Characteristics of phenol degradation genetic loci in the genome of bacteria Rhodococcus pyridinivorans strain 5Ap

  • Maryia I. Mandryk Belarusian State University, 4 Niezaliezhnasci Avenue, Minsk 220030, Belarus
  • Artur E. Akhremchuk Institute of Microbiology, National Academy of Sciences of Belarus, 2 Akademika Kuprevicha Street, Minsk 220084, Belarus
  • Leonid N. Valentovich Institute of Microbiology, National Academy of Sciences of Belarus, 2 Akademika Kuprevicha Street, Minsk 220084, Belarus
  • Ella V. Trushlis Belarusian State University, 4 Niezaliezhnasci Avenue, Minsk 220030, Belarus
  • Alina Yu. Larchenka Belarusian State University, 4 Niezaliezhnasci Avenue, Minsk 220030, Belarus
  • Svetlana L. Vasylenko Belarusian State University, 4 Niezaliezhnasci Avenue, Minsk 220030, Belarus

Abstract

The growth dynamics of the bacteria Rhodococcus pyridinivorans strain 5Ap in a medium with phenol (200 mg/L) was characterised. The bacteria reach the stationary phase after 24 h of cultivation. By this time phenol is completely utilised. As a result of whole-genome sequencing, it was established that the genome of bacteria R. pyridinivorans strain 5Ap is represented by a circular chromosome with a size of 5 220 735 base pairs (number in the GenBank database CP063450.1) and three circular megaplasmids – pSID with a size of 250 428 base pairs (CP063453.1), pRh5Ap-243 with a size of 243 288 base pairs (CP063452.1) and pNAPH with a size of 207 815 base pairs (CP063451.1). A comparison of the organisation of genes of the β-ketoadipate phenol degradation pathway in the genomes of 78 bacteria of the genus Rhodococcus of groups B (subgroups B1 and B2), C and D showed that, despite the high level of synteny in general, each group has characteristic features in the structure of the studied loci. Unlike other groups, in genomes of group C bacteria the pheA2A1 and catABC operons are separated by three genes, including fadA and fadI genes, which determine the alternative possibility of phenol oxidation with the formation of succinyl-CoA (in other groups, likely, only acetyl-CoA is formed). Rhodococci of group C and subgroup B1 have an additional locus in their genome, including the pheA2, pheA1 and catA genes. The second locus in bacteria of the subgroup B1, groups C and D includes the pcaIJ and pcaHGBLRF operons, while in bacteria of the subgroup B2 it includes the pcaIJ and pcaBLRF operons, and the pcaHG operon, encoding the components of protocatechuate-3,4-dioxygenase, is located in a different chromosomal locus. The regulatory regions of the pheA2A1 and catABC operons in the bacteria R. pyridinivorans strain 5Ap are similar to the known ones and contain binding sites for both the specific regulatory proteins PheR and CatR, respectively, and for the global catabolism regulator CRP. As a result of analysis of the pcaIpcaB intergenic region of R. pyridinivorans strain 5Ap, six potential binding sites for the protein PcaR were identified. The nature of the location of these sites may indicate a dual role of the regulatory protein PcaR: as a repressor in a state unbound to the effector and as an activator in a state bound to the effector.

Author Biographies

Maryia I. Mandryk, Belarusian State University, 4 Niezaliezhnasci Avenue, Minsk 220030, Belarus

PhD (biology), docent; associate professor at the department of microbiology, faculty of biology

 

Artur E. Akhremchuk, Institute of Microbiology, National Academy of Sciences of Belarus, 2 Akademika Kuprevicha Street, Minsk 220084, Belarus

researcher at the laboratory «Center of analytical and genetic engineering research»

 

Leonid N. Valentovich, Institute of Microbiology, National Academy of Sciences of Belarus, 2 Akademika Kuprevicha Street, Minsk 220084, Belarus

PhD (biology), docent; head of the laboratory «Center of analytical and genetic engineering research»

 

Ella V. Trushlis, Belarusian State University, 4 Niezaliezhnasci Avenue, Minsk 220030, Belarus

junior researcher trainee at the laboratory of biotechnology, department of microbiology, faculty of biology

 

Alina Yu. Larchenka, Belarusian State University, 4 Niezaliezhnasci Avenue, Minsk 220030, Belarus

postgraduate student at the department of microbiology, faculty of biology

 

Svetlana L. Vasylenko, Belarusian State University, 4 Niezaliezhnasci Avenue, Minsk 220030, Belarus

PhD (biology); head of the department of microbiology, faculty of biology

 

References

  1. Zhao T, Gao Y, Yu T, Zhang Y, Zhang Z, Zhang L, et al. Biodegradation of phenol by a highly tolerant strain Rhodococcus ruber C1: biochemical characterization and comparative genome analysis. Ecotoxicology and Environmental Safety. 2021;208:111709. DOI: 10.1016/j.ecoenv.2020.111709.
  2. Gröning JAD, Eulberg D, Tischler D, Kaschabek SR, Schlömann M. Gene redundancy of two-component (chloro)phenol hydroxylases in Rhodococcus opacus 1CP. FEMS Microbiology Letters. 2014;361(1):68–75. DOI: 10.1111/1574-6968.12616.
  3. Pokryshkin SA, Kosyakov DS, Kozhevnikov AYu, Lakhmanov DE, Ul’yanovskii NV. [Highly sensitive determination of chlorophenols in sea water by gas chromatography – tandem mass spectrometry]. Zhurnal analiticheskoi khimii. 2018;73(10):768–775. Russian. DOI: 10.1134/s0044450218100092.
  4. Patrauchan MA, Florizone C, Dosanjh M, Mohn WW, Davies J, Eltis LD. Catabolism of benzoate and phthalate in Rhodococcus sp. strain RHA1: redundancies and convergence. Journal of Bacteriology. 2005;187(12):4050–4063. DOI: 10.1128/jb.187.12.4050-4063.2005.
  5. Basu S, Dhar R, Bhattacharyya M, Dutta TK. Biochemical and multi-omics approaches to obtain molecular insights into the catabolism of the plasticizer benzyl butyl phthalate in Rhodococcus sp. strain PAE-6. Microbiology Spectrum. 2023;11(4):e04801-22. DOI: 10.1128/spectrum.04801-22.
  6. Yoneda A, Henson WR, Goldner NK, Park KJ, Forsberg KJ, Kim SJ, et al. Comparative transcriptomics elucidates adaptive phenol tolerance and utilization in lipid-accumulating Rhodococcus opacus PD630. Nucleic Acids Research. 2016;44(5):2240–2254. DOI: 10.1093/nar/gkw055.
  7. Bukliarevich HA, Gurinovich AS, Filonov AE, Titok MA. Molecular genetic and functional analysis of the genes encoding alkane 1-monooxygenase synthesis in members of the genus Rhodococcus. Microbiology. 2023;92(2):242–255. DOI: 10.1134/s0026261722603311.
  8. Soudi MR, Kolahchi N. Bioremediation potential of a phenol degrading bacterium, Rhodococcus erythropolis SKO-1. Progress in Biological Sciences. 2011;1(1):31–40. DOI: 10.22059/pbs.2011.22457.
  9. Margesin R, Fonteyne P-A, Redl B. Low-temperature biodegradation of high amounts of phenol by Rhodococcus spp. and basidiomycetous yeasts. Research in Microbiology. 2005;156(1):68–75. DOI: 10.1016/j.resmic.2004.08.002.
  10. Rucká L, Nešvera J, Pátek M. Biodegradation of phenol and its derivatives by engineered bacteria: current knowledge and perspectives. World Journal of Microbiology and Biotechnology. 2017;33(9):174. DOI: 10.1007/s11274-017-2339-x.
  11. Veselý M, Knoppová M, Nešvera J, Pátek M. Analysis of catRABC operon for catechol degradation from phenol-degrading Rhodococcus erythropolis. Applied Microbiology and Biotechnology. 2007;76(1):159–168. DOI: 10.1007/s00253-007-0997-6.
  12. Szőköl J, Rucká L, Šimčíková M, Halada P, Nešvera J, Pátek M. Induction and carbon catabolite repression of phenol degradation genes in Rhodococcus erythropolis and Rhodococcus jostii. Applied Microbiology and Biotechnology. 2014;98(19):8267–8279. DOI: 10.1007/s00253-014-5881-6.
  13. Čejková A, Masák J, Jirků V, Veselý M, Pátek M, Nešvera J. Potential of Rhodococcus erythropolis as a bioremediation organism. World Journal of Microbiology and Biotechnology. 2005;21(3):317–321. DOI: 10.1007/s11274-004-2152-1.
  14. Ivshina IB, Kamenskikh TN, Lyapunov YaE, compilers. Katalog shtammov Regional’noi profilirovannoi kollektsii alkanotrofnykh mikroorganizmov [Catalog of strains of the Regional Specialised Collection of Alkanotrophic Microorganisms]. Ivshina IB, editor. Moscow: Nauka; 1994. 163 p. Russian.
  15. Romanenko VI, Kuznetsov SI. Ehkologiya mikroorganizmov presnykh vodoemov [Ecology of freshwater microorganisms]. Strelkov AA, Butorin NV, Vainshtein BA, Kamshilov MM, Mordukhai-Boltovskoi FD, Poddubnyi AG, et al., editors. Leningrad: Nauka; 1974. 194 p. Russian.
  16. te Riele H, Michel B, Ehrlich SD. Single-stranded plasmid DNA in Bacillus subtilis and Staphylococcus aureus. PNAS. 1986; 83(8):2541–2545. DOI: 10.1073/pnas.83.8.2541.
  17. Oberto J. SyntTax: a web server linking synteny to prokaryotic taxonomy. BMC Bioinformatics. 2013;14:4. DOI: 10.1186/1471-2105-14-4.
  18. Przybulewska K, Wieczorek A, Nowak A, Pochrząszcz M. The isolation of microorganisms capable of phenol degradation. Polish Journal of Microbiology. 2006;55(1):63–67.
  19. Jones AL, Brown JM, Mishra V, Perry JD, Steigerwalt AG, Goodfellow M. Rhodococcus gordoniae sp. nov., an actinomycete isolated from clinical material and phenol-contaminated soil. International Journal of Systematic and Evolutionary Microbiology. 2004;54(2):407–411. DOI: 10.1099/ijs.0.02756-0.
  20. Nogina T, Fomina M, Dumanskaya T, Zelena L, Khomenko L, Mikhalovsky S, et al. A new Rhodococcus aetherivorans strain isolated from lubricant-contaminated soil as a prospective phenol-biodegrading agent. Applied Microbiology and Biotechnology. 2020;104(8):3611–3625. DOI: 10.1007/s00253-020-10385-6.
  21. Roell GW, Carr RR, Campbell T, Shang Z, Henson WR, Czajka JJ, et al. A concerted systems biology analysis of phenol metabolism in Rhodococcus opacus PD630. Metabolic Engineering. 2019;55:120–130. DOI: 10.1016/j.ymben.2019.06.013.
  22. Shahabivand S, Mortazavi SS, Mahdavinia GR, Darvishi F. Phenol biodegradation by immobilized Rhodococcus qingshengii isolated from coking effluent on Na-alginate and magnetic chitosan-alginate nanocomposite. Journal of Environmental Management. 2022;307:114586. DOI: 10.1016/j.jenvman.2022.114586.
  23. Nikolaichik Y, Damienikan AU. SigmoID: a user-friendly tool for improving bacterial genome annotation through analysis of transcription control signals. PeerJ. 2016;4:e2056. DOI: 10.7717/peerj.2056.
  24. Charniauskaya MI, Bukliarevich AA, Delegan YaA, Akhremchuk AE, Filonov AE, Titok MA. Biodiversity of hydrocarbonoxidizing soil bacteria from various climatic zones. Microbiology. 2018;87(5):699–711. DOI: 10.1134/s0026261718050065.
  25. Wen Y, Li C, Song X, Yang Y. Biodegradation of phenol by Rhodococcus sp. strain SKC: characterization and kinetics study. Molecules. 2020;25(16):3665. DOI: 10.3390/molecules25163665.
  26. Pathak A, Chauhan A, Blom J, Indest KJ, Jung CM, Stothard P, et al. Comparative genomics and metabolic analysis reveals peculiar characteristics of Rhodococcus opacus strain M213 particularly for naphthalene degradation. PLOS One. 2016;11(8):e0161032. DOI: 10.1371/journal.pone.0161032.
  27. Lee GLY, Zakaria NN, Futamata H, Suzuki K, Zulkharnain A, Shaharuddin NA, et al. Metabolic pathway of phenol degradation of a cold-adapted Antarctic bacteria, Arthrobacter sp. Catalysts. 2022;12(11):1422. DOI: 10.3390/catal12111422.
  28. Nie Y, Chi C-Q, Fang H, Liang J-L, Lu S-L, Lai G-L, et al. Diverse alkane hydroxylase genes in microorganisms and environments. Scientific Reports. 2014;4:4968. DOI: 10.1038/srep04968.
  29. Moreno R, Rojo F. The target for the Pseudomonas putida Crc global regulator in the benzoate degradation pathway is the BenR transcriptional regulator. Journal of Bacteriology. 2008;190(5):1539–1545. DOI: 10.1128/jb.01604-07.
  30. Suvorova IA, Gelfand MS. Comparative analysis of the IclR-family of bacterial transcription factors and their DNA-binding motifs: structure, positioning, co-evolution, regulon content. Frontiers in Microbiology. 2021;12:675815. DOI:10.3389/fmicb.2021.675815.
  31. Jerg B, Gerischer U. Relevance of nucleotides of the PcaU binding site from Acinetobacter baylyi. Microbiology. 2008;154(3):756–766. DOI: 10.1099/mic.0.2007/013508-0.
  32. Guo Z, Houghton JE. PcaR‐mediated activation and repression of pca genes from Pseudomonas putida are propagated by its binding to both the –35 and the –10 promoter elements. Molecular Microbiology. 1999;32(2):253–263. DOI: 10.1046/j.1365-2958.1999.01342.x.
  33. Diao J, Carr R, Moon TS. Deciphering the transcriptional regulation of the catabolism of lignin-derived aromatics in Rhodococcus opacus PD630. Communications Biology. 2022;5:1109. DOI: 10.1038/s42003-022-04069-2.
Published
2024-02-20
Keywords: Rhodococcus, phenol-degrading bacteria, phenol, genetic loci, genes of biodegradation, regulation
Supporting Agencies This work was carried out within the framework of the state programme of scientific research «Biotechnologies-2» for 2021–2025 (assignment 3.6.2) with financial support of the Belarusian Republican Foundation for Fundamental Research and the Ministry of Education of the Republic of Belarus (grant No. B22MV-029).
How to Cite
Mandryk, M. I., Akhremchuk, A. E., Valentovich, L. N., Trushlis, E. V., Larchenka, A. Y., & Vasylenko, S. L. (2024). Characteristics of phenol degradation genetic loci in the genome of bacteria Rhodococcus pyridinivorans strain 5Ap. Experimental Biology and Biotechnology, 1, 27-40. Retrieved from https://journals.bsu.by/index.php/biology/article/view/5990
Section
Genetics and Molecular Biology