Peculiarities of age-dependent glucose content in the haemolymph of the mollusc Lymnaea stagnalis under repeated hyperglycemic impact

  • Rodion A. Mahotin Belarusian State University, 4 Niezaliezhnasci Avenue, Minsk 220030, Belarus
  • Alexander V. Sidorov Belarusian State University, 4 Niezaliezhnasci Avenue, Minsk 220030, Belarus

Abstract

Periodic, for 3 days, incubation (2 h) of 24-week-old molluscs in a 100 mmol/L aqueous solution of glucose leads to an almost 5-fold increase in the glucose content in the haemolymph, 24 h after the hyperglycemic impact. For animals 35 weeks of age, this impact does not lead to a statistically significant change in the considered indicator. It was found that the level of glucose in the haemolymph of animals of the older age group (0.21 (0.13; 0.23) mmol/L) exceeded that of animals of the younger age group (0.13 (0.08; 0.16) mmol/L) in 1.6 times. It is assumed that these features of glucose regulation are associated with the functional characteristics of peptide-producing neurosecretory cells of the central nervous ganglia.

Author Biographies

Rodion A. Mahotin, Belarusian State University, 4 Niezaliezhnasci Avenue, Minsk 220030, Belarus

student at the faculty of biology

Alexander V. Sidorov, Belarusian State University, 4 Niezaliezhnasci Avenue, Minsk 220030, Belarus

doctor of science (biology), full professor; professor at the department of human and animal physiology, faculty of biology

References

  1. Mergenthaler P, Lindauer U, Dienel GA, Meisel A. Sugar for the brain: the role of glucose in physiological and pathological brain function. Trends in Neurosciences. 2013;36(10):587–597. DOI: 10.1016/j.tins.2013.07.001.
  2. Kupfermann I. Neural control of feeding. Current Opinion in Neurobiology. 1994;4(6):869–876. DOI: 10.1016/0959-4388(94)90136-8.
  3. van den Beld AW, Kaufman J-M, Zillikens MC, Lamberts SWJ, Egan JM, van der Lely AJ. The physiology of endocrine systems with ageing. The Lancet Diabetes & Endocrinology. 2018;6(8):647–658. DOI: 10.1016/S2213-8587(18)30026-3.
  4. Kmiec Z. Central control of food intake in aging. In: Mobbs CV, Hof PR, editors. Body composition and aging. Basel: Karger; 2010. p. 37–50 (Hof PR, Mobbs CV, editors. Interdisciplinary topics in gerontology; volume 37). DOI: 10.1159/000319993.
  5. Skulachev MV, Severin FF, Skulachev VP. Receptor regulation of senile phenoptosis. Biochemistry (Moscow). 2014;79(10):994–1003. DOI: 10.1134/S0006297914100022.
  6. Galenza A, Foley E. A glucose-supplemented diet enhances gut barrier integrity in Drosophila. Biology Open. 2021;10(3):bio056515. DOI: 10.1242/bio.056515.
  7. Shadenko VN, Sidorov AV. Induction of experimental hyperglycemia in mollusc Lymnaea stagnalis after animal’s incubation in high-concentrated glucose solution. Journal of the Belarusian State University. Biology. 2019;1:79–84. Russian. DOI: 10.33581/2521-1722-2019-1-79-84.
  8. Sidorov AV, Shadenko VN. Electrical properties of the sensory neuron and defense reactions of mollusc Lymnaea stagnalis at conditions of prolonged hyperglycemia. Experimental Biology and Biotechnology. 2022;1:23–38. Russian. DOI: 10.33581/2957-5060-2022-1-23-38.
  9. Sidorov AV, Shadenko VN. Passive membrane properties and spike characteristics in a pair of identified electrically coupled Lymnaea stagnalis neurons under long-term experimental hyperglycemia. Journal of Evolutionary Biochemistry and Physiology. 2023;59(2):369–381. DOI: 10.1134/S0022093023020060.
  10. Zotin AA. Individual growth of Lymnaea stagnalis (Lymnaeidae, Gastropoda): II. Late postlarval ontogeny. Biology Bulletin. 2009;36(6):591–597. DOI: 10.1134/S1062359009060077.
  11. Fodor I, Svigruha R, Kemenes G, Kemenes I, Pirger Z. The great pond snail (Lymnaea stagnalis) as a model of aging and age-related memory impairment: an overview. The Journals of Gerontology. Series A. 2021;76(6):975–982. DOI: 10.1093/gerona/glab014.
  12. Smit AB, Vreugdenhil E, Ebberink RHM, Geraerts WPM, Klootwijk J, Joosse J. Growth-controlling molluscan neurons produce the precursor of an insulin-related peptide. Nature. 1988;331(6156):535–538. DOI: 10.1038/331535a0.
  13. Kits KS, Bobeldijk RC, Crest M, Lodder JC. Glucose-induced excitation in molluscan central neurons producing insulin-related peptides. Pflügers Archiv – European Journal of Physiology. 1991;417(6):597–604. DOI: 10.1007/BF00372957.
  14. McComb C, Meems R, Syed N, Lukowiak K. Electrophysiological differences in the CPG aerial respiratory behavior between juvenile and adult Lymnaea. Journal of Neurophysiology. 2003;90(2):983–992. DOI: 10.1152/jn.00263.2003.
  15. McComb C, Varshney N, Lukowiak K. Juvenile Lymnaea ventilate, learn and remember differently than do adult Lymnaea. Journal of Experimental Biology. 2005;208(8):1459–1467. DOI: 10.1242/jeb.01544.
  16. Sidorov AV. Coordination of locomotor activity of mollusc Lymnaea stagnalis at nutrition: role of the internal medium acid-base balance (pH). Journal of Evolutionary Biochemistry and Physiology. 2006;42(1):43–48. DOI: 10.1134/S0022093006010066.
  17. Arundell M, Patel BA, Straub V, Allen MC, Janse C, O’Hare D, et al. Effects of age on feeding behavior and chemosensory processing in the pond snail, Lymnaea stagnalis. Neurobiology of Aging. 2006;27(12):1880–1891. DOI: 10.1016/j.neurobiolaging.2005.09.040.
  18. Nakai J, Chikamoto N, Fujimoto K, Totani Y, Hatakeyama D, Dyakonova V, et al. Insulin and memory in invertebrates. Frontiers in Behavioral Neuroscience. 2022;16:882932. DOI: 10.3389/fnbeh.2022.882932.
Published
2023-11-08
Keywords: homeostasis, hyperglycemia, age, invertebrates
Supporting Agencies This work was supported by the Belarusian Republican Foundation for Fundamental Research (grant No. B22-105).
How to Cite
Mahotin, R. A., & Sidorov, A. V. (2023). Peculiarities of age-dependent glucose content in the haemolymph of the mollusc Lymnaea stagnalis under repeated hyperglycemic impact. Experimental Biology and Biotechnology, 3, 81-87. Retrieved from https://journals.bsu.by/index.php/biology/article/view/5747