Characteristics of the genetic structure of wild and farm populations of the red fox (Vulpes vulpes) in Belarus

  • Aliaksandra E. Hrebianchuk State Forensic Examination Committee of the Republic of Belarus, 43 Kalvaryjskaja Street, Minsk 220073, Belarus https://orcid.org/0000-0002-1224-3275
  • Nastassia S. Parfionava Scientific and Practical Center of the State Forensic Examination Committee of the Republic of Belarus, 25 Filimonava Street, Minsk 220114, Belarus
  • Volha M. Lukashkova State Forensic Examination Committee of the Republic of Belarus, 43 Kalvaryjskaja Street, Minsk 220073, Belarus
  • Iosif S. Tsybovsky BelJurZabespjachjenne, 1b Dziarzhynskaga Avenue, Minsk 220069, Belarus

Abstract

The red fox (Vulpes vulpes) is a hunting species, and is also bred on fur farms for the production of furs. In this work, was evaluated the polymorphism of DNA from the biological material of 412 individuals (265 samples of red morph and 147 samples of silver morph) of the red fox. Based on the study of polymorphism, a panel of 12 STR loci and 2 sex loci was developed, which is applicable for the identification of biological samples of individuals from wild and farm populations of the red fox. Analysis of the genetic structure of the species using this test system showed that two genetic clusters represent the most probable number of populations. No evidence of genetic admixture between farm and wild red foxes was found, analysis of molecular variance between samples revealed significant differentiation values (FST = 0.275; p = 0.000). The level of genetic introgression between the animals grown on fur farms in Belarus and the individuals of local wild population was studied. Research results indicate a low likelihood of genetic introgression between farm and wild populations of the red fox and no threat to the genetic integrity of this species. It was established that 3 loci (vWF.X, Nyct10 and CPH4) in DNA of the red fox were monomorphic with allele sizes different from those of other canids, which indicates the possibility of their use in differentiating animals of the Canidae family and as an internal control of the species of the studied samples. The use of the test system is framed in the form of a method for DNA identifying the red fox, which is successfully used in expert practice in investigating the facts of illegal hunting, animal attacks and other cases in the Republic of Belarus.

Author Biographies

Aliaksandra E. Hrebianchuk, State Forensic Examination Committee of the Republic of Belarus, 43 Kalvaryjskaja Street, Minsk 220073, Belarus

state forensic expert at the department of research and accounting of objects of animal origin and fibrous nature, directorate of genotyposcopic examination, general directorate of special examination, central office

Nastassia S. Parfionava, Scientific and Practical Center of the State Forensic Examination Committee of the Republic of Belarus, 25 Filimonava Street, Minsk 220114, Belarus

junior researcher at the laboratory of molecular biology research

Volha M. Lukashkova, State Forensic Examination Committee of the Republic of Belarus, 43 Kalvaryjskaja Street, Minsk 220073, Belarus

state forensic expert at the department of forensic biological and forensic genetic examinations, directorate of laboratory research of material evidence of a biological nature, Minsk Region directorate of the State Forensic Examination Committee of the Republic of Belarus

Iosif S. Tsybovsky, BelJurZabespjachjenne, 1b Dziarzhynskaga Avenue, Minsk 220069, Belarus

PhD (biology); leading specialist at the sector of educational and methodical work, directorate of human resources and educational and methodical work

References

  1. Sillero-Zubiri C, Hoffman M, Macdonald DW. Canids: foxes, wolves, jackals, and dogs. Gland: International Union for Conservation of Nature and Natural Resources; 2004. 430 p.
  2. Horecka B. Genetic diversity of ranch and feral American mink (Neovison vison Schreber, 1777) in Poland in relation to the natural population of the species. Belgian Journal of Zoology. 2019;149:49–61. DOI: 10.26496/bjz.2019.30.
  3. Cabria MT, Michaux JR, Gomez-Moliner BJ, Skumatov D, Maran T, Fournier P, et al. Bayesian analysis of hybridization and introgression between the endangered European mink (Mustela lutreola) and the polecat (Mustela putorius). Molecular Ecology. 2011;20(6):1176–1190. DOI: 10.1111/j.1365-294X.2010.04988.x.
  4. Feulner PGD, Gratten J, Kijas JW, Visscher PM, Pemberton JM, Slate J. Introgression and the fate of domesticated genes in a wild mammal population. Molecular Ecology. 2013;22(16):4210–4221. DOI: 10.1111/mec.12378.
  5. Wierzbicki H, Zaton-Dobrowolska M, Mucha A, Moska M. Insight into the genetic population structure of wild red foxes in Poland reveals low risk of genetic introgression from escaped farm red foxes. Genes. 2021;12(5):637. DOI: 10.3390/genes12050637.
  6. Akins JR, Aubry KB, Sacks BN. Genetic integrity, diversity, and population structure of the Cascade red fox. Conservation Genetics. 2018;19(4):969–980. DOI: 10.1007/s10592-018-1070-y.
  7. Cross PR, Sacks BN, Luikart G, Schwartz MK, Van Etten KW, Crabtree RL. Red fox ancestry and connectivity assessments reveal minimal fur farm introgression in Greater Yellowstone ecosystem. Journal of Fish and Wildlife Management. 2018;9(2):519–530. DOI: 10.3996/092017-JFWM-073.
  8. Lounsberry ZT, Quinn CB, Statham MJ, Angulo CL, Kalani TJ, Tiller E, et al. Investigating genetic introgression from farmed red foxes into the wild population in Newfoundland, Canada. Conservation Genetics. 2017;18(2):383–392. DOI: 10.1007/s10592-016-0914-6.
  9. Horecka B, Kasperek K, Jezewska-Witkowska G, Slaska B, Rozempolska-Rucinska I, Gryzinska M, et al. High genetic distinctiveness of wild and farm fox (Vulpes vulpes L.) populations in Poland: evidence from mitochondrial DNA analysis. Turkish Journal of Zoology. 2017;41(5):783–790. DOI: 10.3906/zoo-1611-16.
  10. Boom R, Sol CJ, Salimans MM, Jansen CL, Wertheim-van Dillen PM, van der Noordaa J. Rapid and simple method for purification of nucleic acids. Journal of Clinical Microbiology. 1990;28(3):495–503. DOI: 10.1128/jcm.28.3.495-503.1990.
  11. DeNise S, Johnston E, Halverson J, Marshall K, Rosenfeld D, McKenna S, et al. Power of exclusion for parentage verification and probability of match for identity in American Kennel Club breeds using 17 canine microsatellite markers. Animal Genetics. 2004;35(1):14–17. DOI: 10.1046/j.1365-2052.2003.01074.x.
  12. Verardi A, Lucchini V, Verardi E. Detecting introgressive hybridization between free-ranging domestic dogs and wild wolves (Canis lupus) by admixture linkage disequilibrium analysis: hybridization in Italian wolves and dogs. Molecular Ecology. 2006;15(10):2845–2855. DOI: 10.1111/j.1365-294X.2006.02995.x.
  13. Eichmann C, Berger B, Reinhold M, Lutz M, Parson W. Canine-specific STR typing of saliva traces on dog bite wounds. International Journal of Legal Medicine. 2004;118(6):337–342. DOI: 10.1007/s00414-004-0479-7.
  14. Lorenzini R, Fanelli R, Grifoni G, Scholl F, Fico R. Wolf – dog crossbreeding: «smelling» a hybrid may not be easy. Mammalian Biology. 2014;79(2):149–156. DOI: 10.1016/j.mambio.2013.07.080.
  15. Dayton M, Koskinen MT, Tom BK, Mattila A-M, Johnston E, Halverson J, et al. Developmental validation of short tandem repeat reagent kit for forensic DNA profiling of canine biological material. Croatian Medical Journal. 2009;50(3):268–285. DOI: 10.3325/cmj.2009.50.268.
  16. Hong Y, Kim KS, Lee H, Min M-S. Population genetic study of the raccoon dog (Nyctereutes procyonoides) in South Korea using newly developed 12 microsatellite markers. Genes and Genetic Systems. 2013;88(1):69–76. DOI: 10.1266/ggs.88.69.
  17. Caniglia R, Fabbri E, Greco C, Galaverni M, Randi E. Forensic DNA against wildlife poaching: identification of a serial wolf killing in Italy. Forensic Science International: Genetics. 2010;4(5):334–338. DOI: 10.1016/j.fsigen.2009.10.012.
  18. Vilà C, Walker C, Sundqvist A-K, Flagstad Ø, Andersone Z, Casulli A, et al. Combined use of maternal, paternal and bi-parental genetic markers for the identification of wolf – dog hybrids. Heredity. 2003;90(1):17–24. DOI: 10.1038/sj.hdy.6800175.
  19. Whiteside HM, Dawson DA, Soulsbury CD, Harris S. Mother knows best: dominant females determine offspring dispersal in red foxes (Vulpes vulpes). PLoS ONE. 2011;6(7):e22145. DOI: 10.1371/journal.pone.0022145.
  20. Seddon JM. Canid-specific primers for molecular sexing using tissue or non-invasive samples. Conservation Genetics. 2005;6(1):147–149. DOI: 10.1007/s10592-004-7734-9.
  21. DeCandia A, Gaughran S, Caragiulo A, Amato G. A novel molecular method for noninvasive sex identification of order Carnivora. Conservation Genetics Resources. 2016;8(2):119–121. DOI: 10.1007/s12686-016-0525-z.
  22. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences. 1977;74(12):5463–5467. DOI: 10.1073/pnas.74.12.5463.
  23. Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL. GenBank. Nucleic Acids Research. 2006;34(supplement 1):D16 – D20. DOI: 10.1093/nar/gkj157.
  24. Alzohairy AM. BioEdit: an important software for molecular biology. GERF Bulletin of Biosciences. 2011;2(1):60–61.
  25. Peakall R, Smouse PE. GenAlEx 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes. 2006;6(1):288–295. DOI: 10.1111/j.1471-8286.2005.01155.x.
  26. Peakall R, Smouse PE. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research – an update. Bioinformatics. 2012;28(19):2537–2539. DOI: 10.1093/bioinformatics/bts460.
  27. Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P. Micro-Checker: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes. 2004;4(3):535–538. DOI: 10.1111/j.1471-8286.2004.00684.x.
  28. Kalinowski ST, Taper ML, Marshall TC. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Molecular Ecology. 2007;16(5):1099–1106. DOI: 10.1111/j.1365-294x.2007.03089.x.
  29. Excoffier L, Laval G, Schneider S. Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evolutionary Bioinformatics. Online. 2005;1:47–50.
  30. Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155(2):945–959. DOI: 10.1093/genetics/155.2.945.
  31. Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software Structure: a simulation study. Molecular Ecology. 2005;14(8):2611–2620. DOI: 10.1111/j.1365-294X.2005.02553.x.
  32. Chapuis M-P, Estoup A. Microsatellite null alleles and estimation of population differentiation. Molecular Biology and Evolution. 2007;24(3):621–631. DOI: 10.1093/molbev/msl191.
  33. Kwok S, Kellogg DE, McKinney N, Spasic D, Goda L, Levenson C, et al. Effects of primer-template mismatches on the polymerase chain reaction: human immunodeficiency virus type 1 model studies. Nucleic Acids Research. 1990;18(4):999–1005. DOI: 10.1093/nar/18.4.999.
  34. Galinskaya TV, Schepetov DM, Lysenkov SN. Prejudices against microsatellite studies and how to resist them. Genetika. 2019;55(6):617–632. Russian. DOI: 10.1134/S0016675819060043.
  35. Botstein D, White RL, Skolnick M, Davis RW. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics. 1980;32(3):314–331. PMID: 6247908.
  36. Cornuet JM, Luikart G. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics. 1996;144(4):2001–2014. DOI: 10.1093/genetics/144.4.2001.
  37. Kuznetsov VM. Wright’s F-statistics: estimation and interpretation. Problemy biologii produktivnykh zhivotnykh. 2014;4:80–104. Russian.
  38. Wright S. Variability within and among natural populations. Chicago: University Chicago Press; 1978. 590 p. (Evolution and the genetics of populations; volume 4).
  39. Hedrick PW. Genetics of populations. 4th edition. Boston: Jones and Bartlett Publishers; 2011. 675 p.
  40. Hrebianchuk AE, Lukashkova VM, Parfionava NS, Kotova SA, Tsybovsky IS. Metodika DNK-identifikatsii biologicheskikh obraztsov zhivotnykh vida lisitsa obyknovennaya (Vulpes vulpes) [Methodology for DNA identification of biological samples of animals of the red fox species (Vulpes vulpes)]. Minsk: BelNIIT «Transtekhnika»; 2022. 49 p. Russian.
Published
2023-12-09
Keywords: red fox, genetic diversity, microsatellites, polymorphism, identification, introgression
Supporting Agencies This work was carried out with the financial support of the State Committee on Science and Technology of the Republic of Belarus (state registration No. 2019195). The authors express their gratitude to the employees of the republican state-public association «Belarusian Society of Hunters and Fishermen» and employees оf animal farms of the Republic of Belarus for their assistance in forming a collection of biological samples.
How to Cite
Hrebianchuk, A. E., Parfionava, N. S., Lukashkova, V. M., & Tsybovsky, I. S. (2023). Characteristics of the genetic structure of wild and farm populations of the red fox (Vulpes vulpes) in Belarus. Experimental Biology and Biotechnology, 3, 34-46. Retrieved from https://journals.bsu.by/index.php/biology/article/view/5555
Section
Genetics and Molecular Biology