Synthesis of biohydrogen by green microalgae and methods of increasing it production

  • Margarita A. Mysleiko Belarusian State University, 4 Niezaliezhnasci Avenue, Minsk 220030, Belarus
  • Maksim S. Vecherek Belarusian State University, 4 Niezaliezhnasci Avenue, Minsk 220030, Belarus
  • Jemma G. Manoyan Yerevan State University, 1 Aleka Manukjana Street, Yerevan 0025, Armenia
  • Lilit S. Gabrielyan Yerevan State University, 1 Aleka Manukjana Street, Yerevan 0025, Armenia
  • Tatyana V. Samovich Institute of Experimental Botany named after V. F. Kuprevich, National Academy of Sciences of Belarus, 27 Akademichnaja Street, Minsk 220072, Belarus
  • Nikolay V. Kozel Institute of Biophysics and Cell Engineering, National Academy of Sciences of Belarus, 27 Akademichnaja Street, Minsk 220072, Belarus; Peasant (farm) economy «Serebryanyj ruchej», Sasnovaja 222202, Aziarycka-Slabadski village council, Smaliavichy District, Minsk Region, Belarus
  • Anna O. Muravitskaya Belarusian State University, 4 Niezaliezhnasci Avenue, Minsk 220030, Belarus
  • Vadim V. Demidchik Belarusian State University, 4 Niezaliezhnasci Avenue, Minsk 220030, Belarus

Abstract

The use of microalgae for the production of biohydrogen is one of the promising areas of modern biotechnology and applied algology. In green microalgae cells, the process of biohydrogen synthesis is carried out in the electron transport chain of chloroplasts by the enzyme [FeFe]-hydrogenase and serves as a physiological adaptation to anaerobic conditions. A detailed understanding of the mechanism of biohydrogen synthesis makes it possible to more efficiently use microalgae as a source of environmentally clean fuel. This analytical review examines the mechanisms of H2 bioproduction and its potential roles in physiology, as well as approaches to stimulating H2 production for biotechnological purposes.

Author Biographies

Margarita A. Mysleiko, Belarusian State University, 4 Niezaliezhnasci Avenue, Minsk 220030, Belarus

student at the faculty of biology

Maksim S. Vecherek, Belarusian State University, 4 Niezaliezhnasci Avenue, Minsk 220030, Belarus

student at the faculty of biology

Jemma G. Manoyan, Yerevan State University, 1 Aleka Manukjana Street, Yerevan 0025, Armenia

postgraduate student at the department of biochemistry, microbiology and biotechnology, faculty of biology

Lilit S. Gabrielyan, Yerevan State University, 1 Aleka Manukjana Street, Yerevan 0025, Armenia

PhD (biology), docent; associate professor at the department of biochemistry, microbiology and biotechnology, faculty of biology

Tatyana V. Samovich, Institute of Experimental Botany named after V. F. Kuprevich, National Academy of Sciences of Belarus, 27 Akademichnaja Street, Minsk 220072, Belarus

PhD (biology); senior researcher at the laboratory of plant growth and development

Nikolay V. Kozel, Institute of Biophysics and Cell Engineering, National Academy of Sciences of Belarus, 27 Akademichnaja Street, Minsk 220072, Belarus; Peasant (farm) economy «Serebryanyj ruchej», Sasnovaja 222202, Aziarycka-Slabadski village council, Smaliavichy District, Minsk Region, Belarus

PhD (biology), docent; head of the laboratory of plant cell biophysics and biochemistry Institute of Biophysics and Cell Engineering, National Academy of Sciences of Belarus and chief technologist Peasant (farm) economy «Serebryanyj ruchej»

Anna O. Muravitskaya, Belarusian State University, 4 Niezaliezhnasci Avenue, Minsk 220030, Belarus

postgraduate student at the department of cell biology and plant bioengineering, faculty of biology

Vadim V. Demidchik, Belarusian State University, 4 Niezaliezhnasci Avenue, Minsk 220030, Belarus

doctor of science (biology), сorresponding member of the National Academy of Sciences of Belarus, full professor; dean of the faculty of biology

References

  1. Niccolai A, Chini Zittelli G, Rodolfi L, Biondi N, Tredici MR. Microalgae of interest as food source: biochemical composition and digestibility. Algal Research. 2019;42:101617. DOI: 10.1016/j.algal.2019.101617.
  2. Milledge JJ. Commercial application of microalgae other than as biofuels: a brief review. Reviews in Environmental Science and Biotechnology. 2011;10(1):31–41. DOI: 10.1007/s11157-010-9214-7.
  3. Borowitzka MA. Microalgae as sources of pharmaceuticals and other biologically active compounds. Journal of Applied Phycology. 1995;7(1):3–15. DOI: 10.1007/BF00003544.
  4. Guccione A, Biondi N, Sampietro G, Rodolfi L, Bassi N, Tredici MR. Chlorella for protein and biofuels: from strain selection to outdoor cultivation in a green wall panel photobioreactor. Biotechnology for Biofuels. 2014;7(1):84. DOI: 10.1186/1754-6834-7-84.
  5. Edwards PP, Kuznetsov VL, David WIF, Brandon NP. Hydrogen and fuel cells: towards a sustainable energy future. Energy Policy. 2008;36(12):4356–4362. DOI: 10.1016/j.enpol.2008.09.036.
  6. Gaffron H, Rubin J. Fermentative and photochemical production of hydrogen in algae. Journal of General Physiology. 1942; 26(2):219–240. DOI: 10.1085/jgp.26.2.219.
  7. Show K-Y, Lee D-J, Chang J-S. Bioreactor and process design for biohydrogen production. Bioresource Technology. 2011; 102(18):8524–8533. DOI: 10.1016/j.biortech.2011.04.055.
  8. Show K-Y, Yan Y, Zong C, Guo N, Chang J-S, Lee D-J. State of the art and challenges of biohydrogen from microalgae. Bioresource Technology. 2019;289:121747. DOI: 10.1016/j.biortech.2019.121747.
  9. Ghirardi ML, Zhang L, Lee JW, Flynn T, Seibert M, Greenbaum E. Microalgae: a green source of renewable H2. Trends in Biotechnology. 2000;18(12):506–511. DOI: 10.1016/S0167-7799(00)01511-0.
  10. Hemschemeier A, Fouchard S, Cournac L, Peltier G, Happe T. Hydrogen production by Chlamydomonas reinhardtii: an elaborate interplay of electron sources and sinks. Planta. 2008;227(2):397–407. DOI: 10.1007/s00425-007-0626-8.
  11. Ghirardi ML, Posewitz MC, Maness P-C, Dubini A, Yu J, Seibert M. Hydrogenases and hydrogen photoproduction in oxygenic photosynthetic organisms. Annual Review of Plant Biology. 2007;58:71–91. DOI: 10.1146/annurev.arplant.58.032806.103848.
  12. Melis A, Zhang L, Forestier M, Ghirardi ML, Seibert M. Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiology. 2000;122(1):127–136. DOI: 10.1104/ pp.122.1.127.
  13. Benemann JR, Weare NM. Hydrogen evolution by nitrogen-fixing Anabaena cylindrica cultures. Science. 1974;184(4133): 174–175. DOI: 10.1126/science.184.4133.174.
  14. Khetkorn W, Rastogi RP, Incharoensakdi A, Lindblad P, Madamwar D, Pandey A, et al. Microalgal hydrogen production – a review. Bioresource Technology. 2017;243:1194–1206. DOI: 10.1016/j.biortech.2017.07.085.
  15. Basak N, Jana AK, Das D, Saikia D. Photofermentative molecular biohydrogen production by purple-non-sulfur (PNS) bacteria in various modes: the present progress and future perspective. International Journal of Hydrogen Energy. 2014;39(13):6853–6871. DOI: 10.1016/j.ijhydene.2014.02.093.
  16. Ghirardi ML, Dubini A, Yu J, Maness P-C. Photobiological hydrogen-producing systems. Chemical Society Reviews. 2009; 38(1):52–61. DOI: 10.1039/B718939G.
  17. Kosourov S, Nagy V, Shevela D, Jokel M, Messinger J, Allahverdiyeva Y. Water oxidation by photosystem II is the primary source of electrons for sustained H 2 photoproduction in nutrient-replete green algae. PNAS. 2020;117(47):29629–29636. DOI: 10.1073/ pnas.2009210117.
  18. Sawyer A, Bai Y, Lu Y, Hemschemeier A, Happe T. Compartmentalisation of [FeFe]‐hydrogenase maturation in Chlamydomonas reinhardtii. Plant Journal. 2017;90(6):1134–1143. DOI: 10.1111/tpj.13535.
  19. Happe T, Mosler B, Naber JD. Induction, localization and metal content of hydrogenase in the green alga Chlamydomonas reinhardtii. European Journal of Biochemistry. 1994;222(3):769–774. DOI: 10.1111/j.1432-1033.1994.tb18923.x.
  20. Meyer J. [FeFe] hydrogenases and their evolution: a genomic perspective. Cellular and Molecular Life Sciences. 2007;64: 1063–1084. DOI: 10.1007/s00018-007-6477-4.
  21. Ghirardi ML, Togasaki RK, Seibert M. Oxygen sensitivity of algal H2-production. Applied Biochemistry and Biotechnology. 1997;63:141–151. DOI: 10.1007/BF02920420.
  22. Erickson E, Wakao S, Niyogi KK. Light stress and photoprotection in Chlamydomonas reinhardtii. Plant Journal. 2015;82(3): 449–465. DOI: 10.1111/tpj.12825.
  23. Greenbaum E. Photosynthetic hydrogen and oxygen production: kinetic studies. Science. 1982;215(4530):291–293. DOI: 10.1126/ science.215.4530.291.
  24. Cournac L, Mus F, Bernard L, Guedeney G, Vignais P, Peltier G. Limiting steps of hydrogen production in Chlamydomonas reinhardtii and Synechocystis PCC 6803 as analysed by light-induced gas exchange transients. International Journal of Hydrogen Energy. 2002;27(11–12):1229–1237. DOI: 10.1016/S0360-3199(02)00105-2.
  25. Cinco RM, Maclnnis JM, Greenbaum E. The role of carbon dioxide in light-activated hydrogen production by Chlamydomonas reinhardtii. Photosynthesis Research. 1993;38(1):27–33. DOI: 10.1007/BF00015058.
  26. Gfeller RP, Gibbs M. Fermentative metabolism of Chlamydomonas reinhardtii. II. Role of plastoquinone. Plant Physiology. 1985;77(2):509–511. DOI: 10.1104/pp.77.2.509.
  27. Gfeller RP, Gibbs M. Fermentative metabolism of Chlamydomonas reinhardtii. I. Analysis of fermentative products from starch in dark and light. Plant Physiology. 1984;75(1):212–218. DOI: 10.1104/pp.75.1.212.
  28. Gibbs M, Gfeller RP, Chen C. Fermentative metabolism of Chlamydomonas reinhardii. III. Photoassimilation of acetate. Plant Physiology. 1986;82(1):160–166. DOI: 10.1104/pp.82.1.160.
  29. Goulding KH, Merrett MJ. The photometabolism of acetate by Chlorella pyrenoidosa. Journal of Experimental Botany. 1966; 17(4):678–689. DOI: 10.1093/jxb/17.4.678.
  30. Bishop NI. The influence of the herbicide, DCMU, on the oxygen-evolving system of photosynthesis. Biochimica et Biophysica Acta. 1958;27:205–206. DOI: 10.1016/0006-3002(58)90313-5.
  31. Tamburic B, Zemichael FW, Maitland GC, Hellgardt K. A novel nutrient control method to deprive green algae of sulphur and initiate spontaneous hydrogen production. International Journal of Hydrogen Energy. 2012;37(11):8988–9001. DOI: 10.1016/ j.ijhydene.2012.02.043.
  32. Wykoff DD, Davies JP, Melis A, Grossman AR. The regulation of photosynthetic electron transport during nutrient deprivation in Chlamydomonas reinhardtii. Plant Physiology. 1998;117(1):129–139. DOI: 10.1104/pp.117.1.129.
  33. Kosourov S, Tsygankov A, Seibert M, Ghirardi ML. Sustained hydrogen photoproduction by Chlamydomonas reinhardtii: effects of culture parameters. Biotechnology and Bioengineering. 2002;78(7):731–740. DOI: 10.1002/bit.10254.
  34. Zhang L, Happe T, Melis A. Biochemical and morphological characterization of sulfur-deprived and H2-producing Chlamydomonas reinhardtii (green alga). Planta. 2002;214:552–561. DOI: 10.1007/s004250100660.
  35. Kosourov S, Seibert M, Ghirardi ML. Effects of extracellular pH on the metabolic pathways in sulfur-deprived, H2-producing Chlamydomonas reinhardtii cultures. Plant and Cell Physiology. 2003;44(2):146–155. DOI: 10.1093/pcp/pcg020.
  36. Scoma A, Durante L, Bertin L, Fava F. Acclimation to hypoxia in Chlamydomonas reinhardtii: can biophotolysis be the major trigger for long‐term H2 production? New Phytologist. 2014;204(4):890–900. DOI: 10.1111/nph.12964.
  37. He M, Li L, Zhang L, Liu J. The enhancement of hydrogen photoproduction in Chlorella protothecoides exposed to nitrogen limitation and sulfur deprivation. International Journal of Hydrogen Energy. 2012;37(22):16903–16915. DOI: 10.1016/j.ijhydene. 2012.08.121.
  38. Philipps G, Happe T, Hemschemeier A. Nitrogen deprivation results in photosynthetic hydrogen production in Chlamydomonas reinhardtii. Planta. 2012;235(4):729–745. DOI: 10.1007/s00425-011-1537-2.
  39. Peltier G, Schmidt GW. Chlororespiration: an adaptation to nitrogen deficiency in Chlamydomonas reinhardtii. PNAS. 1991; 88(11):4791–4795. DOI: 10.1073/pnas.88.11.4791.
  40. Manoyan J, Samovich T, Kozel N, Demidchik V, Gabrielyan L. Growth characteristics, biohydrogen production and photochemical activity of photosystems in green microalgae Parachlorella kessleri exposed to nitrogen deprivation. International Journal of Hydrogen Energy. 2022;47(38):16815–16823. DOI: 10.1016/j.ijhydene.2022.03.194.
  41. Manoyan J, Hakobyan L, Samovich T, Kozel N, Sahakyan N, Muravitskaya H, et al. Comparison of sulfur and nitrogen deprivation effects on photosynthetic pigments, polyphenols, photosystems activity and H2 generation in Chlorella vulgaris and Parachlorella kessleri. International Journal of Hydrogen Energy. 2024;59:408–418. DOI: 10.1016/j.ijhydene.2024.02.035.
  42. Batyrova K, Gavrisheva A, Ivanova E, Liu J, Tsygankov A. Sustainable hydrogen photoproduction by phosphorus-deprived marine green microalgae Chlorella sp. International Journal of Molecular Sciences. 2015;16(2):2705–2716. DOI: 10.3390/ijms16022705.
  43. Batyrova KA, Tsygankov AA, Kosourov SN. Sustained hydrogen photoproduction by phosphorus-deprived Chlamydomonas reinhardtii cultures. International Journal of Hydrogen Energy. 2012;37(10):8834–8839. DOI: 10.1016/j.ijhydene.2012.01.068.
  44. Nagy V, Podmaniczki A, Vidal-Meireles A, Tengölics R, Kovács L, Rákhely G, et al. Water-splitting-based, sustainable and efficient H 2 production in green algae as achieved by substrate limitation of the Calvin – Benson – Bassham cycle. Biotechnology for Biofuels. 2018;11:69. DOI: 10.1186/s13068-018-1069-0.
  45. Song W, Rashid N, Choi W, Lee K. Biohydrogen production by immobilized Chlorella sp. using cycles of oxygenic photosynthesis and anaerobiosis. Bioresource Technology. 2011;102(18):8676–8681. DOI: 10.1016/j.biortech.2011.02.082.
Published
2024-07-04
Keywords: algae, biohydrogen, hydrogenase, nutrient deprivation, photobioreactor
How to Cite
Mysleiko, M. A., Vecherek, M. S., Manoyan, J. G., Gabrielyan, L. S., Samovich, T. V., Kozel, N. V., Muravitskaya, A. O., & Demidchik, V. V. (2024). Synthesis of biohydrogen by green microalgae and methods of increasing it production. Experimental Biology and Biotechnology, 2, 36-45. Retrieved from https://journals.bsu.by/index.php/biology/article/view/6394