Создание штаммов бактерий Lactococcus lactis, синтезирующих белок S или рецепторсвязывающий домен вируса SARS-CoV-2

  • Олеся Владимировна Евдокимова Институт микробиологии НАН Беларуси, ул. Академика Купревича, 2, 220084, г. Минск, Беларусь
  • Артур Эдуардович Охремчук Институт микробиологии НАН Беларуси, ул. Академика Купревича, 2, 220084, г. Минск, Беларусь
  • Екатерина Владимировна Охремчук Институт микробиологии НАН Беларуси, ул. Академика Купревича, 2, 220084, г. Минск, Беларусь
  • Дмитрий Олегович Дормешкин Институт биоорганической химии НАН Беларуси, ул. Академика Купревича, 5, корп. 2, 220084, г. Минск, Беларусь
  • Леонид Николаевич Валентович Институт микробиологии НАН Беларуси, ул. Академика Купревича, 2, 220084, г. Минск, Беларусь

Аннотация

Получены рекомбинантные штаммы бактерий Lactococcus lactis, содержащие экспрессионные плазмиды с фрагментами генома вируса SARS-CoV-2. В составе векторной конструкции pNZ::spike находится полная кодирующая последовательность гена белка S вируса SARS-CoV-2, векторные конструкции pNZ::mini-spike и pNZ::HA-spike содержат различающиеся по кодонному составу и размеру фрагменты гена s, транслируемые в рецепторсвязывающий домен. Индукция экспрессии фрагмента гена s в клетках полученных штаммов низином (1 нг/мл) сопровождается синтезом белков, специфически связывающихся с коммерческими антителами к рецепторсвязывающему домену вируса SARS-CoV-2. Рекомбинантный белок, продуцируемый бактериями L. lactis pNZ::spike, на электрофореграмме определяется в виде нескольких фракций, молекулярная масса наиболее представленной из них составляет около 150 кДа, что совпадает с теоретически рассчитанной молекулярной массой полноразмерного белка S. Рекомбинантный белок, синтезируемый бактериями L. lactis pNZ::HA-spike, имеет молекулярную массу приблизительно 23 кДа. В клетках бактерий L. lactis pNZ::mini-spike целевой белок представлен основной фракцией с молекулярной массой около 35 кДа. Продуцируемые рекомбинантные белки имеют клеточную локализацию.

Биографии авторов

Олеся Владимировна Евдокимова, Институт микробиологии НАН Беларуси, ул. Академика Купревича, 2, 220084, г. Минск, Беларусь

научный сотрудник лаборатории «Центр аналитических и генно-инженерных исследований»

Артур Эдуардович Охремчук, Институт микробиологии НАН Беларуси, ул. Академика Купревича, 2, 220084, г. Минск, Беларусь

научный сотрудник лаборатории «Центр аналитических и генно-инженерных исследований»

Екатерина Владимировна Охремчук, Институт микробиологии НАН Беларуси, ул. Академика Купревича, 2, 220084, г. Минск, Беларусь

кандидат биологических наук; старший научный сотрудник лаборатории «Центр аналитических и генно-инженерных исследований»

Дмитрий Олегович Дормешкин, Институт биоорганической химии НАН Беларуси, ул. Академика Купревича, 5, корп. 2, 220084, г. Минск, Беларусь

кандидат химических наук; ведущий научный сотрудник лаборатории молекулярной диагностики и биотехнологии

Леонид Николаевич Валентович, Институт микробиологии НАН Беларуси, ул. Академика Купревича, 2, 220084, г. Минск, Беларусь

кандидат биологических наук, доцент; заведующий лабораторией «Центр аналитических и генно-инженерных исследований»

Литература

  1. Ayivi RD, Gyawali R, Krastanov A, Aljaloud SO, Worku M, Tahergorabi R, et al. Lactic acid bacteria: food safety and human health applications. Dairy. 2020;1(3):202–232. DOI: 10.3390/dairy1030015.
  2. del Rio B, Redruello B, Fernandez M, Martin MC, Ladero V, Alvarez MA. Lactic acid bacteria as a live delivery system for the in situ production of nanobodies in the human gastrointestinal tract. Frontiers in Microbiology. 2018;9:3179. DOI: 10.3389/fmicb.2018.03179.
  3. Hatti-Kaul R, Chen L, Dishisha T, El Enshasy H. Lactic acid bacteria: from starter cultures to producers of chemicals. FEMS Microbiology Letters. 2018;365(20):fny213. DOI: 10.1093/femsle/fny213.
  4. Kaur M, Singh H, Jangra M, Kaur L, Jaswal P, Dureja C, et al. Lactic acid bacteria isolated from yak milk show probiotic potential. Applied Microbiology and Biotechnology. 2017;101(20):7635–7652. DOI: 10.1007/s00253-017-8473-4.
  5. Thakur K, Tomar SK, De S. Lactic acid bacteria as a cell factory for riboflavin production. Microbial Biotechnology. 2016; 9(4):441–451. DOI: 10.1111/1751-7915.12335.
  6. Ryan MP, Rea MC, Hill C, Ross RP. An application in cheddar cheese manufacture for a strain of Lactococcus lactis producing a novel broad-spectrum bacteriocin, lacticin 3147. Applied and Environmental Microbiology. 1996;62(2):612–619. DOI: 10.1128/aem.62.2.612-619.1996.
  7. Enouf V, Langella P, Commissaire J, Cohen J, Corthier G. Bovine rotavirus nonstructural protein 4 produced by Lactococcus lactis is antigenic and immunogenic. Applied and Environmental Microbiology. 2001;67(4):1423–1428. DOI: 10.1128/AEM.67.4.1423-1428.2001.
  8. Ogaugwu CE, Cheng Q, Fieck A, Hurwitz I, Durvasula R. Characterization of a Lactococcus lactis promoter for heterologous protein production. Biotechnology Reports. 2018;17:86–92. DOI: 10.1016/j.btre.2017.11.010.
  9. Singh SK, Naghizadeh M, Plieskatt J, Singh S, Theisen M. Cloning and recombinant protein expression in Lactococcus lactis. In: Sousa Ȃ, Passarinha L, editors. Advanced methods in structural biology. New York: Humana Press; 2023. p. 3–20 (Walker JM, editor. Methods in molecular biology; volume 2652). DOI: 10.1007/978-1-0716-3147-8_1.
  10. Guan C, Yuan Y, Ma Y, Wang X, Zhang C, Lu M, et al. Development of a novel expression system in lactic acid bacteria controlled by a broad-host-range promoter PsrfA. Microbial Cell Factories. 2022;21:23. DOI: 10.1186/s12934-022-01754-z.
  11. Cho SW, Yim J, Seo SW. Engineering tools for the development of recombinant lactic acid bacteria. Biotechnology Journal. 2020;15(6):1900344. DOI: 10.1002/biot.201900344.
  12. Le Loir Y, Azevedo V, Oliveira SC, Freitas DA, Miyoshi A, Bermúdez-Humarán LG, et al. Protein secretion in Lactococcus lactis: an efficient way to increase the overall heterologous protein production. Microbial Cell Factories. 2005;4:2. DOI: 10.1186/1475- 2859-4-2.
  13. Landete JM. A review of food-grade vectors in lactic acid bacteria: from the laboratory to their application. Critical Reviews in Biotechnology. 2017;37(3):296–308. DOI: 10.3109/07388551.2016.1144044.
  14. Takahashi K, Orito N, Tokunoh N, Inoue N. Current issues regarding the application of recombinant lactic acid bacteria to mucosal vaccine carriers. Applied Microbiology and Biotechnology. 2019;103(15):5947–5955. DOI: 10.1007/s00253-019-09912-x.
  15. Benbouziane B, Ribelles P, Aubry C, Martin R, Kharrat P, Riazi A, et al. Development of a stress-inducible controlled expression (SICE) system in Lactococcus lactis for the production and delivery of therapeutic molecules at mucosal surfaces. Journal of Bio¬ technology. 2013;168(2):120–129. DOI: 10.1016/j.jbiotec.2013.04.019.
  16. Ma S, Li K, Li X-S, Guo X-Q, Fu P-F, Yang M-F, et al. Expression of bioactive porcine interferon-alpha in Lactobacillus casei. World Journal of Microbiology and Biotechnology. 2014;30(9):2379–2386. DOI: 10.1007/s11274-014-1663-7.
  17. Chatel J-M, Langella P, Adel-Patient K, Commissaire J, Wal J-M, Corthier G. Induction of mucosal immune response after in tranasal or oral inoculation of mice with Lactococcus lactis producing bovine beta-lactoglobulin. Clinical Diagnostic Laboratory Immunology. 2001;8(3):545–551. DOI: 10.1128/CDLI.8.3.545-551.2001.
  18. Wells JM, Mercenier A. Mucosal delivery of therapeutic and prophylactic molecules using lactic acid bacteria. Nature Reviews Microbiology. 2008;6(5):349–362. DOI: 10.1038/nrmicro1840.
  19. Qiao N, Du G, Zhong X, Sun X. Recombinant lactic acid bacteria as promising vectors for mucosal vaccination. Exploration. 2021;1(2):20210026. DOI: 10.1002/EXP.20210026.
  20. Tavares LM, de Jesus LCL, da Silva TF, Barroso FAL, Batista VL, Coelho-Rocha ND, et al. Novel strategies for efficient production and delivery of live biotherapeutics and biotechnological uses of Lactococcus lactis: the lactic acid bacterium model. Frontiers in Bioengineering and Biotechnology. 2020;8:517166. DOI: 10.3389/fbioe.2020.517166.
  21. Bermúdez-Humarán LG, Kharrat P, Chatel J-M, Langella P. Lactococci and lactobacilli as mucosal delivery vectors for therapeutic proteins and DNA vaccines. Microbial Cell Factories. 2011;10(supplement 1):S4. DOI: 10.1186/1475-2859-10-S1-S4.
  22. Chau ECT, Kwong TC, Pang CK, Chan LT, Chan AML, Yao X, et al. A novel probiotic-based oral vaccine against SARS-CoV-2 Omicron variant B.1.1.529. International Journal of Molecular Sciences. 2023;24(18):13931. DOI: 10.3390/ijms241813931.
  23. Wang M, Fu T, Hao J, Li L, Tian M, Jin N, et al. A recombinant Lactobacillus plantarum strain expressing the spike protein of SARS-CoV-2. International Journal of Biological Macromolecules. 2020;160:736–740. DOI: 10.1016/j.ijbiomac.2020.05.239.
  24. Zhao Y, Zhang H, Zhao Z, Liu F, Dong M, Chen L, et al. Efficacy and safety of oral LL-37 against the Omicron BA.5.1.3 variant of SARS-CoV-2: a randomized trial. Journal of Medical Virology. 2023;95(8):e29035. DOI: 10.1002/jmv.29035.
  25. Yurina V, Adianingsih OR, Widodo N. Oral and intranasal immunization with food-grade recombinant Lactococcus lactis expressing high conserved region of SARS-CoV-2 spike protein triggers mice’s immunity responses. Vaccine: X. 2023;13:100265. DOI: 10.1016/j.jvacx.2023.100265.
  26. Xuan B, Park J, Yoo JH, Kim EB. Oral immunization of mice with cell extracts from recombinant Lactococcus lactis expressing SARS-CoV-2 spike protein. Current Microbiology. 2022;79(6):167. DOI: 10.1007/s00284-022-02866-w.
  27. Jia Q, Bielefeldt-Ohmann H, Maison RM, Masleša-Galić S, Cooper SK, Bowen RA, et al. Replicating bacterium-vectored vaccine expressing SARS-CoV-2 membrane and nucleocapsid proteins protects against severe COVID-19-like disease in hamsters. NPJ Vaccines. 2021;6:47. DOI: 10.1038/s41541-021-00321-8.
  28. Kurpas MK, Jaksik R, Kuś P, Kimmel M. Genomic analysis of SARS-CoV-2 Alpha, Beta and Delta variants of concern unco¬ vers signatures of neutral and non-neutral evolution. Viruses. 2022;14(11):2375. DOI: 10.3390/v14112375.
  29. Jiang H-W, Li Y, Tao S-C. SARS-CoV-2 peptides/epitopes for specific and sensitive diagnosis. Cellular & Molecular Immuno¬ logy. 2023;20(5):540–542. DOI: 10.1038/s41423-023-01001-4.
  30. Walls AC, Park Y-J, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. 2020;181(2):281–292. DOI: 10.1016/j.cell.2020.02.058.
  31. Patel R, Kaki M, Potluri VS, Kahar P, Khanna D. A comprehensive review of SARS-CoV-2 vaccines: Pfizer, Moderna & Johnson & Johnson. Human Vaccines & Immunotherapeutics. 2022;18(1):2002083. DOI: 10.1080/21645515.2021.2002083.
  32. Nagesha SN, Ramesh BN, Pradeep C, Shashidhara KS, Ramakrishnappa T, Krishnaprasad BT, et al. SARS-CoV-2 spike protein S1 subunit as an ideal target for stable vaccines: a bioinformatic study. Materials Today: Proceedings. 2022;49(part 3):904–912. DOI: 10.1016/j.matpr.2021.07.163.
  33. Tai W, He L, Zhang X, Pu J, Voronin D, Jiang S, et al. Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cellular & Molecular Immunology. 2020;17(6):613–620. DOI: 10.1038/s41423-020-0400-4.
  34. Shrivastava T, Singh B, Rizvi ZA, Verma R, Goswami S, Vishwakarma P, et al. Comparative immunomodulatory evaluation of the receptor-binding domain of the SARS-CoV-2 spike protein; a potential vaccine candidate which imparts potent humoral and Th1 type immune response in a mouse model. Frontiers in Immunology. 2021;12:641447. DOI: 10.3389/fimmu.2021.641447.
  35. Wang Y, Wang L, Cao H, Liu C. SARS-CoV-2 S1 is superior to the RBD as a COVID-19 subunit vaccine antigen. Journal of Medical Virology. 2021;93(2):892–898. DOI: 10.1002/jmv.26320.
  36. Yang J, Wang W, Chen Z, Lu S, Yang F, Bi Z, et al. A vaccine targeting the RBD of the S protein of SARS-CoV-2 induces protective immunity. Nature. 2020;586(7830):572–577. DOI: 10.1038/s41586-020-2599-8.
  37. Montgomerie I, Bird TW, Palmer OR, Mason NC, Pankhurst TE, Lawley B, et al. Incorporation of SARS-CoV-2 spike NTD to RBD protein vaccine improves immunity against viral variants. iScience. 2023;26(4):106256. DOI: 10.1016/j.isci.2023.106256.
  38. Law JLM, Logan M, Joyce MA, Landi A, Hockman D, Crawford K, et al. SARS-CoV-2 recombinant receptor-binding domain (RBD) induces neutralizing antibodies against variant strains of SARS-CoV-2 and SARS-CoV-1. Vaccine. 2021;39(40):5769–5779. DOI: 10.1016/j.vaccine.2021.08.081.
  39. Gaeng S, Scherer S, Neve H, Loessner MJ. Gene cloning and expression and secretion of Listeria monocytogenes bacteriophage-lytic enzymes in Lactococcus lactis. Applied and Environmental Microbiology. 2000;66(7):2951–2958. DOI: 10.1128/AEM.66.7.2951-2958.2000.
  40. Zhang H, Dong M, Xu H, Li H, Zheng A, Sun G, et al. Recombinant Lactococcus lactis expressing human LL-37 prevents deaths from viral infections in piglets and chicken. Probiotics and Antimicrobial Proteins [Internet]. 2023 September 25 [cited 2024 January 12]. Available from: https://link.springer.com/article/10.1007/s12602-023-10155-6. Epub ahead of print. DOI: 10.1007/s12602- 023-10155-6.
  41. Arnau J, Hjerl-Hansen E, Israelsen H. Heterologous gene expression of bovine plasmin in Lactococcus lactis. Applied Microbiology and Biotechnology. 1997;48(3):331–338. DOI: 10.1007/s002530051058.
  42. Achatz S, Skerra A. Comparative genome analysis of three classical E. coli cloning strains designed for blue/white selection: JM83, JM109 and XL1-Blue. FEBS Open Bio. 2024;14(6):888–905. DOI: 10.1002/2211-5463.13812.
  43. Itaya M. Bacillus subtilis 168 as a unique platform enabling synthesis and dissemination of genomes. Journal of General and Applied Microbiology. 2022;68(2):45–53. DOI: 10.2323/jgam.2021.12.001.
  44. de Ruyter PG, Kuipers OP, Beerthuyzen MM, van Alen-Boerrigter I, de Vos WM. Functional analysis of promoters in the nisin gene cluster of Lactococcus lactis. Journal of Bacteriology. 1996;178(12):3434–3439. DOI: 10.1128/jb.178.12.3434-3439.1996.
  45. Yanisch-Perron C, Vieira J, Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. DOI: 10.1016/0378-1119(85)90120-9.
  46. Vieira J, Messing J. New pUC-derived cloning vectors with different selectable markers and DNA replication origins. Gene. 1991;100:189–194. DOI: 10.1016/0378-1119(91)90365-i.
  47. MoBiTec Molecular Biotechnology [Internet]. Goettingen: MoBiTec; 2024 [cited 2024 January 12]. Available from: https:// www.mobitec.com/.
  48. Бельская ИВ. Создание векторной конструкции для экспрессии RBD SARS-CoV-2. В: Абиев Е, редактор. Лучший молодой ученый – 2022. V Международное книжное издание стран Содружества Независимых Государств. Том 18. Нур-Султан: [б. и.]; 2022. с. 39–42.
  49. Sambrook J, Russell DW. Molecular cloning: a laboratory manual. 3rd edition. New York: Cold Spring Harbor Laboratory Press; 2001. 3 volumes.
  50. Anagnostopoulos C, Spizizen J. Requirements for transformation in Bacillus subtilis. Journal of Bacteriology. 1961;81(5):741–746. DOI: 10.1128/jb.81.5.741-746.1961.
  51. NICE ® expression_system for Lactococcus lactis. The effective & easy-to-operate nisin controlled gene expression system [Internet]. Goettingen: MoBiTec; 2015 [cited 2024 January 12]. 34 p. Available from: https://www.mobitec.com/media/datasheets/mobitec gmbh / NICE_Expression_System-Handbook.pdf.
  52. Voskuil MI, Chambliss GH. Rapid isolation and sequencing of purified plasmid DNA from Bacillus subtilis. Applied and Environmental Microbiology. 1993;59(4):1138–1142. DOI: 10.1128/aem.59.4.1138-1142.1993.
  53. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. PNAS. 1977;74(12):5463–5467. DOI: 10.1073/pnas.74.12.5463.
  54. Logunov DY, Dolzhikova IV, Shcheblyakov DV, Tukhvatulin AI, Zubkova OV, Dzharullaeva AS, et al. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia. The Lancet. 2021;397(10275):671–681. DOI: 10.1016/S0140-6736(21)00234-8.
  55. Dormeshkin D, Katsin M, Stegantseva M, Golenchenko S, Shapira M, Dubovik S, et al. Design and immunogenicity of SARSCoV-2 DNA vaccine encoding RBD-PVXCP fusion protein. Vaccines. 2023;11(6):1014. DOI: 10.3390/vaccines11061014.
  56. Frees D, Ingmer H. ClpP participates in the degradation of misfolded protein in Lactococcus lactis. Molecular Microbiology. 1999;31(1):79–87. DOI: 10.1046/j.1365-2958.1999.01149.x.
Опубликован
2024-10-25
Ключевые слова: молочнокислые бактерии, коронавирус, гликопротеин шипа, рецепторсвязывающий домен, экспрессия гетерологичных генов
Поддерживающие организации Авторы выражают признательность сотрудникам Республиканского научно-практического центра эпидемиологии и микробиологии доктору медицинских наук, профессору Т. В. Амвросьевой и И. В. Бельской, а также ведущему научному сотруднику Института микробиологии НАН Беларуси кандидату биологических наук, доценту И. С. Казловскому за предоставленные плазмиды.
Как цитировать
Евдокимова, О. В., Охремчук, А. Э., Охремчук, Е. В., Дормешкин, Д. О., & Валентович, Л. Н. (2024). Создание штаммов бактерий Lactococcus lactis, синтезирующих белок S или рецепторсвязывающий домен вируса SARS-CoV-2. Экспериментальная биология и биотехнология, 3, 37-49. Доступно по https://journals.bsu.by/index.php/biology/article/view/6502
Раздел
Биотехнология и микробиология