Механизм трансмембранного и дальнего транспорта никеля в высших растениях
Аннотация
Никель (Ni2+ ) – незаменимый элемент минерального питания растений, который необходим для нормального протекания физиологических процессов в очень небольших количествах. В высоких концентрациях данный тяжелый металл негативно влияет на метаболизм и оказывает выраженное токсическое действие. В последние годы появился ряд работ, посвященных изучению накопления, распределения и транслокации Ni2+ в тканях высших растений. Установлено, что поглощение Ni2+ может осуществляться путем пассивного либо активного переноса через плазматическую мембрану клеток корня. Пассивный транспорт обеспечивается посредством неселективных катионных каналов, при этом наибольший вклад, вероятно, вносят члены семейства каналов, активируемых циклическими нуклеотидами (CNGC). Активный транспорт идет с участием специальных белков-переносчиков, в первую очередь ZIP (Zn-регулируемые, Fe-регулируемые белки-транспортеры), что экспериментально продемонстрировано пока для IRT1 (Fe-регулируемые белки-транспортеры). Загрузка Ni2+ в ксилему и его перераспределение по различным органам и тканям растения осуществляется активными транспортерами ZIP, HMA (АТФазы тяжелых металлов P1B-типа) и NRAMP (белки макрофагов, ассоциированные с естественной резистентностью). На данный процесс оказывают влияние синтез и концентрация комплексообразователей, таких как гистидин, никотинамин, глутатион, фитохелатины, фенолы и органические кислоты. Дальнейшие исследования в области транспорта Ni2+, вероятно, будут фокусироваться на установлении субъединиц неселективных катионных каналов, ответственных за вход никеля в клетки корневой системы растений, выявлении взаимосвязи между транспортными процессами и их регуляции на посттранскрипционном и посттрансляционном уровнях.
Литература
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. A review of human carcinogens. Part C, Arsenic, metals, fibres, and dusts. Lyon: International Agency for Research on Cancer; 2012. 501 p. (IARC monographs on the evaluation of carcinogenic risks to humans; volume 100, part C).
- Tundermann JH, Tien JK, Howson TE. Nickel and nickel alloys. In: Kirk-Othmer encyclopedia of chemical technology. Volume 17 [Internet]. 5th edition. [S. l.]: John Wiley & Sons; 2005 [cited 2023 February 20]. p. 1–21. Available from: https://onlinelibrary.wiley.com/doi/10.1002/0471238961.1409031120211404.a01.pub2.
- Kerfoot DGE. Nickel. In: Ullmann’s encyclopedia of industrial chemistry. Volume 27. 7th edition. Weinheim: Wiley-VCH; 2012. p. 37–101. DOI: 10.1002/14356007.a17_157.
- Ma Y, Hooda PS. Chromium, nickel and cobalt. In: Hooda PS, editor. Trace elements in soils. [S. l.]: Blackwell Publishing; 2010. p. 461–479. DOI: 10.1002/9781444319477.ch19.
- Nightingale ER. Phenomenological theory of ion solvation. Effective radii of hydrated ions. The Journal of Physical Chemistry. 1959;63(9):1381–1387. DOI: 10.1021/j150579a011.
- Baron NM, Ponomareva AM, Ravdel’AA, Timofeeva ZN, compilers. Kratkii spravochnik fiziko-khimicheskikh velichin [Brief reference book of physical and chemical quantities]. 10th edition. Ravdel’AA, Ponomareva AM, editors. Saint Petersburg: Ivan Fedorov; 2003. 240 p. Russian.
- Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A: Foundations and Advances. 1976;32(5):751–767. DOI: 10.1107/S0567739476001551.
- Martelli F, Abadie S, Simonin J-P, Vuilleumier R, Spezia R. Lanthanoids(III) and actinoids(III) in water: diffusion coefficients and hydration enthalpies from polarizable molecular dynamics simulations. Pure and Applied Chemistry. 2013;85(1):237–246. DOI: 10.1351/pac-con-12-02-08.
- Cotton FA, Wilkinson G, Murillo CA, Bochmann M. Advanced inorganic chemistry. 6th edition. New York: John Wiley & Sons; 1999. XV, 1355 p.
- Harasim P, Filipek T. Nickel in the environment. Journal of Elementology. 2015;20(2):525–534. DOI: 10.5601/jelem.2014.19.3.651.
- Cempel M, Nikel G. Nickel: a review of its sources and environmental toxicology. Polish Journal of Environmental Studies. 2006;15(3):375–382.
- Yadav N, Sharma S. An account of nickel requirement, toxicity and oxidative stress in plants. Biological Forum – An International Journal. 2016;8(1):414–419.
- Chen Cuiyun, Huang Dejun, Liu Jianquan. Functions and toxicity of nickel in plants: recent advances and future prospects. Clean – Soil, Air, Water. 2009;37(4–5):304–313. DOI: 10.1002/clen.200800199.
- Sreekanth TVM, Nagajyothi PC, Lee KD, Prasad TNVKV. Occurrence, physiological responses and toxicity of nickel in plants. International Journal of Environmental Science and Technology. 2013;10(5):1129–1140. DOI: 10.1007/s13762-013-0245-9.
- Seregin IV, Kozhevnikova AD. Histochemical methods for detection of heavy metals and strontium in the tissues of higher plants. Russian Journal of Plant Physiology. 2011;58(4):721–727. DOI: 10.1134/s1021443711040133.
- Seregin IV, Kozhevnikova AD. Low-molecular-weight ligands in plants: role in metal homeostasis and hyperaccumulation. Photosynthesis Research. 2021;150(1–3):51–96. DOI: 10.1007/s11120-020-00768-1.
- Seregin IV, Kozhevnikova AD, Schat H. Histidine-mediated nickel and zinc translocation in Arabidopsis thaliana and Lepidium ruderale. Russian Journal of Plant Physiology. 2022;69(1):13. DOI: 10.1134/S1021443722010186.
- Seregin IV, Kozhevnikova AD, Schat H. Nickel tolerance and accumulation capacities in different populations of the hyperaccumulator Noccaea caerulescens. Russian Journal of Plant Physiology. 2022;69(4):70. DOI: 10.1134/S1021443722040148.
- Yusuf M, Fariduddin Q, Hayat S, Ahmad A. Nickel: an overview of uptake, essentiality and toxicity in plants. Bulletin of Environmental Contamination and Toxicology. 2011;86(1):1–17. DOI: 10.1007/s00128-010-0171-1.
- Nie Jing, Pan Yuqiang, Shi Jing, Guo Yan, Yan Zengguang, Duan Xiaoli, et al. A comparative study on the uptake and toxicity of nickel added in the form of different salts to maize seedlings. International Journal of Environmental Research and Public Health. 2015;12(12):15075–15087. DOI: 10.3390/ijerph121214972.
- He S, He Z, Yang X, Baligar VC. Mechanisms of nickel uptake and hyperaccumulation by plants and implications for soil remediation. Sparks DL, editor. Advances in agronomy. Volume 117. Amsterdam: Academic Press; 2012. p. 117–189. DOI: 10.1016/b978-0-12-394278-4.00003-9.
- Antonkiewicz J, Jasiewicz C, Koncewicz-Baran M, Sendor R. Nickel bioaccumulation by the chosen plant species. Acta Physiologiae Plantarum. 2016;38(2):40. DOI: 10.1007/s11738-016-2062-5.
- Krishnamurti GSR, Subashchandrabose SR, Megharaj M, Naidu R. Assessment of bioavailability of heavy metal pollutants using soil isolates of Chlorella sp. Environmental Science and Pollution Research. 2013;22(12):8826–8832. DOI: 10.1007/s11356-013-1799-2.
- Blanco P, Tomé FV, Lozano JC. Sequential extraction for radionuclide fractionation in soil samples: a comparative study. Applied Radiation and Isotopes. 2004;61(2–3):345–350. DOI: 10.1016/j.apradiso.2004.03.006.
- Mortvedt JJ. Plant and soil relationships of uranium and thorium decay series radionuclides – a review. Journal of Environmental Quality. 1994;23(4):643–650. DOI: 10.2134/jeq1994.00472425002300040004x.
- Viehweger K, Geipel G. Uranium accumulation and tolerance in Arabidopsis halleri under native versus hydroponic conditions. Environmental and Experimental Botany. 2010;69(1):39–46. DOI: 10.1016/j.envexpbot.2010.03.001.
- Viehweger K. How plants cope with heavy metals. Botanical Studies. 2014;55:35. DOI: 10.1186/1999-3110-55-35.
- Xiang Zhen-Li, Gao Huan-Fang, Yan Huan, Li Ya-Ling, Diao Zhi-Long, Zhang En-Zhi, et al. Study on the treatment of nickelcontaminated soil using calcium oxide. Water, Air, and Soil Pollution. 2020;231(5):188. DOI: 10.1007/s11270-020-04569-z.
- Robinson BH, Brooks RR, Clothier BE. Soil amendments affecting nickel and cobalt uptake by Berkheya coddii: potential use for phytomining and phytoremediation. Annals of Botany. 1999;84(6):689–694. DOI: 10.1006/anbo.1999.0970.
- Körner LE, Møller LM, Jensén P. Effects of Ca2+ and other divalent cations on uptake of Ni2+ by excised barley roots. Physiologia Plantarum. 1987;71(1):49–54. DOI: 10.1111/j.1399-3054.1987.tb04615.x.
- Jan S, Parray JA. Approaches to heavy metal tolerance in plants. Singapore: Springer Science + Business Media; 2016. Chapter 1, Heavy metal uptake in plants; p. 1–18. DOI: 10.1007/978-981-10-1693-6_1.
- Nagajyoti PC, Lee KD, Sreekanth TVM. Heavy metals, occurrence and toxicity for plants: a review. Environmental Chemistry Letters. 2010;8(3):199–216. DOI: 10.1007/s10311-010-0297-8.
- Deng T-H-B, van der Ent A, Tang Y-T, Sterckeman T, Echevarria G, Morel J-L, et al. Nickel hyperaccumulation mechanisms: a review on the current state of knowledge. Plant and Soil. 2018;423(1–2):1–11. DOI: 10.1007/s11104-017-3539-8.
- Costa G, Morel JL. Cadmium uptake by Lupinus albus (L.): cadmium excretion, a possible mechanism of cadmium tolerance. Journal of Plant Nutrition. 1993;16(10):1921–1929. DOI: 10.1080/01904169309364661.
- Lux A, Martinka M, Vaculík M, White PJ. Root responses to cadmium in the rhizosphere: a review. Journal of Experimental Botany. 2011;62(1):21–37. DOI: 10.1093/jxb/erq281.
- Kaznina NM, Batova YuV, Titov AF, Laidinen GF. Role of antioxidant system components in adaptation of Elytrigia repens (L.) Nevski to cadmium. Transactions of the Karelian Research Centre of the Russian Academy of Sciences. Experimental Biology Series. 2016;11:17–26. Russian. DOI: 10.17076/eb365.
- Swarbreck SM, Colaço R, Davies JM. Plant calcium-permeable channels. Plant Physiology. 2013;163(2):514–522. DOI: 10.1104/pp.113.220855.
- Demidchik V, Shabala S. Mechanisms of cytosolic calcium elevation in plants: the role of ion channels, calcium extrusion systems and NADPH oxidase-mediated «ROS-Ca2+ Hub». Functional Plant Biology. 2018;45(1–2):9–27. DOI: 10.1071/fp16420.
- Mackievic VS, Samokhina VV, Hryvusevich PV, Vaitsiakhovich MA, Sokolik AI, Demidchik VV. Са2+-permeable cation channels of the plasma membrane of higher plant cells. Journal of the Belarusian State University. Biology. 2018;2:11–26. Russian.
- Demidchik V, Maathuis FJM. Physiological roles of nonselective cation channels in plants: from salt stress to signalling and development. New Phytologist. 2007;175(3):387–404. DOI: 10.1111/j.1469-8137.2007.02128.x.
- Zelman AK, Dawe A, Gehring C, Berkowitz GA. Evolutionary and structural perspectives of plant cyclic nucleotide-gated cation channels. Frontiers in Plant Science. 2012;3:95. DOI: 10.3389/fpls.2012.00095.
- Dietrich P, Moeder W, Yoshioka K. Plant cyclic nucleotide-gated channels: new insights on their functions and regulation. Plant Physiology. 2020;184(1):27–38. DOI: 10.1104/pp.20.00425.
- Chin K, Moeder W, Yoshioka K. Biological roles of cyclic-nucleotide-gated ion channels in plants: what we know and don’t know about this 20 member ion channel family. Botany. 2009;87(7):668–677. DOI: 10.1139/b08-147.
- Hao Lidong, Qiao Xiuli. Genome-wide identification and analysis of the CNGC gene family in maize. PeerJ. 2018;6:e5816. DOI: 10.7717/peerj.5816.
- Duszyn M, Świeżawska B, Szmidt-Jaworska A, Jaworski K. Cyclic nucleotide gated channels (CNGCs) in plant signalling – current knowledge and perspectives. Journal of Plant Physiology. 2019;241:153035. DOI: 10.1016/j.jplph.2019.153035.
- Lam H-M, Chiu J, Hsieh M-H, Meisel L, Oliveira IC, Shin M, et al. Glutamate-receptor genes in plants. Nature. 1998;396(6707):125–126. DOI: 10.1038/24066.
- Tapken D, Hollmann M. Arabidopsis thaliana glutamate receptor ion channel function demonstrated by ion pore transplantation. Journal of Molecular Biology. 2008;383(1):36–48. DOI: 10.1016/j.jmb.2008.06.076.
- Yu Bo, Liu Nian, Tang Siqi, Qin Tian, Huang Junli. Roles of glutamate receptor-like channels (GLRs) in plant growth and response to environmental stimuli. Plants. 2022;11(24):3450. DOI: 10.3390/plants11243450.
- Davenport R. Glutamate receptors in plants. Annals of Botany. 2002;90(5):549–557. DOI: 10.1093/aob/mcf228.
- Weiland M, Mancuso S, Baluska F. Signalling via glutamate and GLRs in Arabidopsis thaliana. Functional Plant Biology. 2016;43(1):1–25. DOI: 10.1071/FP15109.
- Alfieri A, Doccula FG, Pederzoli R, Grenzi M, Bonza MC, Luoni L, et al. The structural bases for agonist diversity in an Arabidopsis thaliana glutamate receptor-like channel. PNAS. 2019;117(1):752–760. DOI: 10.1073/pnas.1905142117.
- Delmer DP, Potikha TS. Structures and functions of annexins in plants. Cellular and Molecular Life Sciences. 1997;53(6):546–553. DOI: 10.1007/s000180050070.
- Baucher M, Pérez-Morga D, El Jaziri M. Insight into plant annexin function: from shoot to root signaling. Plant Signaling & Behavior. 2012;7(4):524–528. DOI: 10.4161/psb.19647.
- He Xin, Liao Li, Xie Sai, Yao Min, Xie Pan, Liu Wei, et al. Comprehensive analyses of the annexin (ANN ) gene family in Brassica rapa, Brassica oleracea and Brassica napus reveals their roles in stress response. Scientific Reports. 2020;10:4295. DOI: 10.1038/s41598-020-59953-w.
- Zhang Zhongbao, Li Xianglong, Han Meng, Wu Zhongyi. Genome-wide analysis and functional identification of the annexin gene family in maize (Zea mays L.). Plant Omics Journal. 2015;8(5):420–428.
- Hamilton ES, Schlegel AM, Haswell ES. United in diversity: mechanosensitive ion channels in plants. Annual Review of Plant Biology. 2015;66:113–137. DOI: 10.1146/annurev-arplant-043014-114700.
- Kaur A, Taneja M, Tyagi S, Sharma A, Singh K, Upadhyay SK. Genome-wide characterization and expression analysis suggested diverse functions of the mechanosensitive channel of small conductance-like (MSL) genes in cereal crops. Scientific Reports. 2020;10:16583. DOI: 10.1038/s41598-020-73627-7.
- Haswell ES, Meyerowitz EM. MscS-like proteins control plastid size and shape in Arabidopsis thaliana. Current Biology. 2006;16(1):1–11. DOI: 10.1016/j.cub.2005.11.044.
- Yoshimura K, Iida K, Iida H. MCAs in Arabidopsis are Ca2+-permeable mechanosensitive channels inherently sensitive to membrane tension. Nature Communications. 2021;12:6074. DOI: 10.1038/s41467-021-26363-z.
- Kurusu T, Yamanaka T, Nakano M, Takiguchi A, Ogasawara Y, Hayashi T, et al. Involvement of the putative Ca2+-permeable mechanosensitive channels, NtMCA1 and NtMCA2, in Ca2+ uptake, Ca2+-dependent cell proliferation and mechanical stress-induced gene expression in tobacco (Nicotiana tabacum) BY-2 cells. Journal of Plant Research. 2012;125(4):555–568. DOI: 10.1007/s10265-011-0462-6.
- Mousavi SAR, Dubin AE, Zeng W-Z, Coombs AM, Do K, Ghadiri DA, et al. Piezo ion channel is required for root mechanotransduction in Arabidopsis thaliana. PNAS. 2021;118(20):e2102188118. DOI: 10.1073/pnas.2102188118.
- Fang Xianming, Zhang Yang, Cheng Bo, Luan Sheng, He Kai. Evidence for the involvement of AtPiezo in mechanical responses. Plant Signaling & Behavior. 2021;16(5):1889252. DOI: 10.1080/15592324.2021.1889252.
- Yuan Fang, Yang Huimin, Xue Yan, Kong Dongdong, Ye Rui, Li Chijun, et al. OSCA1 mediates osmotic-stress-evoked Ca2+ increases vital for osmosensing in Arabidopsis. Nature. 2014;514(7522):367–371. DOI: 10.1038/nature13593.
- Zhang Mingfeng, Wang Dali, Kang Yunlu, Wu Jing-Xiang, Yao Fuqiang, Pan Chengfang, et al. Structure of the mechanosensitive OSCA channels. Nature Structural & Molecular Biology. 2018;25(9):850–858. DOI: 10.1038/s41594-018-0117-6.
- Li Yunshuang, Yuan Fang, Wen Zhaohong, Li Yihao, Wang Fang, Zhu Tao, et al. Genome-wide survey and expression analysis of the OSCA gene family in rice. BMC Plant Biology. 2015;15:261. DOI: 10.1186/s12870-015-0653-8.
- Li Yuanyang, Zhang Yubin, Li Bin, Hou Liyuan, Yu Jianing, Jia Chengguo, et al. Preliminary expression analysis of the OSCA gene family in maize and their involvement in temperature stress. International Journal of Molecular Sciences. 2022;23(21):13658. DOI: 10.3390/ijms232113658.
- Yin Lili, Zhang Meiling, Wu Ruigang, Chen Xiaoliang, Liu Fei, Xing Baolong. Genome-wide analysis of OSCA gene family members in Vigna radiata and their involvement in the osmotic response. BMC Plant Biology. 2021;21:408. DOI: 10.1186/s12870-021-03184-2.
- Tong Kai, Wu Xinyang, He Long, Qiu Shiyou, Liu Shuang, Cai Linna, et al. Genome-wide identification and expression profile of OSCA gene family members in Triticum aestivum L. International Journal of Molecular Sciences. 2022;23(1):469. DOI: 10.3390/ijms23010469.
- Schuurink RC, Shartzer SF, Fath A, Jones RL. Characterization of a calmodulin-binding transporter from the plasma membrane of barley aleurone. PNAS. 1998;95(4):1944–1949. DOI: 10.1073/pnas.95.4.1944.
- Gobert A, Park G, Amtmann A, Sanders D, Maathuis FJM. Arabidopsis thaliana cyclic nucleotide gated channel 3 forms a non-selective ion transporter involved in germination and cation transport. Journal of Experimental Botany. 2006;57(4):791–800. DOI: 10.1093/jxb/erj064.
- DeFalco TA, Marshall CB, Munro K, Kang H-G, Moeder W, Ikura M, et al. Multiple calmodulin-binding sites positively and negatively regulate Arabidopsis cyclic nucleotide-gated channel 12. The Plant Cell. 2016;28(7):1738–1751. DOI: 10.1105/tpc.15.00870.
- Tan Yan-Qiu, Yang Yang, Zhang An, Fei Cui-Fang, Gu Li-Li, Sun Shu-Jing, et al. Three CNGC family members, CNGC5, CNGC6, and CNGC9, are required for constitutive growth of Arabidopsis root hairs as Ca2+-permeable channels. Plant Communications. 2020;1(1):100001. DOI: 10.1016/j.xplc.2019.100001.
- Li Qingqing, Yang Siqiang, Ren Jie, Ye Xueling, Jiang Xin, Liu Zhiyong. Genome-wide identification and functional analysis of the cyclic nucleotide-gated channel gene family in Chinese cabbage. 3 Biotech. 2019;9(3):114. DOI: 10.1007/s13205-019-1647-2.
- Moon JY, Belloeil C, Ianna ML, Shin R. Arabidopsis CNGC family members contribute to heavy metal ion uptake in plants. International Journal of Molecular Sciences. 2019;20(2):413. DOI: 10.3390/ijms20020413.
- Sunkar R, Kaplan B, Bouché N, Arazi T, Dolev D, Talke IN, et al. Expression of a truncated tobacco NtCBP4 channel in transgenic plants and disruption of the homologous Arabidopsis CNGC1 gene confer Pb2+ tolerance. The Plant Journal. 2000;24(4):533–542. DOI: 10.1111/j.1365-313X.2000.00901.x.
- Nawaz Z, Kakar KU, Ullah R, Yu S, Zhang J, Shu Q-Y, et al. Genome-wide identification, evolution and expression analysis of cyclic nucleotide-gated channels in tobacco (Nicotiana tabacum L.). Genomics. 2019;111(2):142–158. DOI: 10.1016/j.ygeno.2018.01.010.
- Kanter U, HauserA, Michalke B, Dräxl S, SchäffnerAR. Caesium and strontium accumulation in shoots of Arabidopsis thaliana: genetic and physiological aspects. Journal of Experimental Botany. 2010;61(14):3995–4009. DOI: 10.1093/jxb/erq213.
- Naz R, Khan A, Alghamdi BS, Ashraf GM, Alghanmi M, Ahmad A, et al. An insight into animal glutamate receptors homolog of Arabidopsis thaliana and their potential applications – a review. Plants. 2022;11(19):2580. DOI: 10.3390/plants11192580.
- Chiu JC, Brenner ED, DeSalle R, Nitabach MN, Holmes TC, Coruzzi GM. Phylogenetic and expression analysis of the glutamate-receptor-like gene family in Arabidopsis thaliana. Molecular Biology and Evolution. 2002;19(7):1066–1082. DOI: 10.1093/oxfordjournals.molbev.a004165.
- Singh A, Kanwar P, Yadav AK, Mishra M, Jha SK, Baranwal V, et al. Genome-wide expressional and functional analysis of calcium transport elements during abiotic stress and development in rice. The FEBS Journal. 2014;281(3):894–915. DOI: 10.1111/febs.12656.
- Zhou Sheng-Hui, Zhang Lei, Lü Xin-Ze, Huang Jin-Guang. [Identification and analysis of GLR family genes in maize]. Journal of Maize Sciences. 2021;29(2):35–42. Chinese. DOI: 10.13597/j.cnki.maize.science.20210206.
- Aouini A, Matsukura C, Ezura H, Asamizu E. Characterisation of 13 glutamate receptor-like genes encoded in the tomato genome by structure, phylogeny and expression profiles. Gene. 2012;493(1):36–43. DOI: 10.1016/j.gene.2011.11.037.
- Zhang Jing, Cui Tianzhen, Su Yachun, Zang Shoujian, Zhao Zhennan, Zhang Chang, et al. Genome-wide identification, characterization, and expression analysis of glutamate receptor-like gene (GLR) family in sugarcane. Plants. 2022;11(18):2440. DOI: 10.3390/plants11182440.
- Liu Shiming, Zhang Xiaojun, Xiao Shenghua, Ma Jun, Shi Weijun, Qin Tao, et al. A single‐nucleotide mutation in a glutamate receptor‐like gene confers resistance to Fusarium wilt in Gossypium hirsutum. Advanced Science. 2021;8(7):2002723. DOI: 10.1002/advs.202002723.
- Luo Hua, Hu Da-Gang, Zhang Lian-Zhong, Hao Yu-Jin. [Bioinformatics and expression analysis of apple MdGLRs genes family]. Acta Horticulturae Sinica. 2012;39(3):425–435. Chinese.
- Chen Jianqing, Jing Yinghui, Zhang Xinyue, Li Leiting, Wang Peng, Zhang Shaoling, et al. Evolutionary and expression analysis provides evidence for the plant glutamate-like receptors family is involved in woody growth-related function. Scientific Reports. 2016;6:32013. DOI: 10.1038/srep32013.
- Zeng Houqing, Zhao Bingqian, Wu Haicheng, Zhu Yiyong, Chen Huatao. Comprehensive in silico characterization and expression profiling of nine gene families associated with calcium transport in soybean. Agronomy. 2020;10(10):1539. DOI: 10.3390/agronomy10101539.
- Ortiz-Ramírez C, Michard E, Simon AA, Damineli DSC, Hernández-Coronado M, Becker JD, et al. Glutamate receptor-like channels are essential for chemotaxis and reproduction in mosses. Nature. 2017;549(7670):91–95. DOI: 10.1038/nature23478.
- Sobolevsky AI, Rosconi MP, Gouaux E. X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor. Nature. 2009;462(7274):745–756. DOI: 10.1038/nature08624.
- Dabitz N, Hu N-J, Yusof AM, Tranter N, Winter A, Daley M, et al. Structural determinants for plant annexin – membrane interactions. Biochemistry. 2005;44(49):16292–16300. DOI: 10.1021/bi0516226.
- Wu Xiaoxia, Wang Yan, Bian Yuhao, Ren Yan, Xu Xiaoying, Zhou Fucai, et al. A critical review on plant annexin: structure, function, and mechanism. Plant Physiology and Biochemistry. 2022;190:81–89. DOI: 10.1016/j.plaphy.2022.08.019.
- Zhang Yinan, Sa Gang, Zhang Ying, Hou Siyuan, Wu Xia, Zhao Nan, et al. Populus euphratica annexin1 facilitates cadmium enrichment in transgenic Arabidopsis. Journal of Hazardous Materials. 2021;405:124063. DOI: 10.1016/j.jhazmat.2020.124063.
- Mel’gunov VI, Akimova EI, Krasavchenko KS. Effect of divalent metal ions on annexin-mediated aggregation of asolectin liposomes. Acta Biochimica Polonica. 2000;47(3):675–683. DOI: 10.18388/abp.2000_3988.
- Kaur A, Madhu, Upadhyay SK. Mechanosensitive ion channels in plants. In: Upadhyay SK, editor. Calcium transport elements in plants. [S. l.]: Academic Press; 2021. p. 267–279. DOI: 10.1016/B978-0-12-821792-4.00005-9.
- Lee JS, Wilson ME, Richardson RA, Haswell ES. Genetic and physical interactions between the organellar mechanosensitive ion channel homologs MSL1, MSL2, and MSL3 reveal a role for inter-organellar communication in plant development. Plant Direct. 2019;3(3):e00124. DOI: 10.1002/pld3.124.
- Guichard M, Thomine S, Frachisse J-M. Mechanotransduction in the spotlight of mechano-sensitive channels. Current Opinion in Plant Biology. 2022;68:102252. DOI: 10.1016/j.pbi.2022.102252.
- Tran D, Girault T, Guichard M, Thomine S, Leblanc-Fournier N, Moulia B, et al. Cellular transduction of mechanical oscillations in plants by the plasma-membrane mechanosensitive channel MSL10. PNAS. 2021;118(1):e1919402118. DOI: 10.1073/pnas.1919402118.
- Veley KM, Maksaev G, Frick EM, January E, Kloepper SC, Haswell ES. Arabidopsis MSL10 has a regulated cell death signaling activity that is separable from its mechanosensitive ion channel activity. The Plant Cell. 2014;26(7):3115–3131. DOI: 10.1105/tpc.114.128082.
- Maksaev G, Haswell ES. Recent characterizations of MscS and its homologs provide insight into the basis of ion selectivity in mechanosensitive channels. Channels. 2013;7(3):215–220. DOI: 10.4161/chan.24505.
- Maksaev G, Haswell ES. MscS-like10 is a stretch-activated ion channel from Arabidopsis thaliana with a preference for anions. PNAS. 2012;109(46):19015–19020. DOI: 10.1073/pnas.1213931109.
- Demidchik V, Shabala S, Isayenkov S, Cuin TA, Pottosin I. Calcium transport across plant membranes: mechanisms and functions. New Phytologist. 2018;220(1):49–69. DOI: 10.1111/nph.15266.
- Nishii K, Möller M, Iida H. Mix and match: patchwork domain evolution of the land plant-specific Ca2+-permeable mechanosensitive channel MCA. PLoS ONE. 2021;16(4):e0249735. DOI: 10.1371/journal.pone.0249735.
- Hartmann FP, Tinturier E, Julien J-L, Leblanc-Fournier N. Between stress and response: function and localization of mechanosensitive Ca2+ channels in herbaceous and perennial plants. International Journal of Molecular Sciences. 2021;22(20):11043. DOI: 10.3390/ijms222011043.
- Zhang Zhen, Tong Xin, Liu Song-Yu, Chai Long-Xiang, Zhu Fei-Fan, Zhang Xiao-Peng, et al. Genetic analysis of a Piezo-like protein suppressing systemic movement of plant viruses in Arabidopsis thaliana. Scientific Reports. 2019;9:3187. DOI: 10.1038/s41598-019-39436-3.
- Fang Xianming, Liu Beibei, Shao Qianshuo, Huang Xuemei, Li Jia, Luan Sheng, et al. AtPiezo plays an important role in root cap mechanotransduction. International Journal of Molecular Sciences. 2021;22(1):467. DOI: 10.3390/ijms22010467.
- Radin I, Richardson RA, Haswell ES. Moss Piezo homologs have a conserved structure, are ubiquitously expressed, and do not affect general vacuole function. Plant Signaling & Behavior. 2022;17(1):2015893. DOI: 10.1080/15592324.2021.2015893.
- Wu Xiaomei, Yuan Fang, Wang Xuewen, Zhu Shan, Pei Zhen-Ming. Evolution of osmosensing OSCA1 Ca2+ channel family coincident with plant transition from water to land. Plant Genome. 2022;15(2):e20198. DOI: 10.1002/tpg2.20198.
- Miao Shuang, Li Fengshuo, Han Yang, Yao Zhongtong, Xu Zeqian, Chen Xiuling, et al. Identification of OSCA gene family in Solanum habrochaites and its function analysis under stress. BMC Genomics. 2022;23(1):547. DOI: 10.1186/s12864-022-08675-6.
- Ke Y, Xu M, Hwarari D, Ahmad B, Li R, Guan Y, et al. OSCA genes in Liriodendron chinense: characterization, evolution and response to abiotic stress. Forests. 2022;13(11):1835. DOI: 10.3390/f13111835.
- She Kuijun, Pan Wenqiu, Yan Ying, Shi Tingrui, Chu Yingqi, Cheng Yue, et al. Genome-wide identification, evolution and expressional analysis of OSCA gene family in barley (Hordeum vulgare L.). International Journal of Molecular Sciences. 2022;23(21):13027. DOI: 10.3390/ijms232113027.
- Murthy SE, Dubin AE, Whitwam T, Jojoa-Cruz S, Cahalan SM, Mousavi SAR, et al. OSCA/TMEM63 are an evolutionarily conserved family of mechanically activated ion channels. eLife. 2018;7:e41844. DOI: 10.7554/eLife.41844.
- Gu Xiaoyu, Wang Peng, Liu Zhe, Wang Li, Huang Zhi, Zhang Shaoling, et al. Genome-wide identification and expression analysis of the OSCA gene family in Pyrus bretschneideri. Canadian Journal of Plant Science. 2018;98(4):918–929. DOI: 10.1139/cjps-2017-0115.
- Yang X, Xu Y, Yang F, Magwanga RO, Cai X, Wang X, et al. Genome-wide identification of OSCA gene family and their potential function in the regulation of dehydration and salt stress in Gossypium hirsutum. Journal of Cotton Research. 2019;2:11. DOI: 10.1186/s42397-019-0028-z.
- Hou C, Tian W, Kleist T, He K, Garcia V, Bai F, et al. DUF221 proteins are a family of osmosensitive calcium-permeable cation channels conserved across eukaryotes. Cell Research. 2014;24(5):632–635. DOI: 10.1038/cr.2014.14.
- Reid RJ. Mechanisms of micronutrient uptake in plants. Australian Journal of Plant Biology. 2001;28(7):661–668. DOI: 10.1071/pp01037.
- Takahashi R, Bashir K, Ishimaru Y, Nishizawa NK, Nakanishi H. The role of heavy-metal ATPases, HMAs, in zinc and cadmium transport in rice. Plant Signaling & Behavior. 2012;7(12):1605–1607. DOI: 10.4161/psb.22454.
- Fan Wei, Liu Changying, Cao Boning, Qin Meiling, Long Dingpei, Xiang Zhonghuai, et al. Genome-wide identification and characterization of four gene families putatively involved in cadmium uptake, translocation and sequestration in mulberry. Frontiers in Plant Science. 2018;9:879. DOI: 10.3389/fpls.2018.00879.
- Theodoulou FL. Plant ABC transporters. Biochimica et Biophysica Acta (BBA) – Biomembranes. 2000;1465(1–2):79–103. DOI: 10.1016/s0005-2736(00)00132-2.
- Kang J, Park J, Choi H, Burla B, Kretzschmar T, Lee Y, et al. Plant ABC transporters. The Arabidopsis Book. 2011;9:e0153. DOI: 10.1199/tab.0153.
- Kretzschmar T, Burla B, Lee Y, Martinoia E, Nagy R. Functions of ABC transporters in plants. Essays in Biochemistry. 2011;50:145–160. DOI: 10.1042/bse0500145.
- Pierman B, Boutry M, Lefèvre F. The ABC of ABC transporters. In: Maurel C, editor. Membrane transport in plants. [S. l.]: Academic Press; 2018. p. 1–23 (Jacquot J-P, editor. Advances in botanical research; volume 87). DOI: 10.1016/bs.abr.2018.09.005.
- Wang X, Wang C, Sheng H, Wang Y, Zeng J, Kang H, et al. Transcriptome-wide identification and expression analyses of ABC transporters in dwarf polish wheat under metal stresses. Biologia Plantarum. 2016;61(2):293–304. DOI: 10.1007/s10535-016-0697-0.
- Krishna TPA, Maharajan T, Roch GV, Ignacimuthu S, Ceasar SA. Structure, function, regulation and phylogenetic relationship of ZIP family transporters of plants. Frontiers in Plant Science. 2020;11:662. DOI: 10.3389/fpls.2020.00662.
- Mäser P, Thomine S, Schroeder JI, Ward JM, Hirschi K, Sze H, et al. Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiology. 2001;126(4):1646–1667. DOI: 10.1104/pp.126.4.1646.
- Nevo Y, Nelson N. The NRAMP family of metal-ion transporters. Biochimica et Biophysica Acta (BBA) – Molecular Cell Research. 2006;1763(7):609–620. DOI: 10.1016/j.bbamcr.2006.05.007.
- Qin L, Han P, Chen L, Walk TC, Li Y, Hu X, et al. Genome-wide identification and expression analysis of NRAMP family genes in soybean (Glycine max L.). Frontiers in Plant Science. 2017;8:1436. DOI: 10.3389/fpls.2017.01436.
- Ricachenevsky FK, Menguer PK, Sperotto RA, Williams LE, Fett JP. Roles of plant metal tolerance proteins (MTP) in metal storage and potential use in biofortification strategies. Frontiers in Plant Science. 2013;4:144. DOI: 10.3389/fpls.2013.00144.
- Mao Ke, Yang Jie, Wang Min, Liu Huayu, Guo Xin, Zhao Shuang, et al. Genome-wide analysis of the apple CaCA superfamily reveals that MdCAX proteins are involved in the abiotic stress response as calcium transporters. BMC Plant Biology. 2021;21:81. DOI: 10.1186/s12870-021-02866-1.
- Thakur M, Praveen S, Divte PR, Mitra R, Kumar M, Gupta CK, et al. Metal tolerance in plants: molecular and physicochemical interface determines the «not so heavy effect» of heavy metals. Chemosphere. 2022;287(part 1):131957. DOI: 10.1016/j.chemosphere.2021.131957.
- Andresen E, Peiter E, Küpper H. Trace metal metabolism in plants. Journal of Experimental Botany. 2018;69(5):909–954. DOI: 10.1093/jxb/erx465.
- Hussain D, Haydon MJ, Wang Y, Wong E, Sherson SM, Young J, et al. P-type ATPase heavy metal transporters with roles in essential zinc homeostasis in Arabidopsis. The Plant Cell. 2004;16(5):1327–1339. DOI: 10.1105/tpc.020487.
- Chaudhary K, Agarwal S, Khan S. Role of phytochelatins (PCs), metallothioneins (MTs), and heavy metal ATPase (HMA) genes in heavy metal tolerance. In: Prasad R, editor. Mycoremediation and environmental sustainability. Volume 2. Cham: Springer; 2018. p. 39–60 (Gupta VK, Tuohy MG, editors. Fungal biology). DOI: 10.1007/978-3-319-77386-5_2.
- Shin Lung-Jiun, Lo Jing-Chi, Yeh Kuo-Chen. Copper chaperone antioxidant protein1 is essential for copper homeostasis. Plant Physiology. 2012;159(3):1099–1110. DOI: 10.1104/pp.112.195974.
- Deng F, Yamaji N, Xia J, Ma JF. Amember of the heavy metal P-type ATPase OsHMA5 is involved in xylem loading of copper in rice. Plant Physiology. 2013;163(3):1353–1362. DOI: 10.1104/pp.113.226225.
- Nikolovski N, Shliaha PV, Gatto L, Dupree P, Lilley KS. Label-free protein quantification for plant golgi protein localization and abundance. Plant Physiology. 2014;166(2):1033–1043. DOI: 10.1104/pp.114.245589.
- Mayerhofer H, Sautron E, Rolland N, Catty P, Seigneurin-Berny D, Pebay-Peyroula E, et al. Structural insights into the nucleotide-binding domains of the P1B-type ATPases HMA6 and HMA8 from Arabidopsis thaliana. PLoS ONE. 2016;11(11):e0165666. DOI: 10.1371/journal.pone.0165666.
- Zientara K, Wawrzyńska A, Łukomska J, López-Moya JR, Liszewska F, Assunção AGL, et al. Activity of the AtMRP3 promoter in transgenic Arabidopsis thaliana and Nicotiana tabacum plants is increased by cadmium, nickel, arsenic, cobalt and lead but not by zinc and iron. Journal of Biotechnology. 2009;139(3):258–263. DOI: 10.1016/j.jbiotec.2008.12.001.
- Voith von Voithenberg L, Park J, Stübe R, Lux C, Lee Y, Philippar K. A novel prokaryote-type ECF/ABC transporter module in chloroplast metal homeostasis. Frontiers in Plant Science. 2019;10:1264. DOI: 10.3389/fpls.2019.01264.
- Li Haixiu, Liu Yuan, Qin Huihui, Lin Xuelei, Tang Ding, Wu Zhengjing, et al. A rice chloroplast-localized ABC transporter ARG1 modulates cobalt and nickel homeostasis and contributes to photosynthetic capacity. New Phytologist. 2020;228(1):163–178. DOI: 10.1111/nph.16708.
- Pedas P, Husted S. Zinc transport mediated by barley ZIP proteins are induced by low pH. Plant Signaling & Behavior. 2009;4(9):842–845. DOI: 10.4161/psb.4.9.9375.
- Milner MJ, Seamon J, Craft E, Kochian LV. Transport properties of members of the ZIP family in plants and their role in Zn and Mn homeostasis. Journal of Experimental Botany. 2013;64(1):369–381. DOI: 10.1093/jxb/ers315.
- Claus J, Bohmann A, Chavarría-Krauser A. Zinc uptake and radial transport in roots of Arabidopsis thaliana: a modelling approach to understand accumulation. Annals of Botany. 2012;112(2):369–380. DOI: 10.1093/aob/mcs263.
- Pinto E, Ferreira IMPLVO. Cation transporters/channels in plants: tools for nutrient biofortification. Journal of Plant Physiology. 2015;179:64–82. DOI: 10.1016/j.jplph.2015.02.010.
- Mani A, Sankaranarayanan K. Heavy metal and mineral element-induced abiotic stress in rice plant. In: Shah F, Khan Z, Iqbal A. Rice crop: current developments. London: IntechOpen; 2018. p. 149–179. DOI: 10.5772/intechopen.76080.
- Dubeaux G, Neveu J, Zelazny E, Vert G. Metal sensing by the IRT1 transporter-receptor orchestrates its own degradation and plant metal nutrition. Molecular Cell. 2018;69(6):953–964. DOI: 10.1016/j.molcel.2018.02.009.
- Van der Pas L, Ingle RA. Towards an understanding of the molecular basis of nickel hyperaccumulation in plants. Plants. 2019;8(1):11. DOI: 10.3390/plants8010011.
- Nishida S, Tsuzuki C, Kato A, Aisu A, Yoshida J, Mizuno T. AtIRT1, the primary iron uptake transporter in the root, mediates excess nickel accumulation in Arabidopsis thaliana. Plant & Cell Physiology. 2011;52(8):1433–1442. DOI: 10.1093/pcp/pcr089.
- Filatov V, Dowdle J, Smirnoff N, Ford-Lloyd B, Newbury HJ, Macnair MR. Comparison of gene expression in segregating families identifies genes and genomic regions involved in a novel adaptation, zinc hyperaccumulation. Molecular Ecology. 2006;15(10):3045–3059. DOI: 10.1111/j.1365-294X.2006.02981.x.
- Enomoto T, Yoshida J, Mizuno T, Watanabe T, Nishida S. Differences in mineral accumulation and gene expression profiles between two metal hyperaccumulators, Noccaea japonica and Noccaea caerulescens ecotype Ganges, under excess nickel condition. Plant Signaling & Behavior. 2021;16(10):1945212. DOI: 10.1080/15592324.2021.1945212.
- Krämer U, Talke IN, Hanikenne M. Transition metal transport. FEBS Letters. 2007;581(12):2263–2272. DOI: 10.1016/j.febslet.2007.04.010.
- Castaings L, Alcon C, Kosuth T, Correia D, Curie C. Manganese triggers phosphorylation-mediated endocytosis of the Arabidopsis metal transporter NRAMP1. The Plant Journal. 2021;106(5):1328–1337. DOI: 10.1111/tpj.15239.
- Wang Nanqi, Qiu Wei, Dai Jing, Guo Xiaotong, Lu Qiaofang, Wang Tianqi, et al. AhNRAMP1 enhances manganese and zinc uptake in plants. Frontiers in Plant Science. 2019;10:415. DOI: 10.3389/fpls.2019.00415.
- Gao Huiling, Xie Wenxiang, Yang Changhong, Xu Jingyi, Li Jingjun, Wang Hua, et al. NRAMP2, a trans-Golgi network-localized manganese transporter, is required for Arabidopsis root growth under manganese deficiency. New Phytologist. 2018;217(1):179–193. DOI: 10.1111/nph.14783.
- Alejandro S, Cailliatte R, Alcon C, Dirick L, Domergue F, Correia D, et al. Intracellular distribution of manganese by the trans-Golgi network transporter NRAMP2 is critical for photosynthesis and cellular redox homeostasis. The Plant Cell. 2017;29(12):3068–3084. DOI: 10.1105/tpc.17.00578.
- Lanquar V, Lelièvre F, Bolte S, Hamès C, Alcon C, Neumann D, et al. Mobilization of vacuolar iron by AtNRAMP3 and AtNRAMP4 is essential for seed germination on low iron. The EMBO Journal. 2005;24(23):4041–4051. DOI: 10.1038/sj.emboj.7600864.
- Cailliatte R, Lapeyre B, BriatJ-F, Mari S, Curie C. The NRAMP6 metal transporter contributes to cadmium toxicity. Biochemical Journal. 2009;422(2):217–228. DOI: 10.1042/BJ20090655.
- Thomine S, Wang R, Ward JM, Crawford NM, Schroeder JI. Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to NRAMP genes. PNAS. 2000;97(9):4991–4996. DOI: 10.1073/pnas.97.9.4991.
- Fasani E, DalCorso G, Zorzi G, Agrimonti C, Fragni R, Visioli G, et al. Overexpression of ZNT1 and NRAMP4 from the Ni hyperaccumulator Noccaea caerulescens population Monte Prinzera in Arabidopsis thaliana perturbs Fe, Mn, and Ni accumulation. International Journal of Molecular Sciences. 2021;22(21):11896. DOI: 10.3390/ijms222111896.
- Mizuno T, Usui K, Horie K, Nosaka S, Mizuno N, Obata H. Cloning of three ZIP/NRAMP transporter genes from a Ni hyperaccumulator plant Thlaspi japonicum and their Ni2+-transport abilities. Plant Physiology and Biochemistry. 2005;43(8):793–801. DOI: 10.1016/j.plaphy.2005.07.006.
- Kozak K, Papierniak-Wygladala A, Palusińska M, Barabasz A, Antosiewicz DM. Regulation and function of metal uptake transporter NtNRAMP3 in tobacco. Frontiers in Plant Science. 2022;13:867967. DOI: 10.3389/fpls.2022.867967.
- Montanini B, Blaudez D, Jeandroz S, Sanders D, Chalot M. Phylogenetic and functional analysis of the cation diffusion facilitator (CDF) family: improved signature and prediction of substrate specificity. BMC Genomics. 2007;8:107. DOI: 10.1186/1471-2164-8-107.
- Chao Yang, Fu Dax. Kinetic study of the antiport mechanism of an Escherichia coli zinc transporter, ZitB. Journal of Biological Chemistry. 2004;279(13):12043–12050. DOI: 10.1074/jbc.M313510200.
- Repkina NS, Talanova VV, Titov AF. Effects of heavy metals on gene expression in plants. Transactions of the Karelian Research Centre of the Russian Academy of Sciences. Experimental Biology Series. 2013;3:31–45. Russian
- Ovečka M, Takáč T. Managing heavy metal toxicity stress in plants: biological and biotechnological tools. Biotechnology Advances. 2014;32(1):73–86. DOI: 10.1016/j.biotechadv.2013.11.011.
- Arrivault S, Senger T, Krämer U. The Arabidopsis metal tolerance protein AtMTP3 maintains metal homeostasis by mediating Zn exclusion from the shoot under Fe deficiency and Zn oversupply. The Plant Journal. 2006;46(5):861–879. DOI: 10.1111/j.1365-313X.2006.02746.x.
- Kawachi M, Kobae Y, Mimura T, Maeshima M. Deletion of a histidine-rich loop of AtMTP1, a vacuolar Zn2+/ H+ antiporter of Arabidopsis thaliana, stimulates the transport activity. Journal of Biological Chemistry. 2008;283(13):8374–8383. DOI: 10.1074/jbc.M707646200.
- Yuan Lianyu, Yang Songguang, Liu Baoxiu, Zhang Mei, Wu Keqiang. Molecular characterization of a rice metal tolerance protein, OsMTP1. Plant Cell Reports. 2012;31(1):67–79. DOI: 10.1007/s00299-011-1140-9.
- Das N, Bhattacharya S, Maiti MK. Enhanced cadmium accumulation and tolerance in transgenic tobacco overexpressing rice metal tolerance protein gene OsMTP1 is promising for phytoremediation. Plant Physiology and Biochemistry. 2016;105:297–309. DOI: 10.1016/j.plaphy.2016.04.049.
- Peiter E, Montanini B, Gobert A, Pedas P, Husted S, Maathuis FJM, et al. A secretory pathway-localized cation diffusion facilitator confers plant manganese tolerance. PNAS. 2007;104(20):8532–8537. DOI: 10.1073/pnas.0609507104.
- Pittman JK, Hirschi KD. CAX-ing a wide net: cation / H+ transporters in metal remediation and abiotic stress signalling. Plant Biology. 2016;18(5):741–749. DOI: 10.1111/plb.12460.
- Conn SJ, Gilliham M, Athman A, Schreiber AW, Baumann U, Moller I, et al. Cell-specific vacuolar calcium storage mediated by CAX1 regulates apoplastic calcium concentration, gas exchange, and plant productivity in Arabidopsis. The Plant Cell. 2011;23(1):240–257. DOI: 10.1105/tpc.109.072769.
- Baliardini C, Meyer C-L, Salis P, Saumitou-Laprade P, Verbruggen N. Cation exchanger1 cosegregates with cadmium tolerance in the metal hyperaccumulator Arabidopsis halleri and plays a role in limiting oxidative stress in Arabidopsis spp. Plant Physiology. 2015;169(1):549–559. DOI: 10.1104/pp.15.01037.
- Puig S. Function and regulation of the plant COPT family of high-affinity copper transport proteins. Advances in Botany. 2014:476917. DOI: 10.1155/2014/476917.
- Gayomba SR, Watkins JM, Muday GK. Flavonols regulate plant growth and development through regulation of auxin transport and cellular redox status. In: Yoshida K, Cheynier V, Quideau S, editors. Recent advances in polyphenol research. Volume 5. [S. l.]: John Wiley & Sons; 2017. p. 143–170. DOI: 10.1002/9781118883303.ch7.
- Conte SS, Chu HH, Chan-Rodriguez D, Punshon T, Vasques KA, Salt DE, et al. Arabidopsis thaliana yellow stripe1-like4 and yellow stripe1-like6 localize to internal cellular membranes and are involved in metal ion homeostasis. Frontiers in Plant Science. 2013;4:283. DOI: 10.3389/fpls.2013.00283.
- Verbruggen N, Hermans C, Schat H. Molecular mechanisms of metal hyperaccumulation in plants. New Phytologist. 2009;181(4):759–776. DOI: 10.1111/j.1469-8137.2008.02748.x.
- Divol F, Couch D, Conéjéro G, Roschzttardtz H, Mari S, Curie C. The Arabidopsis yellow stripe like4 and 6 transporters control iron release from the chloroplast. The Plant Cell. 2013;25(3):1040–1055. DOI: 10.1105/tpc.112.107672.
- Islam MA, Guo J, Peng H, Tian S, Bai X, Zhu H, et al. TaYS1A, a yellow stripe-like transporter gene, is required for wheat resistance to Puccinia striiformis f. sp. tritici. Genes. 2020;11(12):1452. DOI: 10.3390/genes11121452.
- Colangelo EP, Guerinot ML. Put the metal to the petal: metal uptake and transport throughout plants. Current Opinion in Plant Biology. 2006;9(3):322–330. DOI: 10.1016/j.pbi.2006.03.015.
- DiDonato RJ, Roberts LA, Sanderson T, Eisley RB, Walker EL. Arabidopsis yellow stripe-like2 (YSL2): a metal-regulated gene encoding a plasma membrane transporter of nicotianamine – metal complexes. The Plant Journal. 2004;39(3):403–414. DOI: 10.1111/j.1365-313x.2004.02128.x.
- Chen Chyi-Chuann, Chien Wei-Fu, Lin Nai-Chun, Yeh Kuo-Chen. Alternative functions of Arabidopsis yellow stripe-like3: from metal translocation to pathogen defense. PLoS ONE. 2014;9(5):e98008. DOI: 10.1371/journal.pone.0098008.
- Rascio N, Navari-Izzo F. Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Science. 2011;180(2):169–181. DOI: 10.1016/j.plantsci.2010.08.016.
- Ahmad MSA, Ashraf M. Essential roles and hazardous effects of nickel in plants. In: Whitacre DM, editor. Reviews of environmental contamination and toxicology. Volume 214. New York: Springer; 2011. p. 125–167. DOI: 10.1007/978-1-4614-0668-6_6.
- Seregin IV, Kozhevnikova AD. Physiological role of nickel and its toxic effects on higher plants. Russian Journal of Plant Physiology. 2006;53(2):257–277. DOI: 10.1134/s1021443706020178.
- Shahid M, Dumat C, Khalid S, Schreck E, Xiong T, Niazi NK. Foliar heavy metal uptake, toxicity and detoxification in plants: a comparison of foliar and root metal uptake. Journal of Hazardous Materials. 2017;325:36–58. DOI: 10.1016/j.jhazmat.2016.11.063.
- Kozlov MV, Haukioja E, Bakhtiarov AV, Stroganov DN, Zimina SN. Root versus canopy uptake of heavy metals by birch in an industrially polluted area: contrasting behaviour of nickel and copper. Environmental Pollution. 2000;107(3):413–420. DOI: 10.1016/s0269-7491(99)00159-1.
- Titov AF, Kaznina NM, Talanova VV. Tyazhelye metally i rasteniya [Heavy metals and plants]. Petrozavodsk: Karelian Research Centre of the Russian Academy of Sciences; 2014. 194 p. Russian.
- Ataabadi M, Hoodaji M, Najafi P. Biomonitoring of some heavy metal contaminations from a steel plant by above ground plants tissue. African Journal of Biotechnology. 2011;10(20):4127–4132. DOI: 10.5897/AJB10.2452.
- Page V, Feller U. Heavy metals in crop plants: transport and redistribution processes on the whole plant level. Agronomy. 2015;5(3):447–463. DOI: 10.3390/agronomy5030447.
- Page V, Weisskopf L, Feller U. Heavy metals in white lupin: uptake, root-to-shoot transfer and redistribution within the plant. New Phytologist. 2006;171(2):329–341. DOI: 10.1111/j.1469-8137.2006.01756.x.
- Deng T-H-B, Chen J-Q, Geng K-R, van der Ent A, Tang Y-T, Wen D, et al. Quantification of nickel and cobalt mobility and accumulation via the phloem in the hyperaccumulator Noccaea caerulescens (Brassicaceae). Metallomics. 2021;13(4):mfab012. DOI: 10.1093/mtomcs/mfab012.
- Kozhevnikova AD, Seregin IV, Schat H. Accumulation of nickel by excluder Thlaspi arvense and hyperaccumulator Noccaea caerulescens upon short-term and long-term exposure. Russian Journal of Plant Physiology. 2020;67(2):303–311. DOI: 10.1134/s1021443720020089.
- Kerkeb L, Krämer U. The role of free histidine in xylem loading of nickel in Alyssum lesbiacum and Brassica juncea. Plant Physiology. 2003;131(2):716–724. DOI: 10.1104/pp102.010686.
- Dalir N, Khoshgoftarmanesh AH. Root uptake and translocation of nickel in wheat as affected by histidine. Journal of Plant Physiology. 2015;184:8–14. DOI: 10.1016/j.jplph.2015.05.017.
- Alves S, Nabais C, Simões Gonçalves MDL, Correia dos Santos MM. Nickel speciation in the xylem sap of the hyperaccumulator Alyssum serpyllifolium ssp. lusitanicum growing on serpentine soils of northeast Portugal. Journal of Plant Physiology. 2011;168(15):1715–1722. DOI: 10.1016/j.jplph.2011.04.004.
- Centofanti T, Sayers Z, Cabello-Conejo MI, Kidd P, Nishizawa NK, Kakei Y, et al. Xylem exudate composition and root-to-shoot nickel translocation in Alyssum species. Plant and Soil. 2013;373(1–2):59–75. DOI: 10.1007/s11104-013-1782-1.
- Harris WR, Sammons RD, Grabiak RC. A speciation model of essential trace metal ions in phloem. Journal of Inorganic Biochemistry. 2012;116:140–150. DOI: 10.1016/j.jinorgbio.2012.07.011.
- Mackievic VS, Shyker AA, Zvanarou SM, Litskevich KS, Turovets OA, Smolich II, et al. Growth inhibition and induction of programmed cell death in the root of Helianthus annuus L. triggered by nickel ions and nickel-histidine complexes. Journal of the Belarusian State University. Biology. 2020;1:11–19. Russian. DOI: 10.33581/2521-1722-2020-1-11-19.
Copyright (c) 2023 Экспериментальная биология и биотехнология
Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial» («Атрибуция — Некоммерческое использование») 4.0 Всемирная.
Авторы, публикующиеся в данном журнале, соглашаются со следующим:
- Авторы сохраняют за собой авторские права на работу и предоставляют журналу право первой публикации работы на условиях лицензии Creative Commons Attribution-NonCommercial. 4.0 International (CC BY-NC 4.0).
- Авторы сохраняют право заключать отдельные контрактные договоренности, касающиеся неэксклюзивного распространения версии работы в опубликованном здесь виде (например, размещение ее в институтском хранилище, публикацию в книге) со ссылкой на ее оригинальную публикацию в этом журнале.
- Авторы имеют право размещать их работу в интернете (например, в институтском хранилище или на персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу. (См. The Effect of Open Access).