Создание штаммов бактерий Lactococcus lactis, синтезирующих белок S или рецепторсвязывающий домен вируса SARS-CoV-2
Аннотация
Получены рекомбинантные штаммы бактерий Lactococcus lactis, содержащие экспрессионные плазмиды с фрагментами генома вируса SARS-CoV-2. В составе векторной конструкции pNZ::spike находится полная кодирующая последовательность гена белка S вируса SARS-CoV-2, векторные конструкции pNZ::mini-spike и pNZ::HA-spike содержат различающиеся по кодонному составу и размеру фрагменты гена s, транслируемые в рецепторсвязывающий домен. Индукция экспрессии фрагмента гена s в клетках полученных штаммов низином (1 нг/мл) сопровождается синтезом белков, специфически связывающихся с коммерческими антителами к рецепторсвязывающему домену вируса SARS-CoV-2. Рекомбинантный белок, продуцируемый бактериями L. lactis pNZ::spike, на электрофореграмме определяется в виде нескольких фракций, молекулярная масса наиболее представленной из них составляет около 150 кДа, что совпадает с теоретически рассчитанной молекулярной массой полноразмерного белка S. Рекомбинантный белок, синтезируемый бактериями L. lactis pNZ::HA-spike, имеет молекулярную массу приблизительно 23 кДа. В клетках бактерий L. lactis pNZ::mini-spike целевой белок представлен основной фракцией с молекулярной массой около 35 кДа. Продуцируемые рекомбинантные белки имеют клеточную локализацию.
Литература
- Ayivi RD, Gyawali R, Krastanov A, Aljaloud SO, Worku M, Tahergorabi R, et al. Lactic acid bacteria: food safety and human health applications. Dairy. 2020;1(3):202–232. DOI: 10.3390/dairy1030015.
- del Rio B, Redruello B, Fernandez M, Martin MC, Ladero V, Alvarez MA. Lactic acid bacteria as a live delivery system for the in situ production of nanobodies in the human gastrointestinal tract. Frontiers in Microbiology. 2018;9:3179. DOI: 10.3389/fmicb.2018.03179.
- Hatti-Kaul R, Chen L, Dishisha T, El Enshasy H. Lactic acid bacteria: from starter cultures to producers of chemicals. FEMS Microbiology Letters. 2018;365(20):fny213. DOI: 10.1093/femsle/fny213.
- Kaur M, Singh H, Jangra M, Kaur L, Jaswal P, Dureja C, et al. Lactic acid bacteria isolated from yak milk show probiotic potential. Applied Microbiology and Biotechnology. 2017;101(20):7635–7652. DOI: 10.1007/s00253-017-8473-4.
- Thakur K, Tomar SK, De S. Lactic acid bacteria as a cell factory for riboflavin production. Microbial Biotechnology. 2016; 9(4):441–451. DOI: 10.1111/1751-7915.12335.
- Ryan MP, Rea MC, Hill C, Ross RP. An application in cheddar cheese manufacture for a strain of Lactococcus lactis producing a novel broad-spectrum bacteriocin, lacticin 3147. Applied and Environmental Microbiology. 1996;62(2):612–619. DOI: 10.1128/aem.62.2.612-619.1996.
- Enouf V, Langella P, Commissaire J, Cohen J, Corthier G. Bovine rotavirus nonstructural protein 4 produced by Lactococcus lactis is antigenic and immunogenic. Applied and Environmental Microbiology. 2001;67(4):1423–1428. DOI: 10.1128/AEM.67.4.1423-1428.2001.
- Ogaugwu CE, Cheng Q, Fieck A, Hurwitz I, Durvasula R. Characterization of a Lactococcus lactis promoter for heterologous protein production. Biotechnology Reports. 2018;17:86–92. DOI: 10.1016/j.btre.2017.11.010.
- Singh SK, Naghizadeh M, Plieskatt J, Singh S, Theisen M. Cloning and recombinant protein expression in Lactococcus lactis. In: Sousa Ȃ, Passarinha L, editors. Advanced methods in structural biology. New York: Humana Press; 2023. p. 3–20 (Walker JM, editor. Methods in molecular biology; volume 2652). DOI: 10.1007/978-1-0716-3147-8_1.
- Guan C, Yuan Y, Ma Y, Wang X, Zhang C, Lu M, et al. Development of a novel expression system in lactic acid bacteria controlled by a broad-host-range promoter PsrfA. Microbial Cell Factories. 2022;21:23. DOI: 10.1186/s12934-022-01754-z.
- Cho SW, Yim J, Seo SW. Engineering tools for the development of recombinant lactic acid bacteria. Biotechnology Journal. 2020;15(6):1900344. DOI: 10.1002/biot.201900344.
- Le Loir Y, Azevedo V, Oliveira SC, Freitas DA, Miyoshi A, Bermúdez-Humarán LG, et al. Protein secretion in Lactococcus lactis: an efficient way to increase the overall heterologous protein production. Microbial Cell Factories. 2005;4:2. DOI: 10.1186/1475- 2859-4-2.
- Landete JM. A review of food-grade vectors in lactic acid bacteria: from the laboratory to their application. Critical Reviews in Biotechnology. 2017;37(3):296–308. DOI: 10.3109/07388551.2016.1144044.
- Takahashi K, Orito N, Tokunoh N, Inoue N. Current issues regarding the application of recombinant lactic acid bacteria to mucosal vaccine carriers. Applied Microbiology and Biotechnology. 2019;103(15):5947–5955. DOI: 10.1007/s00253-019-09912-x.
- Benbouziane B, Ribelles P, Aubry C, Martin R, Kharrat P, Riazi A, et al. Development of a stress-inducible controlled expression (SICE) system in Lactococcus lactis for the production and delivery of therapeutic molecules at mucosal surfaces. Journal of Bio¬ technology. 2013;168(2):120–129. DOI: 10.1016/j.jbiotec.2013.04.019.
- Ma S, Li K, Li X-S, Guo X-Q, Fu P-F, Yang M-F, et al. Expression of bioactive porcine interferon-alpha in Lactobacillus casei. World Journal of Microbiology and Biotechnology. 2014;30(9):2379–2386. DOI: 10.1007/s11274-014-1663-7.
- Chatel J-M, Langella P, Adel-Patient K, Commissaire J, Wal J-M, Corthier G. Induction of mucosal immune response after in tranasal or oral inoculation of mice with Lactococcus lactis producing bovine beta-lactoglobulin. Clinical Diagnostic Laboratory Immunology. 2001;8(3):545–551. DOI: 10.1128/CDLI.8.3.545-551.2001.
- Wells JM, Mercenier A. Mucosal delivery of therapeutic and prophylactic molecules using lactic acid bacteria. Nature Reviews Microbiology. 2008;6(5):349–362. DOI: 10.1038/nrmicro1840.
- Qiao N, Du G, Zhong X, Sun X. Recombinant lactic acid bacteria as promising vectors for mucosal vaccination. Exploration. 2021;1(2):20210026. DOI: 10.1002/EXP.20210026.
- Tavares LM, de Jesus LCL, da Silva TF, Barroso FAL, Batista VL, Coelho-Rocha ND, et al. Novel strategies for efficient production and delivery of live biotherapeutics and biotechnological uses of Lactococcus lactis: the lactic acid bacterium model. Frontiers in Bioengineering and Biotechnology. 2020;8:517166. DOI: 10.3389/fbioe.2020.517166.
- Bermúdez-Humarán LG, Kharrat P, Chatel J-M, Langella P. Lactococci and lactobacilli as mucosal delivery vectors for therapeutic proteins and DNA vaccines. Microbial Cell Factories. 2011;10(supplement 1):S4. DOI: 10.1186/1475-2859-10-S1-S4.
- Chau ECT, Kwong TC, Pang CK, Chan LT, Chan AML, Yao X, et al. A novel probiotic-based oral vaccine against SARS-CoV-2 Omicron variant B.1.1.529. International Journal of Molecular Sciences. 2023;24(18):13931. DOI: 10.3390/ijms241813931.
- Wang M, Fu T, Hao J, Li L, Tian M, Jin N, et al. A recombinant Lactobacillus plantarum strain expressing the spike protein of SARS-CoV-2. International Journal of Biological Macromolecules. 2020;160:736–740. DOI: 10.1016/j.ijbiomac.2020.05.239.
- Zhao Y, Zhang H, Zhao Z, Liu F, Dong M, Chen L, et al. Efficacy and safety of oral LL-37 against the Omicron BA.5.1.3 variant of SARS-CoV-2: a randomized trial. Journal of Medical Virology. 2023;95(8):e29035. DOI: 10.1002/jmv.29035.
- Yurina V, Adianingsih OR, Widodo N. Oral and intranasal immunization with food-grade recombinant Lactococcus lactis expressing high conserved region of SARS-CoV-2 spike protein triggers mice’s immunity responses. Vaccine: X. 2023;13:100265. DOI: 10.1016/j.jvacx.2023.100265.
- Xuan B, Park J, Yoo JH, Kim EB. Oral immunization of mice with cell extracts from recombinant Lactococcus lactis expressing SARS-CoV-2 spike protein. Current Microbiology. 2022;79(6):167. DOI: 10.1007/s00284-022-02866-w.
- Jia Q, Bielefeldt-Ohmann H, Maison RM, Masleša-Galić S, Cooper SK, Bowen RA, et al. Replicating bacterium-vectored vaccine expressing SARS-CoV-2 membrane and nucleocapsid proteins protects against severe COVID-19-like disease in hamsters. NPJ Vaccines. 2021;6:47. DOI: 10.1038/s41541-021-00321-8.
- Kurpas MK, Jaksik R, Kuś P, Kimmel M. Genomic analysis of SARS-CoV-2 Alpha, Beta and Delta variants of concern unco¬ vers signatures of neutral and non-neutral evolution. Viruses. 2022;14(11):2375. DOI: 10.3390/v14112375.
- Jiang H-W, Li Y, Tao S-C. SARS-CoV-2 peptides/epitopes for specific and sensitive diagnosis. Cellular & Molecular Immuno¬ logy. 2023;20(5):540–542. DOI: 10.1038/s41423-023-01001-4.
- Walls AC, Park Y-J, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. 2020;181(2):281–292. DOI: 10.1016/j.cell.2020.02.058.
- Patel R, Kaki M, Potluri VS, Kahar P, Khanna D. A comprehensive review of SARS-CoV-2 vaccines: Pfizer, Moderna & Johnson & Johnson. Human Vaccines & Immunotherapeutics. 2022;18(1):2002083. DOI: 10.1080/21645515.2021.2002083.
- Nagesha SN, Ramesh BN, Pradeep C, Shashidhara KS, Ramakrishnappa T, Krishnaprasad BT, et al. SARS-CoV-2 spike protein S1 subunit as an ideal target for stable vaccines: a bioinformatic study. Materials Today: Proceedings. 2022;49(part 3):904–912. DOI: 10.1016/j.matpr.2021.07.163.
- Tai W, He L, Zhang X, Pu J, Voronin D, Jiang S, et al. Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cellular & Molecular Immunology. 2020;17(6):613–620. DOI: 10.1038/s41423-020-0400-4.
- Shrivastava T, Singh B, Rizvi ZA, Verma R, Goswami S, Vishwakarma P, et al. Comparative immunomodulatory evaluation of the receptor-binding domain of the SARS-CoV-2 spike protein; a potential vaccine candidate which imparts potent humoral and Th1 type immune response in a mouse model. Frontiers in Immunology. 2021;12:641447. DOI: 10.3389/fimmu.2021.641447.
- Wang Y, Wang L, Cao H, Liu C. SARS-CoV-2 S1 is superior to the RBD as a COVID-19 subunit vaccine antigen. Journal of Medical Virology. 2021;93(2):892–898. DOI: 10.1002/jmv.26320.
- Yang J, Wang W, Chen Z, Lu S, Yang F, Bi Z, et al. A vaccine targeting the RBD of the S protein of SARS-CoV-2 induces protective immunity. Nature. 2020;586(7830):572–577. DOI: 10.1038/s41586-020-2599-8.
- Montgomerie I, Bird TW, Palmer OR, Mason NC, Pankhurst TE, Lawley B, et al. Incorporation of SARS-CoV-2 spike NTD to RBD protein vaccine improves immunity against viral variants. iScience. 2023;26(4):106256. DOI: 10.1016/j.isci.2023.106256.
- Law JLM, Logan M, Joyce MA, Landi A, Hockman D, Crawford K, et al. SARS-CoV-2 recombinant receptor-binding domain (RBD) induces neutralizing antibodies against variant strains of SARS-CoV-2 and SARS-CoV-1. Vaccine. 2021;39(40):5769–5779. DOI: 10.1016/j.vaccine.2021.08.081.
- Gaeng S, Scherer S, Neve H, Loessner MJ. Gene cloning and expression and secretion of Listeria monocytogenes bacteriophage-lytic enzymes in Lactococcus lactis. Applied and Environmental Microbiology. 2000;66(7):2951–2958. DOI: 10.1128/AEM.66.7.2951-2958.2000.
- Zhang H, Dong M, Xu H, Li H, Zheng A, Sun G, et al. Recombinant Lactococcus lactis expressing human LL-37 prevents deaths from viral infections in piglets and chicken. Probiotics and Antimicrobial Proteins [Internet]. 2023 September 25 [cited 2024 January 12]. Available from: https://link.springer.com/article/10.1007/s12602-023-10155-6. Epub ahead of print. DOI: 10.1007/s12602- 023-10155-6.
- Arnau J, Hjerl-Hansen E, Israelsen H. Heterologous gene expression of bovine plasmin in Lactococcus lactis. Applied Microbiology and Biotechnology. 1997;48(3):331–338. DOI: 10.1007/s002530051058.
- Achatz S, Skerra A. Comparative genome analysis of three classical E. coli cloning strains designed for blue/white selection: JM83, JM109 and XL1-Blue. FEBS Open Bio. 2024;14(6):888–905. DOI: 10.1002/2211-5463.13812.
- Itaya M. Bacillus subtilis 168 as a unique platform enabling synthesis and dissemination of genomes. Journal of General and Applied Microbiology. 2022;68(2):45–53. DOI: 10.2323/jgam.2021.12.001.
- de Ruyter PG, Kuipers OP, Beerthuyzen MM, van Alen-Boerrigter I, de Vos WM. Functional analysis of promoters in the nisin gene cluster of Lactococcus lactis. Journal of Bacteriology. 1996;178(12):3434–3439. DOI: 10.1128/jb.178.12.3434-3439.1996.
- Yanisch-Perron C, Vieira J, Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. DOI: 10.1016/0378-1119(85)90120-9.
- Vieira J, Messing J. New pUC-derived cloning vectors with different selectable markers and DNA replication origins. Gene. 1991;100:189–194. DOI: 10.1016/0378-1119(91)90365-i.
- MoBiTec Molecular Biotechnology [Internet]. Goettingen: MoBiTec; 2024 [cited 2024 January 12]. Available from: https:// www.mobitec.com/.
- Бельская ИВ. Создание векторной конструкции для экспрессии RBD SARS-CoV-2. В: Абиев Е, редактор. Лучший молодой ученый – 2022. V Международное книжное издание стран Содружества Независимых Государств. Том 18. Нур-Султан: [б. и.]; 2022. с. 39–42.
- Sambrook J, Russell DW. Molecular cloning: a laboratory manual. 3rd edition. New York: Cold Spring Harbor Laboratory Press; 2001. 3 volumes.
- Anagnostopoulos C, Spizizen J. Requirements for transformation in Bacillus subtilis. Journal of Bacteriology. 1961;81(5):741–746. DOI: 10.1128/jb.81.5.741-746.1961.
- NICE ® expression_system for Lactococcus lactis. The effective & easy-to-operate nisin controlled gene expression system [Internet]. Goettingen: MoBiTec; 2015 [cited 2024 January 12]. 34 p. Available from: https://www.mobitec.com/media/datasheets/mobitec gmbh / NICE_Expression_System-Handbook.pdf.
- Voskuil MI, Chambliss GH. Rapid isolation and sequencing of purified plasmid DNA from Bacillus subtilis. Applied and Environmental Microbiology. 1993;59(4):1138–1142. DOI: 10.1128/aem.59.4.1138-1142.1993.
- Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. PNAS. 1977;74(12):5463–5467. DOI: 10.1073/pnas.74.12.5463.
- Logunov DY, Dolzhikova IV, Shcheblyakov DV, Tukhvatulin AI, Zubkova OV, Dzharullaeva AS, et al. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia. The Lancet. 2021;397(10275):671–681. DOI: 10.1016/S0140-6736(21)00234-8.
- Dormeshkin D, Katsin M, Stegantseva M, Golenchenko S, Shapira M, Dubovik S, et al. Design and immunogenicity of SARSCoV-2 DNA vaccine encoding RBD-PVXCP fusion protein. Vaccines. 2023;11(6):1014. DOI: 10.3390/vaccines11061014.
- Frees D, Ingmer H. ClpP participates in the degradation of misfolded protein in Lactococcus lactis. Molecular Microbiology. 1999;31(1):79–87. DOI: 10.1046/j.1365-2958.1999.01149.x.
Copyright (c) 2024 Экспериментальная биология и биотехнология
Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial» («Атрибуция — Некоммерческое использование») 4.0 Всемирная.
Авторы, публикующиеся в данном журнале, соглашаются со следующим:
- Авторы сохраняют за собой авторские права на работу и предоставляют журналу право первой публикации работы на условиях лицензии Creative Commons Attribution-NonCommercial. 4.0 International (CC BY-NC 4.0).
- Авторы сохраняют право заключать отдельные контрактные договоренности, касающиеся неэксклюзивного распространения версии работы в опубликованном здесь виде (например, размещение ее в институтском хранилище, публикацию в книге) со ссылкой на ее оригинальную публикацию в этом журнале.
- Авторы имеют право размещать их работу в интернете (например, в институтском хранилище или на персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу. (См. The Effect of Open Access).