УДК 666.227.8,666.11.01

ПОЛУЧЕНИЕ И ИССЛЕДОВАНИЕ ЛЮМИНЕСЦЕНТНЫХ СТЕКЛОКЕРАМИК НА ОСНОВЕ ИОДИДА БАРИЯ, АКТИВИРОВАННОГО Eu²⁺

*Т. А. СОЛОМАХА*¹⁾, *Е. Е. ТРУСОВА*²⁾, *Е. В. ТРЕТЬЯК*¹⁾

¹⁾Научно-исследовательский институт физико-химических проблем БГУ, ул. Ленинградская, 14, 220006, г. Минск, Беларусь ²⁾Белорусский государственный технологический университет, ул. Свердлова, 13А, 220006, г. Минск, Беларусь

Предложен оригинальный метод получения стеклокерамик на основе порошка иодида бария, активированного Eu^{2+} , исследованы их структурные и спектрально-люминесцентные свойства. По данным рентгенофазового анализа установлено, что стеклокерамики, содержащие $BaI_2 \cdot 2H_2O$ и BaI_2 , формируются при использовании в процессе синтеза 50 мас. % исходного порошка иодида. Подтверждена принципиальная возможность применения стеклокерамик для предупреждения контакта порошка иодида с парами воды.

Ключевые слова: люминесценция; Eu²⁺; стеклокерамика; иодид бария.

Благодарность. Авторы выражают благодарность финансовой поддержке Белорусской государственной программы научных исследований «Фотоника, опто- и микроэлектроника» (договор № 1.2.03).

PREPARATION AND STUDY OF THE LUMINESCENT GLASS-CERAMICS BASED ON BARIUM IODIDE ACTIVATED WITH Eu²⁺

T. A. SALAMAKHA^a, E. E. TRUSOVA^b, Y. U. TRATSIAK^a

 ^aResearch Institute for Physical Chemical Problems, Belarusian State University, 14 Lieninhradskaja Street, Minsk 220006, Belarus
^bBelarusian State Technological University, 13A Sviardlova Street, Minsk 220006, Belarus Corresponding author: T. A. Salamakha (solomakha.tanja@gmail.com)

In this paper an original method for obtaining glass-ceramics based on barium iodide powder activated with Eu^{2+} is proposed, their structural and spectral-luminescent properties are investigated. X-ray diffraction analysis has evidenced

Образец цитирования:

Соломаха ТА, Трусова ЕЕ, Третьяк ЕВ. Получение и исследование люминесцентных стеклокерамик на основе иодида бария, активированного Eu²⁺. *Журнал Белорусского государственного университета. Химия.* 2019;1:38–44. https://doi.org/10.33581/2520-257X-2019-1-38-44

For citation:

Salamakha TA, Trusova EE, Tratsiak YU. Preparation and study of the luminescent glass-ceramics based on barium iodide activated with Eu²⁺. *Journal of the Belarusian State University. Chemistry.* 2019;1:38–44. Russian. https://doi.org/10.33581/2520-257X-2019-1-38-44

Авторы:

Татьяна Александровна Соломаха – младший научный сотрудник лаборатории нанохимии.

Екатерина Евгеньевна Трусова – кандидат технических наук; научный сотрудник кафедры технологии стекла и керамики факультета химической технологии и техники.

Евгений Владимирович Третьяк – кандидат химических наук; старший научный сотрудник лаборатории нанохимии.

Authors:

Tatsiana A. Salamakha, junior researcher at the laboratory of nanochemistry.

solomakha.tanja@gmail.com

Ekaterina E. Trusova, PhD (engineering); researcher at the department of glass and ceramic technology, faculty of chemical technology and engineering. *trusovakaterina@mail.ru*

Yauhen U. Tratsiak, PhD (chemistry); senior researcher at the laboratory of nanochemistry.

that glass-ceramics containing $BaI_2 \cdot 2H_2O$ and BaI_2 are formed when 50 mas. % of the starting iodide powder is used in the synthesis process. The possibility of using glass-ceramics for preventing the contact of iodide powder with water vapor has been confirmed.

Key words: luminescence; Eu²⁺; glass-ceramics; barium iodide.

Acknowledgements. Authors gratefully acknowledge the financial support of the Belarusian State Program of Scientific Research «Photonics, opto- and microelectronics» (contract No. 1.2.03).

Введение

Светоизлучающие диоды белого цвета свечения (белые светодиоды) являются перспективными источниками света благодаря своей экологичности и меньшему потреблению энергии по сравнению с лампами накаливания и люминесцентными лампами. Также неоспоримые преимущества белых светодиодов – длительный срок службы, высокие светоотдача и яркость, термическая устойчивость, небольшой размер [1; 2]. Для получения белого светодиода могут быть применены два подхода: первый включает в себя комбинацию синего светодиода с люминофором желтого цвета свечения, например УАG: Се; второй – использование УФ-чипа с тремя люминофорами красного, зеленого и синего цветов свечения, объединенных в одном корпусе [3; 4]. В качестве люминофора синего цвета свечения могут быть использованы соединения, активированные ионами европия [5]. Длина волны излучения Eu²⁺ лежит в диапазоне от фиолетовой до красной области. Люминесценция Eu^{2+} обусловлена 5d - 4f-переходом, являющимся чувствительным к кристаллическому окружению [6]. Таким образом, варьируя состав матрицы, можно управлять положением полосы люминесценции Eu²⁺, сдвигая ее в синюю область, что позволяет сделать соединения, активированные ионами европия, перспективными для применения в качестве люминофоров синего цвета свечения в белых светодиодах. Выбор в роли матрицы для Eu^{2+1} иодида бария (BaI₂) имеет следующие преимущества: низкую стоимость (30 долл./кг), умеренную плотность (~5,1 г/см³), термическую устойчивость ($T_{nn} = 711$ °C), возможность стабилизировать ионы европия в состоянии 2+. К недостаткам можно отнести высокую гигроскопичность, что не позволяет использовать его в форме порошка в качестве конечного продукта. Получение на основе иодида бария, активированного Eu^{2+} , стеклокерамических материалов дает возможность нивелировать данный недостаток [7].

В соответствии с вышесказанным целью настоящего исследования являлась разработка метода синтеза стеклокерамики на основе иодида бария, активированного Eu²⁺, изучение ее структурных и спектрально-люминесцентных свойств. Для получения стеклокерамик использован двухстадийный подход, в котором полученные на первой стадии частицы иодида бария вводили в стеклянную матрицу. Реализация такого подхода обусловлена трудностью выращивания частиц иодида бария непосредственно в стеклянной матрице.

Материалы и методы

В качестве исходных реагентов использовали $Ba(NO_3)_2$, $Eu(NO_3)_3 \cdot 6H_2O$, NH_4HCO_3 , NH_4I , $BaCO_3$ и H_3BO_3 . Чистота всех реактивов была не ниже «ч. д. а.». Порошки $BaI_2 : Eu^{2+}$ получали с помощью двухстадийного метода, описанного ранее [8]: первая стадия включала в себя синтез $BaCO_3 : Eu^{3+}$, из которого получали $BaI_2 : Eu^{2+}$ на второй стадии. **Синтез прекурсора.** Порошок $BaCO_3 : Eu^{3+}$ получали методом обратного осаждения. Необходи-

Синтез прекурсора. Порошок BaCO₃ : Eu³⁺ получали методом обратного осаждения. Необходимое количество 0,1 моль/л раствора Eu(NO₃)₃ добавляли к 0,2 моль/л раствору Ba(NO₃)₂. Eu(NO₃)₃ добавляли из расчета замещения 5 ат. % Ba²⁺ на Eu³⁺. Полученную смесь нитратов приливали по каплям к 1,2 моль/л раствору NH₄HCO₃ при постоянном перемешивании. Полученный осадок BaCO₃ : Eu³⁺ отделяли центрифугированием, промывали два раза дистиллированной водой и сушили на воздухе в течение 12 ч при 80 °C.

Синтез иодида бария. Смесь порошков BaCO₃ : Eu³⁺ и NH₄I, взятых в стехиометрическом соотношении, измельчали в агатовой ступке и переносили в кварцевую лодочку, которую помещали в кварцевую трубку, и пропускали аргон в течение 10 мин. Затем трубку выдерживали 30 мин в трубчатой печи, предварительно нагретой до 400 °C. После этого образец охлаждали до комнатной температуры. Прогрев и охлаждение проводили в непрерывном токе аргона. Полученный светло-серый порошок помещали в герметичный светонепроницаемый контейнер. Образец обозначали как BaI₂.

Суммарный процесс можно описать следующим уравнением:

$$BaCO_3 + Eu_2(CO_3)_3 + 8NH_4I \rightarrow BaI_2 + 2EuI_2 + 2I_2 + 4CO_2 + 4H_2O + 8NH_3.$$
 (1)

39

Синтез легкоплавкого стекла. Для получения стеклянной матрицы состава 60 мас. % BaO и 40 мас. % B₂O₃ в качестве исходных реагентов использовали BaCO₃ и H₃BO₃. H₃BO₃ брали с 15 % избытком. Синтез стекол проводили в фарфоровых тиглях в электрической печи при 1000 °C с выдержкой при максимальной температуре 1 ч. Выработку стекол осуществляли путем отливки расплава на металлическую пластину. Полученные стекла были прозрачными и бесцветными.

Синтез стеклокерамики. Смесь порошка Bal₂ и тонкоизмельченного стекла BaO-B₂O₃, взятых в массовом соотношении 0; 5; 10; 25 и 50 мас. % BaI₂, в кварцевой лодочке помещали в кварцевую трубку, через которую пропускали аргон в течение 10 мин. После этого трубку помещали в трубчатую печь, предварительно нагретую до 200 °C, и выдерживали в течение 15 мин для удаления влаги, затем прогревали еще 15 мин при 900 °C. После синтеза образцы стеклокерамик извлекали из трубки и быстро охлаждали на воздухе. Обозначения образцов в зависимости от содержания порошка BaI₂ (мас. %):

№ образца	ВаІ ₂ , мас. %
Образец 1	0
Образец 2	5
Образец 3	10
Образец 4	25
Образец 5	50

Рентгенограммы исследуемых порошков и стеклокерамики записывали на рентгеновском дифрактометре PANalytical Empyrean (Нидерланды) с использованием Си K_{α} -излучения ($\lambda = 1,5406$ Å) в диапазоне 10–70 для 20. Чтобы предотвратить контакт образца иодида бария с парами воды из воздуха, его помещали в держатель между двумя полиэтиленовыми пленками, которые на рентгенограмме проявляются рефлексами с максимумами при 20 21,5° и 23,8°. Обработку полученных рентгенограмм с последующим расчетом параметров элементарной ячейки проводили в программах *WinPLOTR-2006* и *DICVOL06* пакета *FullPROF*.

Спектры люминесценции (СЛ) и спектры возбуждения люминесценции (СВЛ) порошков и стеклокерамики регистрировали на спектрофлуориметре FluoroMax-2 (Япония), исправляли с учетом спектральной чувствительности системы регистрации и распределения спектральной плотности возбуждающего излучения соответственно. Все СЛ и СВЛ записывали при температуре 298 К.

Результаты и их обсуждение

На рентгенограмме образца BaI₂ (рис. 1) наблюдаются как рефлексы, характерные для BaI₂ (PDF № 73–1849), так и слабоинтенсивные – для BaI₂ · H₂O (PDF № 39–1300). Наличие на рентгенограммах рефлексов для кристаллогидрата может быть обусловлено взаимодействием образца с парами воды, выделяемыми в процессе синтеза (см. (1)), при перемещении его в контейнер. Слабоинтенсивные рефлексы для фазы BaI₂ · H₂O, по сравнению с фазой BaI₂, свидетельствуют о незначительном содержании ее в образце.

Рис. 1. Рентгенограмма порошка BaI_2 . Уширенные рефлексы с максимумами при 21,5° и 23,8° относятся к полиэтиленовой пленке *Fig. 1.* XRD pattern of BaI_2 sample. Broaden reflections with maxima at 21.5° and 23.8° refers to polyethylene film

Расчетные значения параметров элементарной ячейки для BaI₂ (табл. 1) хорошо согласуются с табличными данными для BaI₂ (PDF № 73–1849). Ввиду незначительного содержания фазы BaI₂ · H₂O в образце расчет параметров элементарной ячейки для нее не производился.

Таблица 1

Параметры элементарной ячейки синтезированного BaI₂

Table 1

Parameters of the cell unit of the synthesized BaI₂ sample

Пространственная группа	<i>a</i> , Å	b, Å	<i>c</i> , Å	
Pmmm	10,6851 (3)	8,9128(2)	5,3007(2)	

Рентгенограммы образцов стеклокерамики с различным содержанием порошка BaI₂ представлены на рис. 2, *а*. Образцы 1–4 являются рентгеноаморфными, что, очевидно, связано с растворением частиц иодида бария стеклянной матрицей в процессе синтеза. Для образца 5 (рис. 2, *б*) на рентгенограмме наблюдаются рефлексы, характерные для BaI₂ · 2H₂O (PDF № 31–0145) и для BaI₂ (PDF № 73–1849).

Puc. 2. Рентгенограммы образцов стеклокерамики с различным содержанием порошка BaI₂ (*a*) и образца стеклокерамики с содержанием порошка BaI₂ 50 мас. % (δ)

Fig. 2. XRD patterns of glass-ceramic samples with varying content of BaI₂ powder (a).

XRD pattern of glass-ceramic sample with content of BaI_2 powder 50 wt. % (b)

Большая интенсивность рефлексов для $BaI_2 \cdot 2H_2O$ указывает на доминирование этой фазы в образце. Данный эффект может быть обусловлен увеличением площади поверхности стеклокерамики при ее измельчении для подготовки к рентгенофазовому анализу, что приводит к гидратации частиц иодида бария парами воды из атмосферы. Тем не менее присутствие на рентгенограмме рефлексов, характерных для BaI_2 , указывает на возможность использования стеклокерамик для предупреждения контакта BaI_2 с парами воды.

Рассчитанные параметры элементарной ячейки согласуются с табличными данными для BaI₂ · 2H₂O (PDF № 31–0145) и BaI₂ (PDF № 73–1849) (табл. 2).

Таблица 2

Параметры элементарных ячеек синтезированного образца стеклокерамики с содержанием порошка BaI₂ 50 мас. %

Table 2

Parameters of the cell units of the synthesized glass-ceramic sample with content of BaI₂ powder 50 wt. %

Соединение	Пространственная группа	<i>a</i> , Å	<i>b</i> , Å	<i>c</i> , Å	α, град	β, град	ү, град
$BaI_2 \cdot 2H_2O$	P2/m	11,1296 (176)	7,6151 (4)	8,6434 (4)	90,0000	112,4120 (97)	90,0000
BaI ₂	Pmmm	10,7110(5)	8,9066(6)	5,3030(3)	90,0000	90,0000	90,0000

Как видно из табл. 2, значение параметров ячейки для BaI_2 отличается от таковых в порошке, что, вероятнее всего, связано со взаимодействием BaI_2 со стеклянной матрицей. Это может проявляться как диффузией Ba^{2+} в (из) структуры BaI_2 , так и диффузией Γ в стеклянную матрицу.

СЛ и СВЛ полученного образца ВаI₂ представлены на рис. 3. Уширенная полоса СВЛ от 255 до 400 нм обусловлена переходом $\text{Eu}^{2+} 4f \rightarrow 5d$ [6].

 $\begin{array}{l} Puc. \ 3. \ \text{CBЛ} \ (\lambda_{_{\rm H3Л}} = 415 \ \text{hm}) \ (1) \\ \text{и CЛ} \ (\lambda_{_{\rm B036}} = 320 \ \text{нм} \ (2) \ \text{и} \ \lambda_{_{\rm B036}} = 393 \ \text{нм} \ (3)) \ \text{порошка} \ \text{BaI}_2 : \ \text{Eu}^{2+} \\ Fig. \ 3. \ \text{PLE} \ (\lambda_{_{\rm em}} = 415 \ \text{nm}) \ (1) \\ \text{and PL spectra} \ (\lambda_{_{\rm ex}} = 320 \ \text{nm} \ (2) \ \text{and} \ \lambda_{_{\rm ex}} = 393 \ \text{nm} \ (3)) \ \text{for the BaI}_2 : \ \text{Eu}^{2+} \ \text{powder} \end{array}$

Как видно из рис. 3, СЛ порошка BaI_2 : Eu^{2+} представляет собой симметричную узкую полосу с максимумом при 415 нм. Данная полоса соответствует люминесценции Eu^{2+} в BaI_2 , который представляет собой доминирующую фазу в образце. Также на СК присутствует слабоинтенсивная полоса, характерная для Eu^{3+} , с максимумом при 625 нм, что свидетельствует о наличии незначительного количества Eu^{3+} в образце иодида бария [9; 10].

СВЛ образцов стеклокерамик (рис. 4, *a*) состоят из нескольких полос с максимумами при 320; 350; 370 и 393 нм, что указывает на распределение Eu^{2+} по нескольким излучающим центрам [6].

СЛ образцов стеклокерамик (рис. 4, б) носят сложный характер и состоят из неразрешенных при комнатной температуре полос с максимумами при 415; 460; 485 и 515 нм.

Известно, что положение полосы люминесценции Eu²⁺ зависит от его кристаллического окружения [11]. Так, полоса с максимумом при 415 нм является характерной для Eu²⁺ в структуре BaI₂, что под-

Рис. 4. СВЛ ($\lambda_{_{H3Л}} = 465 \text{ нм}$) (*a*) и СЛ ($\lambda_{_{B036}} = 360 \text{ нм}$) (*b*) образцов стеклокерамики с содержанием порошка Bal₂ : Eu²⁺ 50 мас. % (*I*) и 25 мас. % (*2*) *Fig.* 4. PLE ($\lambda_{em} = 465 \text{ nm}$) (*a*) and PL spectra ($\lambda_{ex} = 360 \text{ nm}$) (*b*) for the samples of glass-ceramic with content of Bal₂ : Eu²⁺ powder 50 wt. % (*I*) and 25 wt. % (*2*)

тверждается СЛ образца BaI_2 (см. рис. 3). Полосы люминесценции с максимумами при 485 и 515 нм, вероятнее всего, связаны с люминесценцией Eu^{2+} в структуре EuI_2 , формирующегося в процессе синтеза [12]. Отсутствие на рентгенограммах рефлексов, характерных для EuI_2 (см. рис. 1 и 2), может быть следствием его малого содержания в образце. Возможная причина увеличения интенсивности полосы с максимумом при 485 нм – кислородные центры, образующиеся в результате гидролиза образцов как собственной кристаллизационной водой, так и водой, выделяющейся в процессе синтеза (1) [8; 13; 14]. Таким образом, полосу люминесценции с максимумом при 460 нм как наиболее интенсивную можно отнести к люминесценции Eu^{2+} в структуре $BaI_2 \cdot 2H_2O$.

Заключение

В работе предложен метод формирования стеклокерамик на основе порошка BaI_2 . Исследованы их структурные и СЛ-свойства. Рентгенофазовый анализ подтвердил присутствие в образце стеклокерамики соединений BaI_2 и $BaI_2 \cdot 2H_2O$. Большая интенсивность рефлексов для $BaI_2 \cdot 2H_2O$ указывает на доминирование этой фазы в образце. В то же время сохранение рефлексов для BaI_2 свидетельствует о возможности использования стеклокерамик для предупреждения контакта порошка иодида бария, активированного Eu^{2+} , с парами воды. СЛ образцов стеклокерамики носят сложный характер и представлены набором полос с максимумами при 415; 460; 485 и 515 нм, которые связаны с переходами, соответствующими люминесценции Eu^{2+} в структуре BaI_2 , структуре $BaI_2 \cdot 2H_2O$ и структуре EuI_2 , и наличием кислородных центров.

Библиографические ссылки

1. Oh JH, Eo YJ, Yoon HC, Huh YD, Do YR. Evaluation of new color metrics: Guidelines for developing narrow-band red phosphors for WLEDs. *Journal of Materials Chemistry C.* 2016;4(36):8326–8348. DOI: 10.1039/c6tc02387h.

2. Sun CC, Chang YY, Yang TH, Chung T-Y, Chen C-C, Lee T-X. Packaging efficiency in phosphor-converted white LEDs and its impact to the limit of luminous efficacy. *Journal of Solid State Lighting*. 2014;1(1):19. DOI: 10.1186/s40539-014-0019-0.

3. Li G, Tian Y, Zhao Y, Lin J. Recent progress in luminescence tuning of Ce³⁺ and Eu²⁺-activated phosphors for pc-WLEDs. *Chemical Society Reviews*. 2015;44(23):8688–8713. DOI: 10.1039/c4cs00446a.

4. Peng Y, Guo X, Li R, et al. Thermally stable WLEDs with excellent luminous properties by screen-printing a patterned phosphor glass layer on a microstructured glass plate. *Applied Optics*. 2017;56(12):3270–3276. DOI: 10.1364/AO.56.003270.

5. Wu ZC, Liu J, Hou WG, Xu J. A new single-host white-light-emitting BaSrMg(PO₄)₂ : Eu^{2+} phosphor for white-light-emitting diodes. *Journal of Alloys and Compounds*. 2010;498(2):139–142. DOI: 10.1016/j.jallcom.2010.03.136.

6. Biswas K, Sontakke AD, Sen R, Annapurna K. Luminescence properties of dual valence Eu doped nano-crystalline BaF₂ embedded glass-ceramics and observation of Eu²⁺ \rightarrow Eu³⁺ energy transfer. *Journal of Fluorescence*. 2012;22(2):745–752. DOI: 10.1007/s10895-011-1010-4.

7. Greskovich C, Duclos S. Ceramic Scintillators. *Annual Review of Materials Science*. 1997;27(1):69–88. DOI: 10.1146/annurev. matsci.27.1.69.

8. Salamakha T, Buryi M, Tratsiak Y. Effect of Eu-doping on optical, structural and morphological properties of $BaI_2 \cdot nH_2O$ powders. *Optical Materials*. 2018;78:352–359. DOI: 10.1016/j.optmat.2018.02.044.

9. Tret'yak EV, Shevchenko GP, Solomakha TA, Korzhik MV. Effect of precursor morphology on the structural properties, optical absorption, and luminescence of BaI_2 : Eu^{2+} , Eu^{3+} . *Inorganic Materials*. 2017;53(3):307–312. DOI: 10.1134/S0020168517030116.

10. Luo Q, Qiao X, Fan X, Liu S. Reduction and luminescence of europium ions in glass ceramics containing SrF₂ nanocrystals. *Journal of Non-Crystalline Solids*. 2008;354(40–41):4691–4694. DOI: 10.1016/j.jnoncrysol.2008.07.019.

11. Danilkin MI, Belousov AP, Klimonskii SO, Kuznetsov VD, Lust AL, Nikiforov VN, et al. Formation of Eu^{2+} and Eu^{3+} centers in synthesis of CaF_2 : Eu luminophores. *Journal of Applied Spectroscopy*. 2007;74(6):858–865. DOI: 10.1007/s10812-007-0133-5.

12. Wang L, Wang S, Zhao X, Sun J. Stability, structure and fluorescence spectra of high-pressure-treated Eu²⁺ iodides. *Journal of Alloys and Compounds*. 1995;225(1–2):174–177. DOI: 10.1016/0925-8388(94)07029-6.

13. Pankratov V, Popov AI, Shirmane L, Kotlov A, Bizarri GA, Burger A, et al. Luminescence and ultraviolet excitation spectroscopy of SrI₂ and SrI₂ : Eu²⁺. *Radiation Measurements*. 2013;56:13–17. DOI: 10.1016/j.radmeas.2013.02.022.

14. Vistovskyy VV, Zhyshkovych AV, Chornodolskyy YM, Myagkota OS, Gloskovskii A, Gektin AV, et al. Self-trapped exciton and core-valence luminescence in BaF_2 nanoparticles. *Journal of Applied Physics*. 2013;114(19):1943061–1943067. DOI: 10.1063/1.4831953.

References

1. Oh JH, Eo YJ, Yoon HC, Huh YD, Do YR. Evaluation of new color metrics: Guidelines for developing narrow-band red phosphors for WLEDs. *Journal of Materials Chemistry C.* 2016;4(36):8326–8348. DOI: 10.1039/c6tc02387h.

2. Sun CC, Chang YY, Yang TH, Chung T-Y, Chen C-C, Lee T-X. Packaging efficiency in phosphor-converted white LEDs and its impact to the limit of luminous efficacy. *Journal of Solid State Lighting*. 2014;1(1):19. DOI: 10.1186/s40539-014-0019-0.

3. Li G, Tian Y, Zhao Y, Lin J. Recent progress in luminescence tuning of Ce^{3+} and Eu^{2+} -activated phosphors for pc-WLEDs. *Chemical Society Reviews*. 2015;44(23):8688–8713. DOI: 10.1039/c4cs00446a.

4. Peng Y, Guo X, Li R, et al. Thermally stable WLEDs with excellent luminous properties by screen-printing a patterned phosphor glass layer on a microstructured glass plate. *Applied Optics*. 2017;56(12):3270–3276. DOI: 10.1364/AO.56.003270.

5. Wu ZC, Liu J, Hou WG, Xu J. A new single-host white-light-emitting BaSrMg(PO₄)₂ : Eu^{2+} phosphor for white-light-emitting diodes. *Journal of Alloys and Compounds*. 2010;498(2):139–142. DOI: 10.1016/j.jallcom.2010.03.136.

6. Biswas K, Sontakke AD, Sen R, Annapurna K. Luminescence properties of dual valence Eu doped nano-crystalline BaF₂ embedded glass-ceramics and observation of $Eu^{2+} \rightarrow Eu^{3+}$ energy transfer. *Journal of Fluorescence*. 2012;22(2):745–752. DOI: 10.1007/s10895-011-1010-4.

7. Greskovich C, Duclos S. Ceramic Scintillators. *Annual Review of Materials Science*. 1997;27(1):69–88. DOI: 10.1146/annurev. matsci.27.1.69.

8. Salamakha T, Buryi M, Tratsiak Y. Effect of Eu-doping on optical, structural and morphological properties of $BaI_2 \cdot nH_2O$ powders. *Optical Materials*. 2018;78:352–359. DOI: 10.1016/j.optmat.2018.02.044.

9. Treť yak EV, Shevchenko GP, Solomakha TA, Korzhik MV. Effect of precursor morphology on the structural properties, optical absorption, and luminescence of BaI₂ : Eu²⁺, Eu³⁺. *Inorganic Materials*. 2017;53(3):307–312. DOI: 10.1134/S0020168517030116.

10. Luo Q, Qiao X, Fan X, Liu Š. Reduction and luminescence of europium ions in glass ceramics containing SrF₂ nanocrystals. *Journal of Non-Crystalline Solids*. 2008;354(40–41):4691–4694. DOI: 10.1016/j.jnoncrysol.2008.07.019.

11. Danilkin MI, Belousov AP, Klimonskii SO, Kuznetsov VD, Lust AL, Nikiforov VN, et al. Formation of Eu^{2+} and Eu^{3+} centers in synthesis of CaF_2 : Eu luminophores. *Journal of Applied Spectroscopy*. 2007;74(6):858–865. DOI: 10.1007/s10812-007-0133-5.

12. Wang L, Wang S, Zhao X, Sun J. Stability, structure and fluorescence spectra of high-pressure-treated Eu²⁺ iodides. *Journal of Alloys and Compounds*, 1995;225(1–2):174–177. DOI: 10.1016/0925-8388(94)07029-6.

13. Pankratov V, Popov AI, Shirmane L, Kotlov A, Bizarri GA, Burger A, et al. Luminescence and ultraviolet excitation spectroscopy of SrI, and SrI, : Eu²⁺. *Radiation Measurements*. 2013;56:13–17. DOI: 10.1016/j.radmeas.2013.02.022.

14. Vistovskyy VV, Zhyshkovych AV, Chornodolskyy YM, Myagkota OS, Gloskovskii A, Gektin AV, et al. Self-trapped exciton and core-valence luminescence in BaF_2 nanoparticles. *Journal of Applied Physics*. 2013;114(19):1943061–1943067. DOI: 10.1063/1.4831953.

Статья поступила в редколлегию 11.01.2019. Received by editorial board 11.01.2019.