Influence of group size on mice behaviour in standard tests

  • Kseniya P. Avimova Belarusian State University, 4 Niezaliezhnasci Avenue, Minsk 220030, Belarus https://orcid.org/0000-0001-8768-4537
  • Dmitry B. Sandakov Belarusian State University, 4 Niezaliezhnasci Avenue, Minsk 220030, Belarus

Abstract

The influence of housing conditions (single, pair or group) on mice behaviour in standard tests (open field test, holeboard test, tail suspension test and elevated X-maze test) was studied. Group housing lead to increased time of grooming and freezing episodes in open field test. In hole-board test, group-housed mice demonstrated the least efficiency of exploratory activity. Single- and pair-housed mice were spending more time in closed arms of elevated X-maze (compared with open arms), and group-housed mice didn’t show the preference of closed arms. After 30 days under different experimental conditions, the least skin damage level was observed in pair-housed mice. Meanwhile, the dynamics of weight gain was similar in all animals.

Author Biographies

Kseniya P. Avimova, Belarusian State University, 4 Niezaliezhnasci Avenue, Minsk 220030, Belarus

master’s degree student at the department of biochemistry, faculty of biology

Dmitry B. Sandakov, Belarusian State University, 4 Niezaliezhnasci Avenue, Minsk 220030, Belarus

PhD (biology), docent; associate professor at the department of human and animal physiology, faculty of biology

References

  1. Council of Europe. European convention for the protection of vertebrate animals used for experimental and other scientific purposes [Internet]. Strasbourg: Council of Europe; 1991 [cited 2021 January 28]. Available from: https://www.coe.int/en/web/conventions/full-list/-/conventions/treaty/123.
  2. Hubrecht RC, Kirkwood J. The UFAW handbook on the care and management of laboratory and other research animals. Oxford: Wiley-Blackwell; 2010. 848 p.
  3. Jones MA, Mason G, Pillay N. Early social experience influences the development of stereotypic behaviour in captive-born striped mice Rhabdomys. Applied Animal Behaviour Science. 2010;123(1–2):70–75. DOI: 10.1016/J.APPLANIM.2009.12.009.
  4. Sullens DG, Gilley K, Jensen K, Vichaya E, Dolan SL, Sekeres MJ. Social isolation induces hyperactivity and exploration in aged female mice. PLOS ONE. 2021;16(2):e0245355. DOI: 10.1371/JOURNAL.PONE.0245355.
  5. Ouchi H, Ono K, Murakami Y, Matsumoto K. Social isolation induces deficit of latent learning performance in mice: a putative animal model of attention deficit/hyperactivity disorder. Behavioural Brain Research. 2013;238:146–153. DOI: 10.1016/j.bbr.2012.10.029.
  6. Liu N, Wang Y, An AY, Banker C, Qian Y-H, O’Donnell JM. Single housing-induced effects on cognitive impairment and depression-like behavior in male and female mice involve neuroplasticity-related signaling. European Journal of Neuroscience. 2020;52(1):2694–2704. DOI: 10.1111/EJN.14565.
  7. Song MK, Lee JH, Kim Y-J. Effect of chronic handling and social isolation on emotion and cognition in adolescent rats. Physiology & Behavior. 2021;237:113440. DOI: 10.1016/j.physbeh.2021.113440.
  8. Han RT, Kim Y-B, Park E-H, Kim JY, Ryu C, Kim HY, et al. Long-term isolation elicits depression and anxiety-related behaviors by reducing oxytocin-induced GABAergic transmission in central amygdala. Frontiers in Molecular Neuroscience. 2018;11:246. DOI: 10.3389/fnmol.2018.00246.
  9. Brenes JC, Fornaguera J, Sequeira-Cordero A. Environmental enrichment and physical exercise attenuate the depressive-like effects induced by social isolation stress in rats. Frontiers in Pharmacology. 2020;11:804. DOI: 10.3389/fphar.2020.00804.
  10. Alshammari TK, Alghamdi H, Alkhader LF, Alqahtani Q, Alrasheed NM, Yacoub H, et al. Analysis of the molecular and behavioral effects of acute social isolation on rats. Behavioural Brain Research. 2020;377:112191. DOI: 10.1016/j.bbr.2019.112191.
  11. Du Preez A, Law T, Onorato D, Lim YM, Eiben P, Musaelyan K, et al. The type of stress matters: repeated injection and permanent social isolation stress in male mice have a differential effect on anxiety- and depressive-like behaviours, and associated biological alterations: 1. Translational Psychiatry. 2020;10(1):1–17. DOI: 10.1038/s41398-020-01000-3.
  12. Famitafreshi H, Karimian M. Modulation of catalase, copper and zinc in the hippocampus and the prefrontal cortex in social isolation-induced depression in male rats. Acta Neurobiologiae Experimentalis. 2019;79(2):184–192. DOI: 10.21307/ane-2019-016.
  13. Võikar V, Polus A, Vasar E, Rauvala H. Long-term individual housing in C57BL/6J and DBA/2 mice: assessment of behavioral consequences. Genes, Brain and Behavior. 2005;4(4):240–252. DOI: 10.1111/J.1601-183X.2004.00106.X.
  14. Åhlgren J, Voikar V. Experiments done in Black-6 mice: what does it mean? Lab Animal. 2019;48(6):171–180. DOI: 10.1038/s41684-019-0288-8.
  15. Love J, Zelikowsky M. Stress varies along the social density continuum. Frontiers in Systems Neuroscience. 2020;14:582985. DOI: 10.3389/fnsys.2020.582985/full.
  16. Gururajan A, Reif A, Cryan JF, Slattery DA. The future of rodent models in depression research. Nature Reviews Neuroscience. 2019;20(11):686–701. DOI: 10.1038/s41583-019-0221-6.
  17. Aparna S, Patri M. Benzo[a]pyrene exposure and overcrowding stress impacts anxiety-like behavior and impairs learning and memory in adult zebrafish, Danio rerio. Environmental Toxicology. 2021;36(3):352–361. DOI: 10.1002/tox.23041.
  18. Delaroque C, Chervy M, Gewirtz AT, Chassaing B. Social overcrowding impacts gut microbiota, promoting stress, inflammation, and dysglycemia. Gut Microbes. 2021;13(1):2000275. DOI: 10.1080/19490976.2021.2000275.
  19. Liu J, Huang S, Li G, Zhao J, Lu W, Zhang Z. High housing density increases stress hormone- or disease-associated fecal microbiota in male Brandt’s voles (Lasiopodomys brandtii). Hormones and Behavior. 2020;126:104838. DOI: 10.1016/j.yhbeh.2020.104838.
  20. Reber SO, Obermeier F, Straub RH, Falk W, Neumann ID. Chronic intermittent psychosocial stress (social defeat/overcrowding) in mice increases the severity of an acute DSS-induced colitis and impairs regeneration. Endocrinology. 2006;147(10):4968–4976. DOI: 10.1210/EN.2006-0347.
  21. Keenan RJ, Chan J, Donnelly PS, Barnham KJ, Jacobson LH. The social defeat/overcrowding murine psychosocial stress model results in a pharmacologically reversible body weight gain but not depression – related behaviours. Neurobiology of Stress. 2018;9:176–187. DOI: 10.1016/J.YNSTR.2018.09.008.
  22. Lin E-JD, Sun M, Choi EY, Magee D, Stets CW, During MJ. Social overcrowding as a chronic stress model that increases adiposity in mice. Psychoneuroendocrinology. 2015;51:318–330. DOI: 10.1016/j.psyneuen.2014.10.007.
  23. Huang S, Li G, Pan Y, Song M, Zhao J, Wan X, et al. Density-induced social stress alters oxytocin and vasopressin activities in the brain of a small rodent species. Integrative Zoology. 2021;16(2):149–159. DOI: 10.1111/1749-4877.12467.
  24. Laber K, Veatch LM, Lopez MF, Mulligan JK, Lathers DM. Effects of housing density on weight gain, immune function, behavior, and plasma corticosterone concentrations in BALB/c and C57BL/6 mice. Journal of the American Association for Laboratory Animal Science. 2008;47(2):16–23.
  25. Lee Y-A, Obora T, Bondonny L, Toniolo A, Mivielle J, Yamaguchi Y, et al. The effects of housing density on social interactions and their correlations with serotonin in rodents and primates. Scientific Reports. 2018;8(1):3497. DOI: 10.1038/s41598-018-21353-6.
  26. Whittaker AL, Howarth GS, Hickman DL. Effects of space allocation and housing density on measures of wellbeing in laboratory mice: a review. Laboratory Animals. 2012;46(1):3–13. DOI: 10.1258/la.2011.011049.
  27. Chambers JM, Cleveland WS, Kleiner B, Tukey PA. Graphical methods for data analysis. 1st edition. Belmont: Wadsworth International Group; 1983. 395 p. DOI: 10.1201/9781351072304.
  28. Altman DG, Machin D, Bryant TN, Gardner MJ, editors. Statistics with confidence: confidence intervals and statistical guidelines. 2nd edition. London: BMJ Books; 2000. 240 p.
  29. Nakagawa S. A farewell to Bonferroni: the problems of low statistical power and publication bias. Behavioral Ecology. 2004;15(6):1044–1045. DOI: 10.1093/BEHECO/ARH107.
  30. Fan Z, Zhu H, Zhou T, Wang S, Wu Y, Hu H. Using the tube test to measure social hierarchy in mice. Nature Protocols. 2019;14(3):819–831. DOI: 10.1038/s41596-018-0116-4.
  31. Smolinsky AN, Bergner CL, LaPorte JL, Kalueff AV. Analysis of grooming behavior and its utility in studying animal stress, anxiety, and depression. In: Gould TD, editor. Mood and anxiety related phenotypes in mice. Totowa: Humana Press; 2009. p. 21–36 (Neuromethods; volume 42). DOI: 10.1007/978-1-60761-303-9_2.
  32. Weber EM, Zidar J, Ewaldsson B, Askevik K, Udén E, Svensk E, et al. Aggression in group-housed male mice: a systematic review. Animals. 2023;13(1):143. DOI: 10.3390/ani13010143.
  33. Bartolomucci A, Palanza P, Parmigiani S. Group housed mice: are they really stressed? Ethology Ecology & Evolution. 2010;14(4):341–350. DOI: 10.1080/08927014.2002.9522735.
  34. Annas A, Bengtsson C, Törnqvist E. Group housing of male CD1 mice: reflections from toxicity studies. Laboratory Animals. 2013;47(2):127–129. DOI: 10.1177/0023677213476278.
  35. Ambrose N, Morton DB. The use of cage enrichment to reduce male mouse aggression. Journal of Applied Animal Welfare Science. 2000;3(2):117–125. DOI: 10.1207/S15327604JAWS0302_4.
  36. Van de Weerd HA, Van Loo PLP, Van Zutphen LFM, Koolhaas JM, Baumans V. Preferences for nesting material as environmental enrichment for laboratory mice. Laboratory Animals. 1997;31(2):133–143. DOI: 10.1258/002367797780600152.
  37. Tallent BR, Law LM, Rowe RK, Lifshitz J. Partial cage division significantly reduces aggressive behavior in male laboratory mice. Laboratory Animals. 2018;52(4):384–393. DOI: 10.1177/0023677217753464.
  38. Nevison CM, Hurst JL, Barnard CJ. Strain-specific effects of cage enrichment in male laboratory mice (Mus musculus). Animal Welfare. 1999;8(4):361–379. DOI: 10.1017/S0962728600021989.
  39. Haemisch A, Gärtner K. Effects of cage enrichment on territorial aggression and stress physiology in male laboratory mice. Acta Physiologica Scandinavica, Supplement. 1997;640:73–76. PMID: 9401611.
  40. Haemisch A, Voss T, Gärtner K. Effects of environmental enrichment on aggressive behavior, dominance hierarchies, and endocrine states in male DBA/2J mice. Physiology & Behavior. 1994;56(5):1041–1048. DOI: 10.1016/0031-9384(94)90341-7.
  41. Gentsch C, Lichtsteiner M, Frischknecht HR, Feer H, Siegfried B. Isolation-induced locomotor hyperactivity and hypoalgesia in rats are prevented by handling and reversed by resocialization. Physiology & Behavior. 1988;43(1):13–16. DOI: 10.1016/0031-9384(88)90091-1.
  42. Rivera DS, Lindsay CB, Oliva CA, Codocedo JF, Bozinovic F, Inestrosa NC. Effects of long-lasting social isolation and re-socialization on cognitive performance and brain activity: a longitudinal study in Octodon degus. Scientific Reports. 2020;10(1):18315. DOI: 10.1038/s41598-020-75026-4.
  43. Rivera DS, Lindsay CB, Oliva CA, Bozinovic F, Inestrosa NC. «Live together, die alone»: the effect of re-socialization on behavioural performance and social-affective brain-related proteins after a long-term chronic social isolation stress. Neurobiology of Stress. 2021;14:100289. DOI: 10.1016/j.ynstr.2020.100289.
  44. Stanisavljević A, Perić I, Gass P, Inta D, Lang UE, Borgwardt S, et al. Fluoxetine modulates neuronal activity in stress-related limbic areas of adult rats subjected to the chronic social isolation. Brain Research Bulletin. 2020;163:95–108. DOI: 10.1016/j.brainresbull.2020.07.021.
  45. Filipović D, Novak B, Xiao J, Yan Y, Yeoh K, Turck CW. Chronic fluoxetine treatment of socially isolated rats modulates prefrontal cortex proteome. Neuroscience. 2022;501:52–71. DOI: 10.1016/j.neuroscience.2022.08.011.
  46. Garzón J, Del Río J. Hyperactivity induced in rats by long-term isolation: further studies on a new animal model for the detection of antidepressants. European Journal of Pharmacology. 1981;74(4):287–294. DOI: 10.1016/0014-2999(81)90047-9.
  47. Guarnieri LO, Pereira-Caixeta AR, Medeiros DC, Aquino NSS, Szawka RE, Mendes EMAM, et al. Pro-neurogenic effect of fluoxetine in the olfactory bulb is concomitant to improvements in social memory and depressive-like behavior of socially isolated mice. Translational Psychiatry. 2020;10(1):33. DOI: 10.1038/s41398-020-0701-5.
  48. Rojas-Carvajal M, Fornaguera J, Mora-Gallegos A, Brenes JC. Testing experience and environmental enrichment potentiated open-field habituation and grooming behaviour in rats. Animal Behaviour. 2018;137:225–235. DOI: 10.1016/j.anbehav.2018.01.018.
  49. Komorowska J, Pellis SM. Regulatory mechanisms underlying novelty-induced grooming in the laboratory rat. Behavioural Processes. 2004;67(2):287–293. DOI: 10.1016/j.beproc.2004.05.001.
  50. Chaouloff F. Social stress models in depression research: what do they tell us? Cell and Tissue Research. 2013;354(1):179–190. DOI: 10.1007/s00441-013-1606-x.
  51. Karolewicz B, Paul IA. Group housing of mice increases immobility and antidepressant sensitivity in the forced swim and tail suspension tests. European Journal of Pharmacology. 2001;415(2–3):197–201. DOI: 10.1016/S0014-2999(01)00830-5.
  52. Avimova KP, Sandakov DB. The influence of the stereotypic forms of activity in mice behaviour in standard behavioural tests. Journal of the Belarusian State University. Biology. 2021;3:47–58. Russian. DOI: 10.33581/2521-1722-2021-3-47-58.
  53. Lidicker WZ. Social behaviour and density regulation in house mice living in large enclosures. The Journal of Animal Ecology. 1976;45(3):677. DOI: 10.2307/3575.
  54. Van Loo PLP, de Groot AC, Van Zutphen BFM, Baumans V. Do male mice prefer or avoid each other’s company? Influence of hierarchy, kinship, and familiarity. Journal of Applied Animal Welfare Science. 2010;4(2):91–103. DOI: 10.1207/S15327604JAWS0402_1.
  55. Nakayasu T, Ishii K. Effects of pair-housing after social defeat experience on elevated plus-maze behavior in rats. Behavioural Processes. 2008;78(3):477–480. DOI: 10.1016/J.BEPROC.2008.02.007.
  56. Da Silva NL, Ferreira VMM, De Padua Carobrez A, Morato GS. Individual housing from rearing modifies the performance of young rats on the elevated plus-maze apparatus. Physiology & Behavior. 1996;60(6):1391–1396. DOI: 10.1016/S0031-9384(96)00254-5.
  57. Pasquarelli N, Voehringer P, Henke J, Ferger B. Effect of a change in housing conditions on body weight, behavior and brain neurotransmitters in male C57BL/6J mice. Behavioural Brain Research. 2017;333:35–42. DOI: 10.1016/J.BBR.2017.06.018.
  58. Rodgers RJ, Cole JC. Influence of social isolation, gender, strain, and prior novelty on plus-maze behaviour in mice. Physiology & Behavior. 1993;54(4):729–736. DOI: 10.1016/0031-9384(93)90084-S.
Published
2023-11-08
Keywords: laboratory mice, conditions for housing of animals, single housing, group housing, behavioural tests, open field test, hole-board test, tail suspension test, elevated X-maze test, social stress
How to Cite
Avimova, K. P., & Sandakov, D. B. (2023). Influence of group size on mice behaviour in standard tests. Experimental Biology and Biotechnology, 3, 12-23. Retrieved from https://journals.bsu.by/index.php/biology/article/view/5733
Section
Physiology and Сell Biology