists; 2004 October 6–8; Minsk,
  11. Belarus. Part 1]. Minsk: Editorial and Publication Centre of the Academy of Public Administration under the aegis of the President of the Republic of Belarus; 2004. p. 117–119. Russian.
  12. Averina NG, Yaronskaya EB. Involvement of 5-aminolevulinic acid in the regulation of plant growth. Photosynthetica. 1991;25(1):27–31.
  13. Averina NG, Gritskevich ER, Vershilovskaya IV, Usatov AV, Yaronskaya EB. Mechanisms of salt stress tolerance development in barley plants under the influence of 5-aminolevulinic acid. Russian Journal of Plant Physiology. 2010;57(6):792–798. DOI: 10.1134/S1021443710060075.
  14. Beyzaei Z, Averina NG, Sherbakov RA. Involvement of nitrate reductase in the ameliorating effect of 5-aminolevulinic acid on NaCl-stressed barley seedlings. Acta Physiologiae Plantarum. 2015;37(2):11. DOI: 10.1007/s11738-014-1752-0.
  15. Beyzaei Z, Sherbakov RA, Averina NG. Response of nitrate reductase to exogenous application of 5-aminolevulinic acid in barley plants. Journal of Plant Growth Regulation. 2014;33(4):745–750. DOI: 10.1007/s00344-014-9422-4.
  16. Domanskaya IN, Radyuk MS, Budakova EA, Samovich TV, Spivak EA, Shalygo NV, compilers. Tekhnologiya DNK-tipirovaniya genov ustoichivosti yachmenya k zasukhe [DNA typing technology for drought resistance genes in barley]. Minsk: Pravo i ekonomika; 2011. 31 p. Russian.
  17. Crow JP. Dichlorodihydrofluorescein and dihydrorhodamine 123 are sensitive indicators of peroxynitrite in vitro: implications for intracellular measurement of reactive nitrogen and oxygen species. Nitric Oxide. 1997;1(2):145–157. DOI: 10.1006/niox.1996.0113.
  18. Kozel NV, Shalygo NV. [Antioxidant system of barley leaves under photooxidative stress induced by rose bengal]. Fiziologiya rastenii. 2009;56(3):351–358. Russian.
  19. Kozel NV. Fotookislitel’nye protsessy, indutsirovannye v rasteniyakh yachmenya i tabaka sensibilizatorami ksantenovoi prirody [Photo-oxidative processes induced in barley and tobacco plants by sensitizers of xanthene nature] [dissertation]. Minsk: [s. n.]; 2009. 146 p. Russian.
  20. Mohanty JG, Jaffe JS, Schulman ES, Raible DG. A highly sensitive fluorescent micro-assay of H2O2 release from activated human leukocytes using a dihydroxyphenoxazine derivative. Journal of Immunological Methods. 1997;202(2):133–141. DOI: 10.1016/s0022-1759(96)00244-x.
  21. Kaliaha TG, Kozel NV. The effect of soil drought on the content of photosynthetic pigments in barley plants of the Brovar variety. Journal of the Belarusian State University. Biology. 2020;3:46–53. Russian. DOI: 10.33581/2521-1722-2020-3-46-53.
  22. Azarin K, Usatov A, Makarenko M, Kozel N, Kovalevich A, Dremuk I, et al. A point mutation in the photosystem I P700 chlorophyll a apoprotein A1 gene confers variegation in Helianthus annuus L. Plant Molecular Biology. 2020;103(4–5):373–389. DOI: 10.1007/s11103-020-00997-x.
  23. Jansson S, Stefánsson H, Nyström U, Gustafsson P, Albertsson P-Å. Antenna protein composition of PS I and PS II in thylakoid sub-domains. Biochimica et Biophysica Acta (BBA) – Bioenergetics. 1997;1320(3):297–309. DOI: 10.1016/S0005-2728(97)00033-9.
  24. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. 1976;72(1–2):248–254. DOI: 10.1016/0003-2697(76)90527-3.
  25. Rokitskii PF. Biologicheskaya statistika [Biological statistics]. 3rd edition. Minsk: Vysshaya shkola; 1973. 320 p. Russian.
  26. Wu Y, Jin X, Liao W, Hu L, Dawuda MM, Zhao X, et al. 5-Aminolevulinic acid (ALA) alleviated salinity stress in cucumber seedlings by enhancing chlorophyll synthesis pathway. Frontiers in Plant Science. 2018;9:635. DOI: 10.3389/fpls.2018.00635.
  27. Liu D, Wu L, Naeem MS, Liu H, Deng X, Xu L, et al. 5-Aminolevulinic acid enhances photosynthetic gas exchange, chlorophyll fluorescence and antioxidant system in oilseed rape under drought stress. Acta Physiologiae Plantarum. 2013;35(9):2747–2759. DOI: 10.1007/s11738-013-1307-9.
  28. Yemelyanava HV, Obukhovskaya LV, Averina NG. [Influence of 5-aminolevulinic acid on the respiratory activity of winter rapeseed plants enriched with anthocyanins]. In: Smolich II, Demidchik VV, Padutov VE, editors. Kletochnaya biologiya i biotekhnologiya rastenii. Tezisy dokladov II Mezhdunarodnoi nauchno-prakticheskoi konferentsii; 28–31 maya 2018 g.; Minsk, Belarus’ [Cell biology and plant biotechnology. Abstracts of the 2nd International scientific and practical conference; 2018 May 28–31; Minsk, Belarus]. Minsk: Belarusian State University; 2018. p. 38. Russian.
Published
2022-11-08
Keywords: soil drought, 5-aminolevulinic acid, oxidative stress, reactive oxygen species, photosynthetic apparatus, barley
How to Cite
Kuryanchyk, T. G., & Kozel, N. V. (2022). Photosynthetic apparatus of barley plants treated with 5-aminolevulinic acid: mechanisms of adaptation to drought. Experimental Biology and Biotechnology, 3, 26-38. https://doi.org/10.33581/2957-5060-2022-3-26-38
Section
Cell Biology and Physiology