Artificial cells as biotechnological devices that mimic the parameters of natural cells

  • Tamara A. Gapeeva Institute of Biophysics and Cell Engineering, National Academy of Sciences of Belarus, 27 Akademichnaja Street, Minsk 220072, Belarus

Abstract

The term «artificial cell» is widely used in scientific circles, but its understanding is ambiguous. The original concept of an artificial cell related to the idea of replacing the functions of natural cells by analogy with organ transplantation, rather than to recreate a living cell. Currently, the original concept does not encompass the entire variety of synthetic biology objects defined as artificial (synthetic) cells. The creation of artificial cells pursues three main goals related to the research of the question of the origin of life, the study of cell biology and the solution of practical problems in many fields, most notably medicine. Within the framework of reductionist approach used in science, artificial cells can be divided into two groups according to the way they are obtained: bottom-up cells (created according to the principle «from simple to complex») and top-down cells (created according to the principle «from complex to simple»). This review focuses on the bottom-up development and application of such cells, which can be defined as biotechnological devices that mimic the parameters of natural cells for use primarily in numerous practical applications.

Author Biography

Tamara A. Gapeeva, Institute of Biophysics and Cell Engineering, National Academy of Sciences of Belarus, 27 Akademichnaja Street, Minsk 220072, Belarus

PhD (biology), docent; senior researcher at the laboratory of biophysics and biochemistry of plant cell

 

References

  1. Hooke R. Micrographia: or Some physiological descriptions of minute bodies made by magnifying glasses with observations and inquiries thereupon [Internet]. London: John Martyn and James Alleftry; 1665 [cited 2023 April 17]. 246, [46] p. Available from: https://collections.nlm.nih.gov/catalog/nlm:nlmuid-2366075R-bk.
  2. Schwann T. Mikroskopische Untersuchungen über die Übereinstimmung in der Struktur und dem Wachstum der Tiere und Pflanzen [Internet]. Berlin: Verlag der Sanderʼschen Buchhandlung (G. E. Reimer); 1839 [cited 2023 April 17]. XVIII, 270 S. Available from: https://wellcomecollection.org/works/bknnmj2k. German.
  3. Chang TMS. Semipermeable microcapsules. Science. 1964;146(3643):524–525. DOI: 10.1126/science.146.3643.524.
  4. Chang TMS. Hemoglobin corpuscles. Report of research project for BSc honours physiology. Montreal: McGill University; 1957. 25 p.
  5. Chang TMS. Artificial cells [Internet]. Springfield: Charles C. Thomas; 1972 [cited 2023 April 19]. XIV, 207 p. Available from: http://www.medicine.mcgill.ca/artcell/1972bookCovercr.pdf.
  6. Chang TMS. Artificial cells for cell and organ replacements. Artificial Organs. 2004;28(3):265–270. DOI: 10.1111/j.1525-1594.2004.47343.x.
  7. Chang TMS. 50th anniversary of artificial cells: their role in biotechnology, nanomedicine, regenerative medicine, blood substitutes, bioencapsulation, cell / stem cell therapy and nanorobotics. Artificial Cells, Blood Substitutes, and Biotechnology. 2007;35(6):545–554. DOI: 10.1080/10731190701730172.
  8. Chang TMS. The role of artificial cells in the fight against COVID-19: deliver vaccine, hemoperfusion removes toxic cytokines, nanobiotherapeutics lower free radicals and pCO2 and replenish blood supply. Artificial Cells, Nanomedicine, and Biotechnology. 2022;50(1):240–251. DOI: 10.1080/21691401.2022.2126491.
  9. Schwille P. How simple could life be? Angewandte Chemie International Edition. 2017;56(37):10998–11002. DOI: 10.1002/anie.201700665.
  10. Elani Y. Interfacing living and synthetic cells as an emerging frontier in synthetic biology. Angewandte Chemie International Edition. 2021;60(11):5602–5611. DOI: 10.1002/anie.202006941.
  11. Gánti T. The principles of life [Internet]. Griesemer J, Szathmáry E, editors. Oxford: Oxford University Press; 2003 [cited 2023 April 20]. XVIII, 201 p. Available from: https://www.chemoton.com/images/pdf/GantiTiborEletmu_22.pdf.
  12. Göpfrich K, Platzman I, Spatz JP. Mastering complexity: towards bottom-up construction of multifunctional eukaryotic synthetic cells. Trends in Biotechnology. 2018;36(9):938–951. DOI: 10.1016/j.tibtech.2018.03.008.
  13. Pohorille A, Deamer D. Artificial cells: prospects for biotechnology. Trends in Biotechnology. 2002;20(3):123–128. DOI: 10.1016/s0167-7799(02)01909-1.
  14. Szostak JW, Bartel DP, Luisi PL. Synthesizing life. Nature. 2001;409(6818):387–390. DOI: 10.1038/35053176.
  15. Saraniti M. Designing biomimetic nanomachines. Nature Nanotechnology. 2008;3(11):647–648. DOI: 10.1038/nnano.2008.327.
  16. Xu C, Hu S, Chen X. Artificial cells: from basic science to applications. Materials Today. 2016;19(9):516–532. DOI: 10.1016/j.mattod.2016.02.020.
  17. Jiang W, Wu Z, Gao Z, Wan M, Zhou M, Mao C, et al. Artificial cells: past, present and future. ACS Nano. 2022;16(10):15705–15733. DOI: 10.1021/acsnano.2c06104.
  18. Lindblad P, Lindberg P, Oliveira P, Stensjö K, Heidorn T. Design, engineering, and construction of photosynthetic microbial cell factories for renewable solar fuel production. Ambio. 2012;41(supplement 2):163–168. DOI: 10.1007/s13280-012-0274-5.
  19. Venter JC, Glass JI, Hutchison CA 3rd, Vashee S. Synthetic chromosomes, genomes, viruses, and cells. Cell. 2022;185(15):2708–2724. DOI: 10.1016/j.cell.2022.06.046.
  20. Buddingh’ BC, van Hest JCM. Artificial cells: synthetic compartments with life-like functionality and adaptivity. Accounts of Chemical Research. 2017;50(4):769–777. DOI: 10.1021/acs.accounts.6b00512.
  21. Zhao N, Chen Y, Chen G, Xiao Z. Artificial cells based on DNA nanotechnology. ACS Applied Bio Materials. 2020;3(7):3928–3934. DOI: 10.1021/acsabm.0c00149.
  22. Jelinek R, Kolusheva S. Membrane interactions of host-defense peptides studied in model systems. Current Protein and Peptide Science. 2005;6(1):103–114. DOI: 10.2174/1389203053027511.
  23. Nuti N, Verboket PE, Dittrich PS. Multivesicular droplets: a cell model system to study compartmentalised biochemical reactions. Lab on a Chip. 2017;17(18):3112–3119. DOI: 10.1039/c7lc00710h.
  24. Bangham AD, Horne RW. Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope. Journal of Molecular Biology. 1964;8(5):660–668. DOI: 10.1016/s0022-2836(64)80115-7.
  25. Xu R, Simpson RJ, Greening DW. A protocol for isolation and proteomic characterization of distinct extracellular vesicle subtypes by sequential centrifugal ultrafiltration. In: Hill AF, editor. Exosomes and microvesicles: methods and protocols. New York: Humana Press; 2017. p. 91–116 (Walker JM, editor. Methods in molecular biology; volume 1545). DOI: 10.1007/978-1-4939-6728-5_7.
  26. Martino C, deMello AJ. Droplet-based microfluidics for artificial cell generation: a brief review. Interface Focus. 2016;6(4):20160011. DOI: 10.1098/rsfs.2016.0011.
  27. Kamiya K. Development of artificial cell models using microfluidic technology and synthetic biology. Micromachines. 2020;11(6):559. DOI: 10.3390/mi11060559.
  28. Noireaux V, Libchaber A. A vesicle bioreactor as a step toward an artificial cell assembly. PNAS. 2004;101(51):17669–17674. DOI: 10.1073/pnas.0408236101.
  29. Elani Y, Law RV, Ces O. Vesicle-based artificial cells as chemical microreactors with spatially segregated reaction pathways. Nature Communications. 2014;5:5305. DOI: 10.1038/ncomms6305.
  30. Gardner PM, Winzer K, Davis BG. Sugar synthesis in a protocellular model leads to a cell signalling response in bacteria. Nature Chemistry. 2009;1(5):377–383. DOI: 10.1038/nchem.296.
  31. Lentini R, Perez Santero S, Chizzolini F, Cecchi D, Fontana J, Marchioretto M, et al. Integrating artificial with natural cells to translate chemical messages that direct E. coli behaviour. Nature Communications. 2014;5:4012. DOI: 10.1038/ncomms5012.
  32. Adamala K, Szostak JW. Competition between model protocells driven by an encapsulated catalyst. Nature Chemistry. 2013;5(6):495–501. DOI: 10.1038/nchem.1650. Erratum in: Nature Chemistry. 2013;5(7):634. DOI: 10.1038/nchem.1700.
  33. Lee KY, Park S-J, Lee KA, Kim S-H, Kim H, Meroz Y, et al. Photosynthetic artificial organelles sustain and control ATP-dependent reactions in a protocellular system. Nature Biotechnology. 2018;36(6):530–535. DOI: 10.1038/nbt.4140.
  34. Green JJ, Elisseeff JH. Mimicking biological functionality with polymers for biomedical applications. Nature. 2016;540(7633):386–394. DOI: 10.1038/nature21005.
  35. Discher DE, Eisenberg A. Polymer vesicles. Science. 2002;297(5583):967–973. DOI: 10.1126/science.1074972.
  36. Lim F, Sun AM. Microencapsulated islets as bioartificial endocrine pancreas. Science. 1980;210(4472):908–910. DOI: 10.1126/science.6776628.
  37. O’Shea GM, Sun AM. Encapsulation of rat islets of Langerhans prolongs xenograft survival in diabetic mice. Diabetes. 1986;35(8):943–946. DOI: 10.2337/diab.35.8.943.
  38. Tanner P, Baumann P, Enea R, Onaca O, Palivan C, Meier W. Polymeric vesicles: from drug carriers to nanoreactors and artificial organelles. Accounts of Chemical Research. 2011;44(10):1039–1049. DOI: 10.1021/ar200036k.
  39. Martino C, Kim S-H, Horsfall L, Abbaspourrad A, Rosser SJ, Cooper J, et al. Protein expression, aggregation, and triggered release from polymersomes as artificial cell-like structures. Angewandte Chemie International Edition. 2012;51(26):6416–6420. DOI: 10.1002/anie.201201443.
  40. Tamate R, Ueki T, Yoshida R. Self-beating artificial cells: design of cross-linked polymersomes showing self-oscillating motion. Advanced Materials. 2015;27(5):837–842. DOI: 10.1002/adma.201404757.
  41. Palivan CG, Goers R, Najer A, Zhang X, Car A, Meier W. Bioinspired polymer vesicles and membranes for biological and medical applications. Chemical Society Reviews. 2016;45(2):377–411. DOI: 10.1039/c5cs00569h.
  42. Le Meins J-F, Schatz C, Lecommandoux S, Sandre O. Hybrid polymer/lipid vesicles: state of the art and future perspectives. Materials Today. 2013;16(10):397–402. DOI: 10.1016/j.mattod.2013.09.002. Erratum in: Materials Today. 2014;17(2):92–93. DOI: 10.1016/j.mattod.2014.01.003.
  43. Chemin M, Brun P-M, Lecommandoux S, Sandre O, Le Meins J-F. Hybrid polymer/lipid vesicles: fine control of the lipid and polymer distribution in the binary membrane. Soft Matter. 2012;8(10):2867–2874. DOI: 10.1039/c2sm07188f.
  44. Khan S, McCabe J, Hill K, Beales PA. Biodegradable hybrid block copolymer – lipid vesicles as potential drug delivery systems. Journal of Colloid and Interface Science. 2020;562:418–428. DOI: 10.1016/j.jcis.2019.11.101.
  45. Huang X, Li M, Green DC, Williams DS, Patil AJ, Mann S. Interfacial assembly of protein – polymer nano-conjugates into stimulus-responsive biomimetic protocells. Nature Communications. 2013;4:2239. DOI: 10.1038/ncomms3239.
  46. Li M, Green DC, Anderson JLR, Binks BP, Mann S. In vitro gene expression and enzyme catalysis in bio-inorganic protocells. Chemical Science. 2011;2(9):1739–1745. DOI: 10.1039/c1sc00183c.
  47. Dinsmore AD, Hsu MF, Nikolaides MG, Marquez M, Bausch AR, Weitz DA. Colloidosomes: selectively permeable capsules composed of colloidal particles. Science. 2002;298(5595):1006–1009. DOI: 10.1126/science.1074868.
  48. Binks BP, Murakami R. Phase inversion of particle-stabilized materials from foams to dry water. Nature Materials. 2006;5(11):865–869. DOI: 10.1038/nmat1757.
  49. Subramaniam AB, Wan J, Gopinath A, Stone HA. Semi-permeable vesicles composed of natural clay. Soft Matter. 2011;7(6):2600–2612. DOI: 10.1039/c0sm01354d.
  50. Wang C, Liu H, Gao Q, Liu X, Tong Z. Facile fabrication of hybrid colloidosomes with alginate gel cores and shells of porous CaCO 3 microparticles. ChemPhysChem. 2007;8(8):1157–1160. DOI: 10.1002/cphc.200700147.
  51. He Y, Wu F, Sun X, Li R, Guo Y, Li C, et al. Factors that affect Pickering emulsions stabilized by graphene oxide. ACS Applied Materials and Interfaces. 2013;5(11):4843–4855. DOI: 10.1021/am400582n.
  52. Bachinger A, Kickelbick G. Pickering emulsions stabilized by anatase nanoparticles. Monatshefte für Chemie – Chemical Monthly. 2010;141(6):685–690. DOI: 10.1007/s00706-010-0273-9.
  53. Zhou J, Wang L, Qiao X, Binks BP, Sun K. Pickering emulsions stabilized by surface-modified Fe3O4 nanoparticles. Journal of Colloid and Interface Science. 2012;367(1):213–224. DOI: 10.1016/j.jcis.2011.11.001.
  54. He J, Liu Y, Babu T, Wei Z, Nie Z. Self-assembly of inorganic nanoparticle vesicles and tubules driven by tethered linear block copolymers. Journal of the American Chemical Society. 2012;134(28):11342–11345. DOI: 10.1021/ja3032295.
  55. Fasciano S, Wang S. Recent advances of droplet-based microfluidics for engineering artificial cells. SLAS Technology. Forthcoming 2024. DOI: 10.1016/j.slast.2023.05.002.
  56. Huo C, Li M, Huang X, Yang H, Mann S. Membrane engineering of colloidosome microcompartments using partially hydrophobic mesoporous silica nanoparticles. Langmuir. 2014;30(50):15047–15052. DOI: 10.1021/la503958d.
  57. Tamate R, Ueki T, Yoshida R. Evolved colloidosomes undergoing cell-like autonomous shape oscillations with buckling. Angewandte Chemie International Edition. 2016;55(17):5179–5183. DOI: 10.1002/anie.201511871.
  58. Li M, Huang X, Mann S. Spontaneous growth and division in self-reproducing inorganic colloidosomes. Small. 2014;10(16):3291–3298. DOI: 10.1002/smll.201400639.
  59. Rodríguez-Arco L, Li M, Mann S. Phagocytosis-inspired behaviour in synthetic protocell communities of compartmentalized colloidal objects. Nature Materials. 2017;16(8):857–863. DOI: 10.1038/nmat4916.
  60. Liu J, Guo Z, Liang K. Biocatalytic metal-organic framework-based artificial cells. Advanced Functional Materials. 2019;29(45):1905321. DOI: 10.1002/adfm.201905321.
  61. Furukawa H, Ko N, Go YB, Aratani N, Choi SB, Choi E, et al. Ultrahigh porosity in metal-organic frameworks. Science. 2010;329(5990):424–428. DOI: 10.1126/science.1192160.
  62. Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM. The chemistry and applications of metal-organic frameworks. Science. 2013;341(6149):1230444. DOI: 10.1126/science.1230444.
  63. Zuo Q, Liu T, Chen C, Ji Y, Gong X, Mai Y, et al. Ultrathin metal – organic framework nanosheets with ultrahigh loading of single Pt atoms for efficient visible-light-driven photocatalytic H2 evolution. Angewandte Chemie International Edition. 2019;58(30):10198–10203. DOI: 10.1002/anie.201904058.
  64. Liu J, Xue J, Fu L, Xu J, Lord MS, Liang K. Genetically encoded synthetic beta cells for insulin biosynthesis and release under hyperglycemic conditions. Advanced Functional Materials. 2022;32(18):2111271. DOI: 10.1002/adfm.202111271.
  65. Liu Q, Bi C, Li J, Liu X, Peng R, Jin C, et al. Generating giant membrane vesicles from live cells with preserved cellular properties. Research. 2019;2019:6523970. DOI: 10.34133/2019/6523970.
  66. Brangwynne CP. Phase transitions and size scaling of membrane-less organelles. Journal of Cell Biology. 2013;203(6):875–881. DOI: 10.1083/jcb.201308087.
  67. Banani SF, Lee HO, Hyman AA, Rosen MK. Biomolecular condensates: organizers of cellular biochemistry. Nature Reviews. Molecular Cell Biology. 2017;18(5):285–298. DOI: 10.1038/nrm.2017.7.
  68. Xu C, Martin N, Li M, Mann S. Living material assembly of bacteriogenic protocells. Nature. 2022;609(7929):1029–1037. DOI: 10.1038/s41586-022-05223-w.
  69. Yewdall NA. Life brought to artificial cells. Nature. 2022;609(7929):900–901. DOI: 10.1038/d41586-022-02231-8.
  70. Hindley JW, Elani Y, McGilvery CM, Ali S, Bevan CL, Law RV, et al. Light-triggered enzymatic reactions in nested vesicle reactors. Nature Communications. 2018;9:1093. DOI: 10.1038/s41467-018-03491-7.
  71. Einfalt T, Witzigmann D, Edlinger C, Sieber S, Goers R, Najer A, et al. Biomimetic artificial organelles with in vitro and in vivo activity triggered by reduction in microenvironment. Nature Communications. 2018;9:1127. DOI: 10.1038/s41467-018-03560-x.
  72. van Roekel HWH, Rosier BJHM, Meijer LHH, Hilbers PAJ, Markvoort AJ, Huck WTS, et al. Programmable chemical reaction networks: emulating regulatory functions in living cells using a bottom-up approach. Chemical Society Reviews. 2015;44(21):7465–7483. DOI: 10.1039/C5CS00361J.
  73. Küchler A, Yoshimoto M, Luginbühl S, Mavelli F, Walde P. Enzymatic reactions in confined environments. Nature Nanotechnology. 2016;11(5):409–420. DOI: 10.1038/nnano.2016.54.
  74. Yoshimoto M. Stabilization of enzymes through encapsulation in liposomes. In: Minteer SD, editor. Enzyme stabilization and immobilization: methods and protocols. New York: Humana Press; 2011. p. 9–18 (Walker JM, editor. Methods in molecular biology; volume 679). DOI: 10.1007/978-1-60761-895-9_2.
  75. Peng R, Xu L, Wang H, Lyu Y, Wang D, Bi C, et al. DNA-based artificial molecular signaling system that mimics basic elements of reception and response. Nature Communications. 2020;11:978. DOI: 10.1038/s41467-020-14739-6.
  76. Nourian Z, Roelofsen W, Danelon C. Triggered gene expression in fed-vesicle microreactors with a multifunctional membrane. Angewandte Chemie International Edition. 2012;51(13):3114–3118. DOI: 10.1002/anie.201107123.
  77. Fischer A, Franco A, Oberholzer T. Giant vesicles as microreactors for enzymatic mRNA synthesis. ChemBioChem. 2002;3(5):409–417. DOI: 10.1002/1439-7633(20020503)3:5<409::AID-CBIC409>3.0.CO;2-P.
  78. Kurihara K, Tamura M, Shohda K, Toyota T, Suzuki K, Sugawara T. Self-reproduction of supramolecular giant vesicles combined with the amplification of encapsulated DNA. Nature Chemistry. 2011;3(10):775–781. DOI: 10.1038/nchem.1127.
  79. van Nies P, Westerlaken I, Blanken D, Salas M, Mencía M, Danelon C. Self-replication of DNA by its encoded proteins in liposome-based synthetic cells. Nature Communications. 2018;9:1583. DOI: 10.1038/s41467-018-03926-1.
  80. Berhanu S, Ueda T, Kuruma Y. Artificial photosynthetic cell producing energy for protein synthesis. Nature Communications. 2019;10:1325. DOI: 10.1038/s41467-019-09147-4.
  81. Albanese P, Mavelli F, Altamura E. Light energy transduction in liposome-based artificial cells. Frontiers in Bioengineering and Biotechnology. 2023;11:1161730. DOI: 10.3389/fbioe.2023.1161730.
  82. Robson Marsden H, Elbers NA, Bomans PHH, Sommerdijk NAJM, Kros A. A reduced SNARE model for membrane fusion. Angewandte Chemie International Edition. 2009;48(13):2330–2333. DOI: 10.1002/anie.200804493.
  83. Chan YM, van Lengerich B, Boxer SG. Effects of linker sequences on vesicle fusion mediated by lipid-anchored DNA oligonucleotides. PNAS. 2009;106(4):979–984. DOI: 10.1073/pnas.0812356106.
  84. Li-Beisson Y, Neunzig J, Lee Y, Philippar K. Plant membrane-protein mediated intracellular traffic of fatty acids and acyl lipids. Current Opinion in Plant Biology. 2017;40:138–146. DOI: 10.1016/j.pbi.2017.09.006.
  85. Buzon V, Natrajan G, Schibli D, Campelo F, Kozlov MM, Weissenhorn W. Crystal structure of HIV-1 gp41 including both fusion peptide and membrane proximal external regions. PLoS Pathogens. 2010;6(5):e1000880. DOI: 10.1371/journal.ppat.1000880.
  86. Harrison SC. Viral membrane fusion. Nature Structural and Molecular Biology. 2008;15(7):690–698. DOI: 10.1038/nsmb.1456.
  87. Di Iorio D, Lu Y, Meulman J, Huskens J. Recruitment of receptors at supported lipid bilayers promoted by the multivalent binding of ligand-modified unilamellar vesicles. Chemical Science. 2020;11(12):3307–3315. DOI: 10.1039/d0sc00518e.
  88. Lu Y, Huskens J, Pang W, Duan X. Hypersonic poration of supported lipid bilayers. Materials Chemistry Frontiers. 2019;3(5):782–790. DOI: 10.1039/c8qm00589c.
  89. Xu Z, Hueckel T, Irvine WTM, Sacanna S. Transmembrane transport in inorganic colloidal cell-mimics. Nature. 2021;597(7875):220–224. DOI: 10.1038/s41586-021-03774-y.
  90. Liu S, Zhang Y, Li M, Xiong L, Zhang Z, Yang X, et al. Enzyme-mediated nitric oxide production in vasoactive erythrocyte membrane-enclosed coacervate protocells. Nature Chemistry. 2020;12(12):1165–1173. DOI: 10.1038/s41557-020-00585-y.
  91. Sun S, Li M, Dong F, Wang S, Tian L, Mann S. Chemical signaling and functional activation in colloidosome-based protocells. Small. 2016;12(14):1920–1927. DOI: 10.1002/smll.201600243.
  92. Bolognesi G, Friddin MS, Salehi-Reyhani A, Barlow NE, Brooks NJ, Ces O, et al. Sculpting and fusing biomimetic vesicle networks using optical tweezers. Nature Communications. 2018;9:1882. DOI: 10.1038/s41467-018-04282-w.
  93. Yang Q, Guo Z, Liu H, Peng R, Xu L, Bi C, et al. A cascade signaling network between artificial cells switching activity of synthetic transmembrane channels. Journal of the American Chemical Society. 2021;143(1):232–240. DOI: 10.1021/jacs.0c09558.
  94. Søgaard AB, Pedersen AB, Løvschall KB, Monge P, Jakobsen JH, Džabbarova L, et al. Transmembrane signaling by a synthetic receptor in artificial cells. Nature Communications. 2023;14:1646. DOI: 10.1038/s41467-023-37393-0.
  95. Stano P. A four-track perspective for bottom-up synthetic cells. Frontiers in Bioengineering and Biotechnology. 2022;10:1029446. DOI: 10.3389/fbioe.2022.1029446.
  96. Diltemiz SE, Ertas YN, Contag CH, Ashammakhi N. Drug delivery by artificial cells. The Journal of Craniofacial Surgery. 2023;34(1):9–10. DOI: 10.1097/scs.0000000000008897.
  97. Gregoriadis G, editor. Drug carriers in biology and medicine. London: Academic Press; 1979. XVIII, 363 p.
  98. Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nature Reviews. Drug Discovery. 2005;4(2):145–160. DOI: 10.1038/nrd1632.
  99. Chang TMS. Biodegradable semipermeable microcapsules containing enzymes, hormones, vaccines, and other biologicals. Journal of Bioengineering. 1976;1(1):25–32. PMID: 1052520.
  100. McDaid WJ, Lissin N, Pollheimer E, Greene M, Leach A, Smyth P, et al. Enhanced target-specific delivery of docetaxel-loaded nanoparticles using engineered T cell receptors. Nanoscale. 2021;13(35):15010–15020. DOI: 10.1039/d1nr04001d.
  101. Chang TMS. Semipermeable aqueous microcapsules («artificial cells»): with emphasis on experiments in an extracorporeal shunt system. Transactions – American Society for Artificial Internal Organs. 1966;12:13–19.
  102. Fathi Karkan S, Mohammadhosseini M, Panahi Y, Milani M, Zarghami N, Akbarzadeh A, et al. Magnetic nanoparticles in cancer diagnosis and treatment: a review. Artificial Cells, Nanomedicine, and Biotechnology. 2017;45(1):1–5. DOI: 10.3109/21691401.2016.1153483.
  103. Lv Q, Cheng L, Lu Y, Zhang X, Wang Y, Deng J, et al. Thermosensitive exosome – liposome hybrid nanoparticle-mediated chemoimmunotherapy for improved treatment of metastatic peritoneal cancer. Advanced Science. 2020;7(18):2000515. DOI: 10.1002/advs.202000515.
  104. Qiao B, Luo Y, Cheng H-B, Ren J, Cao J, Yang C, et al. Artificial nanotargeted cells with stable photothermal performance for multimodal imaging-guided tumor-specific therapy. ACS Nano. 2020;14(10):12652–12667. DOI: 10.1021/acsnano.0c00771.
  105. Chang TMS. Red blood cell replacement, or nanobiotherapeutics with enhanced red blood cell functions? Artificial Cells, Nanomedicine, and Biotechnology. 2015;43(3):145–147. DOI: 10.3109/21691401.2015.1047557.
  106. Winslow RM, editor. Blood substitutes. Amsterdam: Academic Press; 2006. XX, 548 p. DOI: 10.1016/b978-0-12-759760-7.x5000-8.
  107. Moore EE, Moore FA, Fabian TC, Bernard AC, Fulda GJ, Hoyt DB, et al. Human polymerized hemoglobin for the treatment of hemorrhagic shock when blood is unavailable: the USA multicenter trial. Journal of the American College of Surgeons. 2009;208(1):1–13. DOI: 10.1016/j.jamcollsurg.2008.09.023.
  108. Wang L, Liu F, Yan K, Pan W, Xu L, Liu H, et al. Effects of resuscitation with polymerized porcine hemoglobin (pPolyHb) on hemodynamic stability and oxygen delivery in a rat model of hemorrhagic shock. Artificial Cells, Nanomedicine, and Biotechnology. 2017;45(1):51–57. DOI: 10.1080/21691401.2016.1185728.
  109. Li Y, Yan D, Hao S, Li S, Zhou W, Wang H, et al. Polymerized human placenta hemoglobin improves resuscitative efficacy of hydroxyethyl starch in a rat model of hemorrhagic shock. Artificial Cells, Nanomedicine, and Biotechnology. 2015;43(3):174–179. DOI: 10.3109/21691401.2015.1024846.
  110. Kim HW, Greenburg AG, editors. Hemoglobin-based oxygen carriers as red cell substitutes and oxygen therapeutics. Heidelberg: Springer; 2013. XXIII, 746 p. DOI: 10.1007/978-3-642-40717-8.
  111. Mer M, Hodgson E, Wallis L, Jacobson B, Levien L, Snyman J, et al. Hemoglobin glutamer-250 (bovine) in South Africa: consensus usage guidelines from clinician experts who have treated patients. Transfusion. 2016;56(10):2631–2636. DOI: 10.1111/trf.13726.
  112. Chang TMS, Bülow L, Jahr J, Sakai H, Yang C, editors. Nanobiotherapeutic based blood substitutes. Singapore: World Scientific; 2022. XXXI, 1010 p. (Chang TMS, editor. Regenerative medicine, artificial cells and nanomedicine; volume 6). DOI: 10.1142/12054.
  113. Bian Y, Chang TMS. Nanobiotechnological basis of an oxygen carrier with enhanced carbonic anhydrase for CO2 transport and enhanced catalase and superoxide dismutase for antioxidant function. Frontiers in Bioengineering and Biotechnology. 2023;11:1188399. DOI: 10.3389/fbioe.2023.1188399.
  114. Chang TMS. Stabilisation of enzymes by microencapsulation with a concentrated protein solution or by microencapsulation followed by cross-linking with glutaraldehyde. Biochemical and Biophysical Research Communications. 1971;44(6):1531–1536. DOI: 10.1016/s0006-291x(71)80260-7.
  115. Muller CR, Williams AT, Walser C, Eaker AM, Sandoval JL, Cuddington CT, et al. Safety and efficacy of human polymerized hemoglobin on guinea pig resuscitation from hemorrhagic shock. Scientific Reports. 2022;12:20480. DOI: 10.1038/s41598-022-23926-y.
  116. Muller CR, Williams AT, Munoz CJ, Eaker AM, Breton AN, Palmer AF, et al. Safety profile of high molecular weight polymerized hemoglobins. Transfusion. 2021;61(1):212–224. DOI: 10.1111/trf.16157.
  117. Bian Y, Chang TMS. A novel nanobiotherapeutic poly-[hemoglobin – superoxide dismutase – catalase – carbonic anhydrase] with no cardiac toxicity for the resuscitation of a rat model with 90 minutes of sustained severe hemorrhagic shock with loss of 2/3 blood volume. Artificial Cells, Nanomedicine, and Biotechnology. 2015;43(1):1–9. DOI: 10.3109/21691401.2014.964554.
  118. Guo C, Gynn M, Chang TMS. Extraction of superoxide dismutase, catalase, and carbonic anhydrase from stroma-free red blood cell hemolysate for the preparation of the nanobiotechnological complex of polyhemoglobin – superoxide dismutase – catalase – carbonic anhydrase. Artificial Cells, Nanomedicine, and Biotechnology. 2015;43(3):157–162. DOI: 10.3109/21691401.2015.1035479.
  119. Guo C, Chang TMS. Long term safety and immunological effects of a nanobiotherapeutic, bovine poly-[hemoglobin – catalase – superoxide dismutase – carbonic anhydrase], after four weekly 5 % blood volume top-loading followed by a challenge of 30 % exchange transfusion. Artificial Cells, Nanomedicine, and Biotechnology. 2018;46(7):1349–1363. DOI: 10.1080/21691401.2018.1476375.
  120. Bian YZ, Guo C, Chang TMS. Temperature stability of poly-[hemoglobin – superoxide dismutase – catalase – carbonic anhydrase] in the form of a solution or in the lyophilized form during storage at –80 °C, 4 °C, 25 °C and 37 °C or pasteurization at 70 °C. Artificial Cells, Nanomedicine, and Biotechnology. 2016;44(1):41–47. DOI: 10.3109/21691401.2015.1110871.
  121. Hu CMJ, Fang RH, Wang K-C, Luk BT, Thamphiwatana S, Dehaini D, et al. Nanoparticle biointerfacing by platelet membrane cloaking. Nature. 2015;526(7571):118–121. DOI: 10.1038/nature15373.
  122. Anselmo AC, Modery-Pawlowski CL, Menegatti S, Kumar S, Vogus DR, Tian LL, et al. Platelet-like nanoparticles: mimicking shape, flexibility, and surface biology of platelets to target vascular injuries. ACS Nano. 2014;8(11):11243–11253. DOI: 10.1021/nn503732m.
  123. Lashof-Sullivan MM, Shoffstall E, Atkins KT, Keane N, Bir C, VandeVord P, et al. Intravenously administered nanoparticles increase survival following blast trauma. PNAS. 2014;111(28):10293–10298. DOI: 10.1073/pnas.1406979111.
  124. Zhang C, Zhang L, Wu W, Gao F, Li R-Q, Song W, et al. Artificial super neutrophils for inflammation targeting and HclO generation against tumors and infections. Advanced Materials. 2019;31(19):1901179. DOI: 10.1002/adma.201901179.
  125. Ma Y, Yang H, Zong X, Wu J, Ji X, Liu W, et al. Artificial M2 macrophages for disease-modifying osteoarthritis therapeutics. Biomaterials. 2021;274:120865. DOI: 10.1016/j.biomaterials.2021.120865.
  126. Chang TMS. Therapeutic applications of polymeric artificial cells. Nature Reviews. Drug Discovery. 2005;4(3):221–235. DOI: 10.1038/nrd1659.
  127. Chang TMS, Poznansky MJ. Semipermeable microcapsules containing catalase for enzyme replacement in acatalasaemic mice. Nature. 1968;218(5138):243–245. DOI: 10.1038/218243a0.
  128. Chang TMS. The in vivo effects of semipermeable microcapsules containing L-asparaginase on 6C3HED lymphosarcoma. Nature. 1971;229(5280):117–118. DOI: 10.1038/229117a0.
  129. Poznansky MJ, Chang TMS. Comparison of the enzyme kinetics and immunological properties of catalase immobilized by microencapsulation and catalase in free solution for enzyme replacement. Biochimica et Biophysica Acta – Enzymology. 1974;334(1):103–115. DOI: 10.1016/0005-2744(74)90154-5.
  130. Wetzler M, Sanford BL, Kurtzberg J, DeOliveira D, Frankel SR, Powell BL, et al. Effective asparagine depletion with pegylated asparaginase results in improved outcomes in adult acute lymphoblastic leukemia: cancer and leukemia group B study 9511. Blood. 2007;109(10):4164–4167. DOI: 10.1182/blood-2006-09-045351.
  131. Kaminsky YuG, Kosenko EA. Argocytes containing enzyme nanoparticles reduce toxic concentrations of arginine in the blood. Bulletin of Experimental Biology and Medicine. 2012;153(3):406–408. DOI: 10.1007/s10517-012-1727-3.
  132. Wang Y, Chang TMS. Biodegradable nanocapsules containing a nanobiotechnological complex for the in vitro suppression of a melanoma cell line B16F10. Journal of Nanosciences: Current Research. 2016;1(1):1000102. DOI: 10.4172/2572-0813.1000102.
  133. Machover D, Rossi L, Hamelin J, Desterke C, Goldschmidt E, Chadefaux-Vekemans B, et al. Effects in cancer cells of the recombinant L-methionine gamma-lyase from Brevibacterium aurantiacum. Encapsulation in human erythrocytes for sustained L-methionine elimination. The Journal of Pharmacology and Experimental Therapeutics. 2019;369(3):489–502. DOI: 10.1124/jpet.119.256537.
  134. Kjellstrand C, Borges H, Pru C, Gardner D, Fink D. On the clinical use of microencapsulated zirconium phosphate-urease for the treatment of chronic uremia. Transactions – American Society for Artificial Internal Organs. 1981;27:24–30.
  135. Palmour RM, Goodyer P, Reade T, Chang TMS. Microencapsulated xanthine oxidase as experimental therapy in Lesch – Nyhan disease. The Lancet. 1989;334(8664):687–688. DOI: 10.1016/s0140-6736(89)90939-2.
  136. Bourget L, Chang TMS. Phenylalanine ammonia-lyase immobilized in microcapsules for the depletion of phenylalanine in plasma in phenylketonuric rat model. Biochimica et Biophysica Acta – General Subjects. 1986;883(3):432–438. DOI: 10.1016/0304-4165(86)90281-3.
  137. Sarkissian CN, Kang TS, Gámez A, Scriver CR, Stevens RC. Evaluation of orally administered PEGylated phenylalanine ammonia lyase in mice for the treatment of phenylketonuria. Molecular Genetics and Metabolism. 2011;104(3):249–254. DOI: 10.1016/j.ymgme.2011.06.016.
  138. Abu Abed OS, Chaw C, Williams L, Elkordy AA. Lysozyme and DNase I loaded poly(D, L-lactide-co-caprolactone) nanocapsules as an oral delivery system. Scientific Reports. 2018;8:13158. DOI: 10.1038/s41598-018-31303-x.
  139. Rossi L, Pierigè F, Aliano MP, Magnani M. Ongoing developments and clinical progress in drug-loaded red blood cell technologies. BioDrugs. 2020;34(3):265–272. DOI: 10.1007/s40259-020-00415-0.
  140. Rossi L, Pierigè F, Bregalda A, Magnani M. Preclinical developments of enzyme-loaded red blood cells. Expert Opinion on Drug Delivery. 2021;18(1):43–54. DOI: 10.1080/17425247.2020.1822320.
  141. de la Fuente M, Lombardero L, Gómez-González A, Solari C, Angulo-Barturen I, Acera A, et al. Enzyme therapy: current challenges and future perspectives. International Journal of Molecular Sciences. 2021;22(17):9181. DOI: 10.3390/ijms22179181.
  142. Sato YT, Umezaki K, Sawada S, Mukai S, Sasaki Y, Harada N, et al. Engineering hybrid exosomes by membrane fusion with liposomes. Scientific Reports. 2016;6:21933. DOI: 10.1038/srep21933.
  143. Gee P, Lung MSY, Okuzaki Y, Sasakawa N, Iguchi T, Makita Y, et al. Extracellular nanovesicles for packaging of CRISPR-Cas9 protein and sgRNA to induce therapeutic exon skipping. Nature Communications. 2020;11:1334. DOI: 10.1038/s41467-020-14957-y.
  144. Zhao X, Tang D, Wu Y, Chen S, Wang C. An artificial cell system for biocompatible gene delivery in cancer therapy. Nanoscale. 2020;12(18):10189–10195. DOI: 10.1039/c9nr09131a.
  145. Wong H, Chang TMS. Bioartificial liver: implanted artificial cells microencapsulated living hepatocytes increases survival of liver failure rats. The International Journal of Artificial Organs. 1986;9(5):335–336. DOI: 10.1177/039139888600900515.
  146. Hunkeler D, Rajotte R, Grey D, Morel P, Skjak-Break G, Korbutt G, et al. Bioartificial organ grafts: a view at the beginning of the third millennium. Artificial Cells, Blood Substitutes, and Biotechnology. 2003;31(4):365–382. DOI: 10.1081/bio-120025408.
  147. Rokstad AM, Lacík I, de Vos P, Strand BL. Advances in biocompatibility and physico-chemical characterization of microspheres for cell encapsulation. Advanced Drug Delivery Reviews. 2014;67–68:111–130. DOI: 10.1016/j.addr.2013.07.010.
  148. Chang TMS, editor. Selected topics in nanomedicine. Singapore: World Scientific; 2014. VIII, 590 p. (Chang TMS, editor. Regenerative medicine, artificial cells and nanomedicine; volume 3). DOI: 10.1142/8776.
  149. Prakash S, Chang TMS. Microencapsulated genetically engineered live E. coli DH5 cells administered orally to maintain normal plasma urea level in uremic rats. Nature Medicine. 1996;2(8):883–887. DOI: 10.1038/nm0896-883.
  150. Iqbal UH, Westfall S, Prakash S. Novel microencapsulated probiotic blend for use in metabolic syndrome: design and in vivo analysis. Artificial Cells, Nanomedicine, and Biotechnology. 2018;46(supplement 3):116–124. DOI: 10.1080/21691401.2018.1489270.
  151. Liu ZC, Chang TMS. Artificial cell microencapsulated stem cells in regenerative medicine, tissue engineering and cell therapy. In: Pedraz JL, Orive G, editors. Therapeutic applications of cell microencapsulation. New York: Springer Science + Business Media; 2010. p. 68–79 (Back N, Cohen IR, Lajtha A, Lambris JD, Paoletti R, editors. Advances in experimental medicine and biology; volume 670). Co-published by the Landes Bioscience. DOI: 10.1007/978-1-4419-5786-3_7.
  152. Grant R, Hay D, Callanan A. From scaffold to structure: the synthetic production of cell derived extracellular matrix for liver tissue engineering. Biomedical Physics and Engineering Express. 2018;4(6):065015. DOI: 10.1088/2057-1976/aacbe1.
  153. Tsai RK, Rodriguez PL, Discher DE. Self inhibition of phagocytosis: the affinity of «marker of self» CD47 for SIRPα dictates potency of inhibition but only at low expression levels. Blood Cells, Molecules, and Diseases. 2010;45(1):67–74. DOI: 10.1016/j.bcmd.2010.02.016.
  154. Rodriguez PL, Harada T, Christian DA, Pantano DA, Tsai RK, Discher DE. Minimal «self» peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles. Science. 2013;339(6122):971–975. DOI: 10.1126/science.1229568.
  155. Zhang M, Gao S, Yang D, Fang Y, Lin X, Jin X, et al. Influencing factors and strategies of enhancing nanoparticles into tumors in vivo. Acta Pharmaceutica Sinica B. 2021;11(8):2265–2285. DOI: 10.1016/j.apsb.2021.03.033.
  156. Le Q-V, Lee J, Byun J, Shim G, Oh Y-K. DNA-based artificial dendritic cells for in situ cytotoxic T cell stimulation and immunotherapy. Bioactive Materials. 2022;15:160–172. DOI: 10.1016/j.bioactmat.2021.12.001.
  157. Sunshine JC, Perica K, Schneck JP, Green JJ. Particle shape dependence of CD8+ T cell activation by artificial antigen presenting cells. Biomaterials. 2014;35(1):269–277. DOI: 10.1016/j.biomaterials.2013.09.050.
  158. Song S, Jin X, Zhang L, Zhao C, Ding Y, Ang Q, et al. PEGylated and CD47-conjugated nanoellipsoidal artificial antigen-presenting cells minimize phagocytosis and augment anti-tumor T cell responses. International Journal of Nanomedicine. 2019;14:2465–2483. DOI: 10.2147/ijn.s195828.
  159. Yang W, Deng H, Zhu S, Lau J, Tian R, Wang S, et al. Size-transformable antigen-presenting cell-mimicking nanovesicles potentiate effective cancer immunotherapy. Science Advances. 2020;6(50):eabd1631. DOI: 10.1126/sciadv.abd1631.
  160. Sun Y, Sun J, Xiao M, Lai W, Li L, Fan C, et al. DNA origami-based artificial antigen-presenting cells for adoptive T cell therapy. Science Advances. 2022;8(48):eadd1106. DOI: 10.1126/sciadv.add1106.
  161. Dutt Y, Pandey RP, Dutt M, Gupta A, Vibhuti A, Vidic J, et al. Therapeutic applications of nanobiotechnology. Journal of Nanobiotechnology. 2023;21:148. DOI: 10.1186/s12951-023-01909-z.
  162. Bedau MA, McCaskill JS, Packard NH, Rasmussen S. Living technology: exploiting life’s principles in technology. Artificial Life. 2010;16(1):89–97. DOI: 10.1162/artl.2009.16.1.16103.
  163. Chang TMS. Artificial cell evolves into nanomedicine, biotherapeutics, blood substitutes, drug delivery, enzyme/gene therapy, cancer therapy, cell / stem cell therapy, nanoparticles, liposomes, bioencapsulation, replicating synthetic cells, cell encapsulation/scaffold, biosorbent/immunosorbent haemoperfusion/plasmapheresis, regenerative medicine, encapsulated microbe, nanobiotechnology, nanotechnology. Artificial Cells, Nanomedicine, and Biotechnology. 2019;47(1):997–1013. DOI: 10.1080/21691401.2019.1577885.
Published
2024-02-20
Keywords: artificial cell, biotechnology, synthetic biology, cell membranes, natural cells mimicking
How to Cite
Gapeeva, T. A. (2024). Artificial cells as biotechnological devices that mimic the parameters of natural cells. Experimental Biology and Biotechnology, 1, 4-18. Retrieved from https://journals.bsu.by/index.php/biology/article/view/6032