9-цис-Эпоксикаротиноиддиоксигеназа как переключатель связанных с иммунитетом сигнальных путей растений Solanum lycopersicum

  • Елизавета Сергеевна Степанова Белорусский государственный университет, пр. Независимости, 4, 220030, г. Минск, Беларусь
  • Глафира Васильевна Кукреш Белорусский государственный университет, пр. Независимости, 4, 220030, г. Минск, Беларусь
  • Евгений Артурович Николайчик Белорусский государственный университет, пр. Независимости, 4, 220030, г. Минск, Беларусь
  • Анастасия Вячеславовна Колубако Белорусский государственный университет, пр. Независимости, 4, 220030, г. Минск, Беларусь

Аннотация

Установлено, что снижение экспрессии гена NCED3 вызывает уменьшение размеров растений Solanum lycopersicum и повышает их восприимчивость к заражению патогеном Pectobacterium versatile. Выявлено изменение экспрессии генов салицилатной сигнализации: возросла экспрессия генов сигнального белка NPR5 и защитного белка PR1a. Также отмечено, что повысилась экспрессия генов защитных белков PR3, PR5, PR10 и транскрипционного фактора WRKY65, а экспрессия гена защитного белка PR2 стала чувствительной к штамму патогена. На основании полученных результатов высказано предположение о том, что ген NCED3 обеспечивает устойчивость растений томата к пектобактериозу, сдерживая салицилатный сигнальный путь, приводящий к активации реакции сверхчувствительности.

Биографии авторов

Елизавета Сергеевна Степанова, Белорусский государственный университет, пр. Независимости, 4, 220030, г. Минск, Беларусь

студентка биологического факультета. Научный руководитель – А. В. Колубако

Глафира Васильевна Кукреш, Белорусский государственный университет, пр. Независимости, 4, 220030, г. Минск, Беларусь

студентка биологического факультета. Научный руководитель – А. В. Колубако

Евгений Артурович Николайчик, Белорусский государственный университет, пр. Независимости, 4, 220030, г. Минск, Беларусь

кандидат биологических наук, доцент; заведующий кафедрой молекулярной биологии биологического факультета

Анастасия Вячеславовна Колубако, Белорусский государственный университет, пр. Независимости, 4, 220030, г. Минск, Беларусь

заведующий научно-исследовательской лабораторией трансгенных растений кафедры молекулярной биологии биологического факультета

Литература

  1. Charkowski A, Blanco C, Condemine G, Expert D, Franza T, Hayes C, et al. The role of secretion systems and small molecules in soft-rot Enterobacteriaceae pathogenicity. Annual Review of Phytopathology. 2012;50:425–449. DOI: 10.1146/annurev-phyto-081211-173013.
  2. Badalyan OA, Nikolaichik YA. Receptor-like kinases RLK2 and RLK5 of Nicotiana benthamiana are involved in regulation of gene expression of key plant immune system components during the contact with Pectobacterium carotovorum. Proceedings of the National Academy of Sciences of Belarus. Biological Series. 2014;4:75–80. Russian. EDN: TRPIQT.
  3. Marković S, Milić Komić S, Jelušić A, Iličić R, Bagi F, Stanković S, et al. First report of Pectobacterium versatile causing blackleg of potato in Serbia. Plant Disease. 2022;106(1):312. DOI: 10.1094/PDIS-06-21-1128-PDN.
  4. Voronina MV, Lukianova AA, Shneider MM, Korzhenkov AA, Toschakov SV, Miroshnikov KA, et al. First report of Pectobacterium polaris causing soft rot and black leg of potato in Russia. Plant Disease. 2021;105(6):1851. DOI: 10.1094/PDIS-09-20-1864-PDN.
  5. Bharath P, Gahir S, Raghavendra AS. Abscisic acid-induced stomatal closure: an important component of plant defense against abiotic and biotic stress. Frontiers in Plant Science. 2021;12:615114. DOI: 10.3389/fpls.2021.615114.
  6. Toum L, Torres PS, Gallego SM, Benavídes MP, Vojnov AA, Gudesblat GE. Coronatine inhibits stomatal closure through guard cell-specific inhibition of NADPH oxidase-dependent ROS production. Frontiers in Plant Science. 2016;7:1851. DOI: 10.3389/fpls. 2016.01851.
  7. De Vleesschauwer D, Yang Y, Cruz CV, Höfte M. Abscisic acid-induced resistance against the brown spot pathogen Cochliobolus miyabeanus in rice involves MAP kinase-mediated repression of ethylene signaling. Plant Physiology. 2010;152(4):2036–2052. DOI: 10.1104/pp.109.152702.
  8. Yazawa K, Jiang C-J, Kojima M, Sakakibara H, Takatsuji H. Reduction of abscisic acid levels or inhibition of abscisic acid signaling in rice during the early phase of Magnaporthe oryzae infection decreases its susceptibility to the fungus. Physiological and Molecular Plant Pathology. 2012;78:1–7. DOI: 10.1016/j.pmpp.2011.12.003.
  9. Jensen MK, Hagedorn PH, de Torres-Zabala M, Grant MR, Rung JH, Collinge DB, et al. Transcriptional regulation by an NAC (NAM-ATAF1,2-CUC2) transcription factor attenuates ABA signalling for efficient basal defence towards Blumeria graminis f. sp. hordei in Arabidopsis. Plant Journal. 2008;56(6):867–880. DOI: 10.1111/j.1365-313X.2008.03646.x.
  10. L’Haridon F, Besson-Bard A, Binda M, Serrano M, Abou-Mansour E, Balet F, et al. A permeable cuticle is associated with the release of reactive oxygen species and induction of innate immunity. PLOS Pathogens. 2011;7(7):e1002148. DOI: 10.1371/journal. ppat.1002148.
  11. Asselbergh B, de Vleesschauwer D, Höfte M. Global switches and fine-tuning – ABA modulates plant pathogen defense. MPMI. 2008;21(6):709–719. DOI: 10.1094/MPMI-21-6-0709.
  12. Denancé N, Sanchez-Vallet A, Goffner D, Molina A. Disease resistance or growth: the role of plant hormones in balancing immune responses and fitness costs. Frontiers in Plant Science. 2013;4:155. DOI: 10.3389/fpls.2013.00155.
  13. Qin X, Zeevaart JAD. The 9-cis-epoxycarotenoid cleavage reaction is the key regulatory step of abscisic acid biosynthesis in water-stressed bean. PNAS. 1999;96(26):15354–15361. DOI: 10.1073/pnas.96.26.15354.
  14. Xiong L, Zhu J-K. Regulation of abscisic acid biosynthesis. Plant Physiology. 2003;133(1):29–36. DOI: 10.1104/pp.103.025395.
  15. González-Guzmán M, Apostolova N, Bellés JM, Barrero JM, Piqueras P, Ponce MR, et al. The short-chain alcohol dehydrogenase ABA2 catalyzes the conversion of xanthoxin to abscisic aldehyde. Plant Cell. 2002;14(8):1833–1846. DOI: 10.1105/tpc.002477.
  16. Seo M, Peeters AJM, Koiwai H, Oritani T, Marion-Poll A, Zeevaart JAD, et al. The Arabidopsis aldehyde oxidase 3 (AAO3) gene product catalyzes the final step in abscisic acid biosynthesis in leaves. PNAS. 2000;97(23):12908–12913. DOI: 10.1073/pnas. 220426197.
  17. Okamoto M, Kuwahara A, Seo M, Kushiro T, Asami T, Hirai N, et al. CYP707A1 and CYP707A2, which encode abscisic acid 8′-hydroxylases, are indispensable for proper control of seed dormancy and germination in Arabidopsis. Plant Physiology. 2006;141(1): 97–107. DOI: 10.1104/pp.106.079475.
  18. Milborrow BV, Carrington NJ, Vaughan GT. The cyclization of 8′-hydroxy abscisic acid to phaseic acid in vivo. Phytochemistry. 1988;27(3):757–759. DOI: 10.1016/0031-9422(88)84088-3.
  19. Sharkey TD, Raschke K. Effects of phaseic acid and dihydrophaseic acid on stomata and the photosynthetic apparatus. Plant Physiology. 1980;65(2):291–297. DOI: 10.1104/pp.65.2.291.
  20. Thompson AJ, Jackson AC, Symonds RC, Mulholland BJ, Dadswell AR, Blake PS, et al. Ectopic expression of a tomato 9-cis-epoxycarotenoid dioxygenase gene causes over-production of abscisic acid. Plant Journal. 2000;23(3):363–374. DOI: 10.1111/ j.1365-3040.2006.01606.x.
  21. Nikolaichik EA, Ovchinnikova TV, Valentovich LN. Translocation of the DspE protein by phytopathogenic bacteria Erwinia carotovora subsp. atroseptica into Nicotiana tabacum cells and its requirement for inducing a hypersensitivity reaction. Doklady of the National Academy of Sciences of Belarus. 2005;49(5):81–85. Russian.
  22. Liu Y, Schiff M, Dinesh-Kumar SP. Virus-induced gene silencing in tomato. Plant Journal. 2002;31(6):777–786. DOI: 10.1046/ j.1365-313x.2002.01394.x.
  23. Eric Carpenter. RNA isolation from plant tissue. Protocol 15: hot acid phenol method for algae. Protocols.io [Internet]. 2019 June 27 [cited 2024 March 21]. DOI: 10.17504/protocols.io.4u3gwyn.
  24. Thompson AJ, Mulholland BJ, Jackson AC, Mckee JMT, Hilton HW, Symonds RC, et al. Regulation and manipulation of ABA biosynthesis in roots. Plant, Cell and Environment. 2007;30(1):67–78. DOI: 10.1111/j.1365-3040.2006.01606.x.
  25. Akbudak MA, Yildiz S, Filiz E. Pathogenesis related protein-1 (PR-1) genes in tomato (Solanum lycopersicum L.): bioinformatics analyses and expression profiles in response to drought stress. Genomics. 2020;112(6):4089–4099. DOI: 10.1016/j.ygeno.2020. 07.004.
  26. Zhan Y, Nikolaichik YA. The dependence of immune response of Solanum lycopersicum plants on the number of cells Pectobacterium carotovorum. Proceedings of the National Academy of Sciences of Belarus. Biological Series. 2012;3:44–48. Russian. EDN: XQTEWZ.
  27. Iuchi S, Kobayashi M, Taji T, Naramoto M, Seki M, Kato T, et al. Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant Journal. 2001;27(4):325–333. DOI: 10.1046/j.1365-313x.2001.01096.x.
  28. Alazem M, Lin K-Y, Lin N-S. The abscisic acid pathway has multifaceted effects on the accumulation of Bamboo mosaic virus. MPMI. 2014;27(2):177–189. DOI: 10.1094/MPMI-08-13-0216-R.
  29. Zhou Jinxin, Zhang Hongbo, Yang Yuhong, Zhang Zhijin, Zhang Haiwen, Hu Xinwen, et al. Abscisic acid regulates TSRF1-mediated resistance to Ralstonia solanacearum by modifying the expression of GCC box-containing genes in tobacco. Journal of Experimental Botany. 2008;59(3):645–652. DOI: 10.1093/jxb/erm353.
Опубликован
2024-07-09
Ключевые слова: 9-цис-эпоксикаротиноиддиоксигеназа, Solanum lycopersicum, Pectobacterium versatile, иммунитет растений
Поддерживающие организации Работа выполнена при финансовой поддержке Белорусского республиканского фонда фундаментальных исследований (грант № Б22М-053).
Как цитировать
Степанова, Е. С., Кукреш, Г. В., Николайчик, Е. А., & Колубако, А. В. (2024). 9-цис-Эпоксикаротиноиддиоксигеназа как переключатель связанных с иммунитетом сигнальных путей растений Solanum lycopersicum. Экспериментальная биология и биотехнология, 2, 63-71. Доступно по https://journals.bsu.by/index.php/biology/article/view/6361
Раздел
Генетика и молекулярная биология