Optimisation of regeneration conditions of Norway spruce microplants from highly productive embryogenic line

  • Marina P. Kusenkova Forest Institute, National Academy of Sciences of Belarus, 71 Pralietarskaja Street, Gomiel 246050, Belarus

Abstract

The article presents the results of the study on the influence of nutrient media-composition, including the abscisic acid in different concentrations, on somatic embryo maturation and germination. The callus tissue of Norway spruce highly productive cell line (M2), obtained from seeds of Belarusian origin, was selected as the object of experimental study. Among the tested variants of abscisic acid concentration (15; 30 and 60 mmol/L) during somatic embryo maturation stage using the last two gave a pronounced positive effect. It has been showed that Litvay medium with the halfstrength macrosalts and the addition of activated charcoal (5 g/L) and glutamine (0.5 g/L) is optimal for the somatic embryo germination stage.

Author Biography

Marina P. Kusenkova, Forest Institute, National Academy of Sciences of Belarus, 71 Pralietarskaja Street, Gomiel 246050, Belarus

researcher at the department of genetics, breeding and biotechnology

References

  1. Egertsdotter U. Plant physiological and genetical aspects of the somatic embryogenesis process in conifers. Scandinavian Journal of Forest Research. 2019;34(5):360 –369. DOI: 10.1080/02827581.2018.1441433.
  2. Park YS. Implementation of conifer somatic embryogenesis in clonal forestry: technical requirements and deployment considerations. Annals of Forest Science. 2002;59(5–6):651–656. DOI: 10.1051/forest:2002051.
  3. Fraga HPDF, Moraes PEC, Vieira LDN, Guerra MP. Somatic embryogenesis in conifers: one clade to rule them all? Plants. 2023;12(14):2648. DOI: 10.3390/plants12142648.
  4. Tikkinen M, Varis S, Peltola H, Aronen T. Improved germination conditions for Norway spruce somatic cotyledonary embryos increased survival and height growth of emblings. Trees. 2018;32:1489–1504. DOI: 10.1007/s00468-018-1728-6.
  5. Hazubska-Przybył T, Wawrzyniak MK, Kijowska-Oberc J, Staszak AM, Ratajczak E. Somatic embryogenesis of Norway spruce and Scots pine: possibility of application in modern forestry. Forests. 2022;13(2):155. DOI: 10.3390/f13020155.
  6. Kusenkova MP. Germination of Norway spruce somatic embryoids obtained at different duration of cultivation of embryogenic callus on nutrient media for maturation stage. Problemy lesovedeniya i lesovodstva. 2021;81:169–177. Russian.
  7. Kusenkova MP, Padutov VE. Clonal variability as a factor determining the processes of maturation and germination of somatic embryoids of European spruce. Problemy lesovedeniya i lesovodstva. 2022;82:48–57. Russian.
  8. Varis S. Norway spruce Picea abies (L.) Karst. In: Jain S, Gupta P. editors. Step wise protocols for somatic embryogenesis of important woody plants. Cham: Springer; 2018. p. 255–267 (Forestry sciences; volume 84). DOI: 10.1007/978-3-319-89483-6_19.
  9. Bojarczuk K, Hazubska-Przybyl T, Szczygiel K. Somatic embryogenesis of selected coniferous tree species of the genera Picea, Abies and Larix. Acta Societatis Botanicorum Poloniae. 2007;76(1):7–15. DOI: 10.5586/asbp.2007.001.
  10. Högberg K-A, Bozhkov PV, Grönroos R, von Arnold S. Critical factors affecting ex vitro performance of somatic embryo plants of Picea abies. Scandinavian Journal of Forest Research. 2001;16(4):295–304. DOI: 10.1080/02827580116772.
  11. Lu CY, Harry IS, Thompson MR, Thorpe TA. Plantlet regeneration from cultured embryos and seedling parts of red spruce (Picea rubens Sarg.). Botanical gazette. 1991;152(1):42–50. DOI: 10.1086/337861.
  12. Attree SM, Tautorus TE, Dunstan DI, Fowke LC. Somatic embryo maturation, germination, and soil establishment of plants of black and white spruce (Picea mariana and Picea glauca). Canadian Journal of Botany. 1990;68(12):2583–2589. DOI: 10.1139/b90-326.
  13. Hazubska-Przybyl T, Bojarczuk K. Somatic embryogenesis of selected spruce species (Picea abies, P. omorika, P. pungens ‘Glauca’ and P. breweriana). Acta Societatis Botanicorum Poloniae. 2008;77(3):189–199. DOI: 10.5586/asbp.2008.023.
  14. Tikkinen M, Varis S, Aronen T. Development of somatic embryo maturation and growing techniques of Norway spruce emblings towards large-scale field testing. Forests. 2018;9(6):325. DOI: 10.3390/f9060325.
  15. Timmis R. Bioprocessing for tree production in the forest industry: conifer somatic embryogenesis. Biotechnology Progress. 1998;14(1):156–166. DOI: 10.1021/bp970143y.
  16. Carlsson J, Egertsdotter U, Ganeteg U, Svennerstam H. Nitrogen utilization during germination of somatic embryos of Norway spruce: revealing the importance of supplied glutamine for nitrogen metabolism. Trees. 2019;33:383–394. DOI: 10.1007/s00468-018-1784-y.
  17. Llebrés MT, Avila C, Cánovas FM, Klimaszewska K. Root growth of somatic plants of hybrid Pinus strobus (L.) and P. wallichiana (A. B. Jacks.) is affected by the nitrogen composition of the somatic embryo germination medium. Trees. 2018;32:371–381. DOI: 10.1007/s00468-017-1635-2.
  18. Dahrendorf J, Clapham D, Egertsdotter U. Analysis of nitrogen utilization capability during the proliferation and maturation phases of Norway spruce (Picea abies (L.) H. Karst.) somatic embryogenesis. Forests. 2018;9(6):288. DOI: 10.3390/f9060288.
  19. Bozhkov PV, Mikhlina SB, Shiryaeva GA, Lebedenko LA. Influence of nitrogen balance of culture medium on Norway spruce [Picea abies (L.) Karst.] somatic polyembryogenesis: high frequency establishment of embryonal-suspensor mass lines from mature zygotic embryos. Journal of Plant Physiology. 1993;142(6):735–741. DOI: 10.1016/S0176-1617(11)80911-9.
  20. Barrett JD, Park YS, Bonga JM. The effectiveness of various nitrogen sources in white spruce [Picea glauca (Moench) Voss] somatic embryogenesis. Plant Cell Reports. 1997;16:411–415. DOI: 10.1007/bf01146784.
  21. Mitrofanova IV. Somatic embryogenesis as an in vitro system of cultivated plants propagation. Fiziologiya i biokhimiya kul’turnykh rastenii. 2009;41(6):500–508. Russian.
  22. Klimaszewska K, Hargreaves C, Lelu-Walter MA, Trontin J-F. Advances in conifer somatic embryogenesis since year 2000. In: Germana M, Lambardi M, editors. In vitro embryogenesis in higher plants. New York: Humana Press; 2016. p. 131–166 (Methods in molecular biology; volume 1359). DOI: 10.1007/978-1-4939-3061-6_7.
  23. Thomas TD. The role of activated charcoal in plant tissue culture. Biotechnology Advances. 2008;26(6):618–631. DOI: 10.1016/j.biotechadv.2008.08.003.
Published
2023-12-09
Keywords: somatic embryogenesis, Norway spruce, embryogenic cultures, somatic embryo, regenerant
Supporting Agencies This work was supported by the Belarusian Republican Foundation for Fundamental Research (grant No. B21M-071). The author expresses gratitude to the employees of the department of genetics, breeding and biotechnology, Forest Institute, National Academy of Sciences of Belarus, doctor of science (biology), corresponding member of the National Academy of Sciences of Belarus, full professor V. E. Padutov, PhD (biology) S. I. Ivanovskaya and D. V. Kulagin for help in planning and organising of experimental work and valuable comments on the text of the article.
How to Cite
Kusenkova, M. P. (2023). Optimisation of regeneration conditions of Norway spruce microplants from highly productive embryogenic line. Experimental Biology and Biotechnology, 3, 47-56. Retrieved from https://journals.bsu.by/index.php/biology/article/view/5587
Section
Biotechnology and Microbiology