УДК 621.357.7

МИКРОТРИБОЛОГИЧЕСКОЕ ПОВЕДЕНИЕ МЕТАЛЛ-МАТРИЧНЫХ НАНОКОМПОЗИТОВ НА ОСНОВЕ СЛОИСТЫХ ОКСИДОВ, ВЫПОЛНЯЮЩИХ ФУНКЦИЮ НАНОКОНТЕЙНЕРНЫХ СТРУКТУР

А. С. ЛОГВИНОВИЧ¹, Т. В. СВИРИДОВА¹, Д. В. СВИРИДОВ¹, А. В. КАПАРИХА¹

¹⁾Белорусский государственный университет, пр. Независимости, 4, 220030, г. Минск, Беларусь

С использованием электрохимического соосаждения никеля и дисперсного триоксида молибдена слоистого строения получены металл-матричные композиты, в которых фаза внедрения может играть роль контейнера, удерживающего во внутреннем объеме интеркалированные органические соединения. Показано, что интеркаляция бензотриазола (ингибитора коррозии) в межслоевое пространство оксида обеспечивает эффективное подавление трибокоррозии никелевой матрицы.

Ключевые слова: металл-матричные композиты; триоксид молибдена; бензотриазол; микротрибология; атомносиловая микроскопия; контейнерные системы.

Благодарность. Работа выполнена частично в рамках проекта Белорусского республиканского фонда фундаментальных исследований (грант № X17PM-073).

MICROTRIBOLOGICAL BEHAVIOR OF METAL-MATRIX NANOCOMPOSITES BASED ON THE NANOCONTAINER-LIKE LAYERED OXIDES

A. S. LOGVINOVICH^a, T.V. SVIRIDOVA^a, D. V. SVIRIDOV^a, A. V. KAPARIKHA^a

^aBelarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus Corresponding author: A. S. Logvinovich (logvinovich2357@gmail.com)

The electrochemical codeposition of nickel with the dispersed molybdenum oxide of layered structure yields metalmatrix composites in which the second phase is capable to play a role of container retaining organics in its internal volume. It is shown that the intercalation of benzotriazole (a well-known corrosion inhibitor) into the interlayer volume of MoO_3 ensures an effective suppression of tribocorrosion of matrix metal.

Key words: metal-matrix composites; molybdenum trioxide; benzotriazole; microtribology; atomic-force microscopy; container systems.

Acknowledgements. The work was carried partially out within the framework of the Belarusian Republican for Foundation for Fundamental Research project (grant No. X17PM-073).

Образец цитирования:

Логвинович А. С., Свиридова Т. В., Свиридов Д. В., Капариха А. В. Микротрибологическое поведение металл-матричных нанокомпозитов на основе слоистых оксидов, выполняющих функцию наноконтейнерных структур // Журн. Белорус. гос. ун-та. Химия. 2018. № 1. С. 54–60.

Авторы:

Александр Сергеевич Логвинович – аспирант кафедры неорганической химии химического факультета. Научный руководитель – Т. В. Свиридова.

Татьяна Викторовна Свиридова – кандидат химических наук; доцент кафедры неорганической химии химического факультета.

Дмитрий Вадимович Свиридов – член-корреспондент НАН Беларуси, доктор химических наук; декан химического факультета.

Алексей Владимирович Капариха – кандидат химических наук; ведущий научный сотрудник кафедры неорганической химии химического факультета.

For citation:

Logvinovich A. S., Sviridova T. V., Sviridov D. V., Kaparikha A. V. Microtribological behavior of metal-matrix nanocomposites based on the nanocontainer-like layered oxides. *J. Belarus. State Univ. Chem.* 2018. No. 1. P. 54–60 (in Russ.).

Authors:

Alexander S. Logvinovich, postgraduate student at the department of inorganic chemistry, faculty of chemistry.

logvinovich2357@gmail.com

Tatsiana V. Sviridova, PhD (chemistry); associate professor at the department of inorganic chemistry, faculty of chemistry. *sviridova@bsu.by*

Dmitri V. Sviridov, corresponding member of the National Academy of Sciences of Belarus, doctor of science (chemistry); dean of the faculty of chemistry.

sviridov@bsu.by

Alexei V. Kaparikha, PhD (chemistry); leading researcher at the department of inorganic chemistry, faculty of chemistry. *logvinovich2357@gmail.com*

Введение

Использование дисперсных оксидов ламеллярного строения (в частности, триоксида молибдена гексагональной модификации) в качестве фазы внедрения для электрохимического осаждения металл-матричных композитов открывает возможность получения антифрикционных покрытий, способных выдерживать значительные механические нагрузки и функционировать при высоких температурах [1; 2]. В то же время указанные оксиды слоистого строения за счет образования интеркалятов органических соединений могут выступать в качестве контейнерных систем, способных дозированно высвобождать инкапсулированные в межплоскостных пространствах функциональные соединения (в том числе ингибиторы коррозии), что должно обеспечить подавление коррозии матричного металла в режиме отрицательной обратной связи. Это, в свою очередь, может создать условия для подавления трибокоррозии при высоких механических нагрузках.

Целью настоящей работы является микротрибологическое исследование электрохимически осажденных композиционных покрытий никель – дисперсный триоксид молибдена, в которых оксидная фаза внедрения в силу присущего ей слоисто-канального строения способна выполнять функцию наноконтейнерной системы – депо для ингибиторов коррозии.

Методика эксперимента

Электрохимическое осаждение композитных покрытий проводили в электролитической ячейке при фиксированной плотности катодного тока 2 А/дм². В качестве подложки использовали медную фольгу. Роль анода играл никелевый электрод. Осаждение вели из стандартного сульфатного электролита никелирования следующего состава: NiSO₄ (200 г/л), NiCl₂ (50 г/л), H₃BO₃ (200 г/л), pH 4,5–5,0, в котором был суспендирован дисперсный оксид молибдена (0,5 г/л).

Дисперсный триоксид молибдена получен с использованием сольвотермического метода [3]. При этом прекурсором служила молибденовая кислота (получена путем ионного обмена), в которую в качестве инкапсулируемого ингибитора коррозии был добавлен бензотриазол (БТА) в количестве 15 г/л. Синтезированная таким образом дисперсная оксид-молибденовая фаза, содержащая интеркалированный БТА, многократно промывалась в дистиллированной воде в целях удаления физически сорбированного БТА. По данным спектроскопического исследования, количество БТА в оксидной фазе при этом падало с 61 до 35 мас. %.

Анализ морфологии поверхности полученных композитных покрытий выполнен с помощью сканирующего электронного микроскопа LEO-1420 (Германия) и атомно-силового микроскопа NT-206 (Беларусь) в режиме сканирования. Кроме того, микротрибологическое исследование проводилось с применением атомно-силового микроскопа в контактно-статическом режиме трибометрической линии (в качестве зонда использовался шарик из сплава BK6 диаметром 700 мкм, количество циклов прочерчивания линии достигало 500), а также исходя из торсионного закручивания кантилевера в результате контакта с изучаемой поверхностью.

Общую износостойкость пленок осажденного металл-матричного композита устанавливали по потере массы образца в условиях сухого трения при нагрузке 1,1 кг/см² в течение 2 ч (площадь дорожки трения составляла 1,8 см²).

Коррозионную устойчивость композитных пленок оценивали по результатам гравиметрических коррозионных испытаний, проведенных в среде 0,5 моль/л H₂SO₄ при температуре 70 °C. Поляризационные кривые и спектры импеданса в контакте с коррозионной средой получены с помощью потенциостата Autolab PGSTAT204 (Нидерланды) с функцией спектрометра электрохимического импеданса.

Результаты исследований и их обсуждение

По данным рентгенографического исследования, триоксид-молибденовая фаза, синтезированная в присутствии БТА, представляла собой смесь гексагонального MoO_3 и его моноклинного дигидрата $MoO_3 \cdot 2H_2O$, причем в дифрактограммах наблюдался сдвиг всех рефлексов в сторону больших углов как следствие интеркалирования бензотриазола в межслоевое пространство фазы без нарушения кристаллической структуры оксида-носителя. В то же время в соответствии с ИК-спектроскопией (рис. 1) основные частоты колебаний для БТА (в частности, валентные колебания v(CN) в области 1210 см⁻¹) при интеркаляции в MoO_3 практически не изменяются и, значит, внедрение БТА в оксидную матрицу не сопровождается химическим связыванием ингибитора в межслоевом объеме. Электрохимическое соосаждение никеля и триоксида молибдена приводит к формированию металл-матричного композита, содержащего до 0,7 мас. % оксида [4]. При этом внедрение частиц оксидной фазы в металлическую

матрицу не влияет на кристаллизацию металла и не приводит к изменению размеров областей когерентного рассеяния, которое, как и в случае исходного гальванического никеля, составляет 7 нм, что позволяет отнести композиты Ni-MoO₃ к нанокомпозитам.

Puc. 1. ИК-спектр частиц дисперсного триоксида молибдена, допированного БТА. v(OH)_{гидр} – частота колебаний для гидратной воды; v(OH)_{терм} – частота колебаний для терминальных гидроксильных групп
Fig. 1. IR spectra of dispersed molybdenum trioxide doped with benzotriazole. v(OH)_{гидр} is the frequency of oscillations of hydration water; v(OH)_{терм} – frequency of oscillations for terminal hydroxyl groups

Результаты исследований, выполненных методом атомно-силовой микроскопии, свидетельствуют о том, что шероховатость поверхности никеля при внедрении в его объем частиц триоксида молибдена повышается (рис. 2) и среднее отклонение профиля поверхности увеличивается с 432,8 до 648,8 нм. При этом новые структурные элементы, формирующие поверхность, по размеру и форме соответствуют частицам инкорпорированной оксид-молибденовой фазы. Такая морфология поверхности обусловлена протеканием процесса осаждения по редокс-механизму [1; 2; 5], обеспечивающему перелокализацию данного процесса непосредственно на оксид-молибденовую фазу и эффективное инкапсулирование частиц оксида матричным металлом.

Выполненное электрохимическое исследование (рис. 3) показало, что переход к композитному покрытию Ni-MoO₃ приводит к снижению эффективности окисления электродной поверхности в кислой коррозионной среде. В свою очередь, согласно гравиметрическим измерениям инкорпорирование частиц триоксида молибдена значительно (5-кратно) снижает скорость коррозии никелевой матрицы. Такое пассивирующее действие инкорпорируемой оксид-молибденовой фазы связано прежде всего с тем обстоятельством, что она может выступать в качестве источника молибдат-ионов, обладающих ингибирующим действием [5; 6]. Инкорпорирование в никелевый носитель частиц оксида с интеркалированным бензотриазолом способствует дальнейшему снижению скорости коррозии (см. таблицу) и подавлению эффективности анодного окисления никеля (см. рис. 3), что является результатом действия ингибирующей добавки.

Результаты гравиметрического коррозионного исс	следования	пленок
гальванического никеля и композитов на	его основе	

Содержание оксида в элек- тролите, г/л	Содержание оксида в композите, мас. %	Средняя скорость коррозии, мг/(см ² · ч)
Ni	_	4,6
Ni-MoO ₃	0,7	1,7
Ni-MoO ₃ : БТА	0,6	1,4

Results of gravimetric corrosion testing of galvanic nickel films and nickel-based composites

На рис. 4 видно, что в контакте с коррозионной средой (3 % NaCl) спектр электрохимического импеданса для пленки никеля в координатах Найквиста имеет форму, близкую к правильному полукругу, и описывается простой эквивалентной схемой, состоящей из сопротивления раствора R_s , емкости двойного электрического слоя $C_{\rm H}$ и включенного параллельно сопротивления переноса заряда R_c . Отсутствие деформаций спектра свидетельствует о незначительном вкладе в электрохимические измерения со стороны пассивной пленки на поверхности никеля. Переход к композиту Ni-MoO₃ : БТА сопровождается резким возрастанием величины импеданса, что указывает на снижение эффективности коррозионного процесса. При этом спектр приобретает более сложную форму, которая описывается эквивалентной схемой, включающей в себя дополнительно емкостный (C_a) и омический (R_a) элементы. Это подтверждает образование поверхностного плотного адсорбционного слоя (с участием сорбирующегося бензотриазола и молибдата, который также способен выступать в качестве ингибитора [5]), обеспечивающего подавление коррозии.

Выполненное комплексное трибологическое исследование (рис. 5) показало, что инкорпорирование дисперсного триоксида молибдена в осадок гальванического никеля обеспечивает формирование износостойких покрытий (износостойкость композитов превышает соответствующий показатель для

Рис. 3. Циклические вольтамперограммы для пленки гальванического никеля (1), композита Ni-MoO₃ (2), композита Ni-MoO₃ : БТА (3) в 0,5 моль/л H_2SO_4 . Скорость развертки потенциала – 2 мВ · c⁻¹

Fig. 3. Cyclic voltammograms for galvanic nickel (1), Ni-MoO₃ composite (2), Ni-MoO₃ : BTA composite (3). Electrolyte: 0.5 mol/l H₂SO₄. Sweep speed of potential – 2 mV · s⁻¹ пленок никеля в 4,5 раза). При этом высокая износостойкость здесь является следствием самосмазывающих свойств, сообщаемых композиту инкорпорированным слоистым оксидом: по данным микротрибологического исследования, коэффициент трения для композитов составляет 0,87 и даже меньше (0,05–0,15 при макроскопическом зондировании [5]), в то время как в случае гальванического никеля, полученного в сопоставимых условиях, значение коэффициента превышает 1 (как в процессе микротрибологических измерений, так и при макроскопическом зондировании).

Микротрибологическое исследование показало, что в случае гальванического никеля в ходе циклического механического воздействия наблюдается постепенное монотонное поднятие дна трека зонда, что свидетельствует о превалирующем значении трибокоррозии в процессе механического износа, сопровождающемся накоплением оксидных продуктов. В то же время в случае инкорпорирования в никель частиц оксида молибдена, содержащих Журнал Белорусского государственного университета. Химия. 2018. № 1. С. 54–60 Journal of the Belarusian State University. Chemistry. 2018. No. 1. P. 54–60

Рис. 4. Диаграммы Найквиста для пленки гальванического никеля (1) и композита Ni-MoO₃: БТА (2) в коррозионной среде *Fig. 4.* Nyquist plots for galvanic nickel film (1) and Ni-MoO₃: BTA composite (2) in corrosive solution

Рис. 5. Результаты микротрибологического исследования гальванического никеля (*a*) и композитных пленок Ni-MoO₃ : БТА (*б*): *dZ* – разность величин нормального отклонения зонда при прямом и обратном ходе; *f* – коэффициент трения. Величина скручивания кантилевера дана в относительных единицах

Fig. 5. The results of microtribological study of galvanic nickel (*a*) and composite films Ni-MoO₃ : BTA (*b*): dZ – the difference between the normal deviation of the probe in the forward and reverse mode; *f* is the coefficient of friction. The twisting of the cantilever is given in arbitery units

бензотриазол, механическое окислительное изнашивание подавляется вследствие дозированного высвобождения молекул антикоррозионного агента из частиц слоистого оксида и дно трека в ходе циклирования начинает постепенно заглубляться (рис. 6, δ). Результатом действия выделяющегося ингибитора являются замедление трибокоррозии и подавление формирования оксида никеля в пределах дорожки трения.

Рис. 6. Изменение положения дна трека зонда атомно-силового микроскопа вдоль координаты Z для гальванического никеля (a) и композитных пленок Ni-MoO₃ : БТА (б). AB – направление трека движения зонда

Fig. 6. The evolution of the position of the bottom of AFM probe track along *Z*-coordinate for galvanic nickel (*a*) and composite films Ni-MoO₃ : BTA (*b*). AB is the direction of the track

Заключение

Выполненное исследование показывает, что внедрение в металлическую матрицу частиц слоистых оксидов, содержащих интеркалированный ингибитор коррозии, позволяет не только повысить коррозионную устойчивость получаемых металл-матричных композитов, но и подавить трибокоррозию, обеспечивая таким образом резкое повышение устойчивости по отношению к механическому износу. Принципиальным является то, что слоистые оксиды, играющие роль контейнерных структур, сохраняют способность сообщать поверхности композита самосмазывающие свойства.

Библиографические ссылки

1. Sviridova T. V., Stepanova L. I., Sviridov D. V. Electrochemical synthesis of Ni-MoO₃ composite films: redox-mediated mechanism of electrochemical growth of metal-matrix composite // J. Solid State Electrochem. 2012. Vol. 16, issue 12. P. 3799–3803. DOI: 10.1007/s10008-012-1816-2.

2. Свиридова Т. В. Композиционные материалы: металл-матричные композиты. Минск : БГУ, 2012.

3. Sviridova T. V., Stepanova L. I., Sviridov D. V. Nano- and microcrystals of molybdenum trioxide and metal-matrix composites on their basis // Molybdenum: Characteristics, Production Applications / ed. by M. Ortiz. New York, 2012. P. 147–179.

4. Свиридова Т. В., Логвинович А. С., Свиридов Д. В. Электрохимическое соосаждение никеля и частиц триоксида молибдена с регулируемой редокс-активностью // Докл. НАН Беларуси. 2015. Т. 59, № 2. С. 68–71.

5. *Šviridova T. V., Logvinovich A. S., Sviridov D. V.* Electrochemical growing of Ni-MoO₃ nanocomposite coatings via redox mechanism // Surf. Coat. Technol. 2017. Vol. 319. P. 6–11. DOI: 10.1016/j.surfcoat.2017.03.41.

6. Igual Muñoz A., Garcia Antón J., Guiñón J. L., et al. Comparison of inorganic inhibitors of copper, nickel and copper-nickels in aqueous lithium bromide solution // Electrochim. Acta. 2004. Vol. 50. P. 957–966. DOI: 10.1016/j.electacta.2004.07.048.

References

1. Sviridova T. V., Stepanova L. I., Sviridov D. V. Electrochemical synthesis of Ni-MoO₃ composite films: redox-mediated mechanism of electrochemical growth of metal-matrix composite. *J. Solid State Electrochem.* 2012. Vol. 16, issue 12. P. 3799–3803. DOI: 10.1007/s10008-012-1816-2.

2. Sviridova T. V. [Composition materials: metal-matrix composites]. Minsk : BSU, 2012 (in Russ.).

3. Sviridova T. V., Stepanova L. I., Sviridov D. V. Nano- and microcrystals of molybdenum trioxide and metal-matrix composites on their basis. *Molybdenum: Characteristics, Production Applications.* New York, 2012. P. 147–179.

4. Sviridova T. V., Logvinovich A. S., Sviridov D. V. Electrochemical codeposition of nickel and molybdenum trioxide with controlled redox-activity. *Dokl. Natl. Acad. Sci. Belarus.* 2015. Vol. 59, No. 2. P. 68–71 (in Russ.).

5. Sviridova T. V., Logvinovich A. S., Sviridov D. V. Electrochemical growing of Ni-MoO₃ nanocomposite coatings via redox mechanism. *Surf. Coat. Technol.* 2017. Vol. 319. P. 6–11. DOI: 10.1016/j.surfcoat.2017.03.41.

6. Igual Muñoz A., Garcia Antón J., Guiñón J. L., et al. Comparison of inorganic inhibitors of copper, nickel and copper-nickels in aqueous lithium bromide solution. *Electrochim. Acta.* 2004. Vol. 50. P. 957–966. DOI: 10.1016/j.electacta.2004.07.048.

Статья поступила в редколлегию 22.11.2017. Received by editorial board 22.11.2017.