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CHUHTE3 TPUA3OACOAEPXAIIIETO KOHBIOTI'ATA
OUITPO®AOKCAIIMHA WU in silico TECTUPOBAHUE EI'O
KAK AMTAHAA IIUTOXPOMOB P450
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Lluroxpombl P450 — 310 TemMconeprkaline MOHOOKCHI€HA3bl, KOTOPbIE KaTaJHM3UPYIOT peakinu OMOCHHTE3a pa3iind-
HBIX COCIMHEHHH, BAKHBIX JUII HOPMAJIbHOTO (DYHKIIMOHMPOBAHUS KJIETOK, MPEBPALICHHS JIEKAPCTB U KCEHOOMOTHKOB.
Onuu muroxpomsl P450 (ranpumep, CYP19 u CYP17 uenoseka, CYPS51 rpu0koB) siBistrorcst OeIKaMU-MUILICHSIMU psijia
JIEKapCTBEHHBIX COCTMHEHHH, IPYTHe MPEACTABISIIOT HHTEepeC Tt (hapMaKoJIOTHUECKUX nccienoBanuii. s co3nanms
HOBOTO (ITyOpECIUPYIONIET0 HHTHOUTOpa IUTOXpoMOB P450 ObIT MOTydeH a30JIcoAepsKanii KOHBIOTAT IHUITPOGIIOKCca-
uHa (CPF-bab-Z1). B messix oeHKH MOTEHIMAa a 3TOr0 COCIUHECHUS B KA9€CTBE JIMraHaa i uToxpomMoB P450 mpo-
BEJIEH BBICOKOIIPOM3BOIUTENbHBIN BUpTyalbHbIiH cKkpuHUHT CPF-bab-Z1 u MHOkecTBa m3BecTHBIX 3D-cTpykTyp P450.
Cpemu 28 ctpykryp nutoxpomoB CYP51 namnyumas appuHHOCTh OOHapyxeHa y Oenka Sesh (MUHMMaTBHOE 3HAYCHUE
SHEPrUM CBS3bIBAHMS cocTaBmio —12,5 kkan/moins). [Tonoxxenne CPF-bab-Z1, paccunranHoe B aKTUBHOM LIEHTPE STOTO
OenKka, XapakTepu3yeTcst OJIM30CTHIO IIMKIONPOITMIIBHOTO (HE a307bHOT0) (hparmenTa k remoBomy xerne3y CYPS1. TTomy-

YeHHBIC JaHHBIC TTOKA3hIBAIOT IepCHeKTHBEI nccnenoBanuii CPF-bab-Z1 in vitro ¢ mutoxpomamu P450.
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Cytochromes P450 are hem-containing monooxygenases which catalyse biosynthesis of many compounds playing an
essential role in cellular functions as well as degradation of drugs and xenobiotics. Some P450s (e. g., human CYP19 and
CYP17, fungal CYP51) are valid target proteins for some drugs. The others P450s are also interesting for pharma-
cology-related researches. Aiming to design new fluorescent inhibitor of P450s we have synthesised the azole-bearing
conjugate of ciprofloxacin (CPF-bab-Z1). To estimate potential of the compound as a ligand for CYPs we performed
high-throughput virtual screening (multiple docking calculations) for CPF-bab-Z1 and multiple known 3D structures of
P450s. The best affinity for CPF-bab-Z1 (the smallest value of energy of binding is equal —12.5 kcal/mol) were found
for protein with PDB code Sesh among 28 structures of CYP51. The calculated pose of CPF-bab-Z1 in the active site of
the protein is characterised by cyclopropyl (but not azole) proximity to the heme iron of the CYP51. The data obtained
demonstrate perspectives for in vitro investigations of CPF-bab-Z1 with P450s.

Keywords: P450; fluorescence; azoles; inhibitors; docking; ciprofloxacin.
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Introduction

Cytochromes P450 (or CYPs) are a family of heme-containing monooxygenases. CYPs catalyse versa-
tile set of oxidative reactions resulting in biosynthesis of essential metabolites, bioconversion of drugs and
other xenobiotics [1]. Some CYPs are known to be valid targets for specific drugs (e. g., human CYP17 and
CYP19 [2], fungal CYP51 [3]) and a lot of others are also considered to be promising in this respect or as
drugs’ degrader [1]. Many synthetic medicinal inhibitors of CYPs contain an azole moiety, which is essential
for formation of strong coordination N-Fe bond with iron ion from the enzymes’ heme moieties. Formation of
the N-Fe bond impacts on inhibition efficiency via enhancing of such inhibitors binding (and, thus, preventing
specific substrates binding) and disabling of the iron ion binding with dioxygen (the common co-substrate for
CYPs) [4]. New azole-bearing compounds with the property of a CYP inhibitor are of interest due to growth
of resistance to existing azole-containing drugs [5]. On the other hand, fluorescent compounds are convenient
for detection in complex biological matrices. Many of them are molecular probes to study a metabolism,
distribution and protein interactions in various biological samples (proteins, cells and even multicellular orga-
nisms). To the best of our knowledge, a few fluorescent azole-bearing antifungal drug analogues were reported
which both retain the anti-fungal activity of their prototypes and can stain cell structures, likely due to their
hydrophobic cation moieties with a tropism to the organelles (Cy to mitochondria, diethylamino-coumarin-
carboxamide to endoplasmic reticulum) [6; 7]. Thus, aiming to design new fluorescent inhibitor of CYPs
we have synthesized the azole-bearing conjugate of ciprofloxacin ((7-(4-(2-(4-((1H-1,2,4-triazol-1-yl)methyl)
phenylamino)-2-oxoethyl)piperazin-1-yl)-1-cyclopropyl-6-fluoro-4-oxo-1,4-dihydroquinoline-3-carboxylic
acid), CPF-bab-Z1) due to a known ability of the anti-bacterial drug to fluoresce with blue light (excitation and
emission maxima at 280 and 450 nm respectively) [8]. To estimate potential of the compound as a ligand for
CYPs we have performed high-throughput virtual screening (multiple docking calculations) for the structure
and multiple known 3D structures of CYPs from various organisms.

Experimental section

Ciprofloxacin hydrochloride (CPF - HCI), bromoacetyl bromide, pyridine (Py), 4-(1H-1,2,4-triazol-1-ylme-
thyl)aniline hydrochloride (Z1 - HCI), silica gel for chromatography (Sigma-Aldrich, USA), NaHCO, (Bash-
kir soda company, Russia), acetonitrile (AcN), methanol (MeOH) (Merck, USA) were used. Synthesis of
CPF-bab-Z1 was performed according to the scheme depicted below (fig. 1).

22



OpI/IFl/lHaJILHbIe CTaTbu

Original Papers
NQ\ HCOC O
<\N _N <\ N~ / N
Y

BrCOCH,Br CPF HCI F N

AcN, Py ACN/ MeOH/ N

PR <

ClooNH, ° -~
Bre@NH HN
O

Fig. 1. A scheme of synthesis of CPF-bab-Z1

Solution of bromoacetyl bromide (1.05 eq) in acetonitrile was added dropwise to a stirred solution of
Z1 - HCI (1 eq) in acetonitrile with Py (3 eq). The mixture was stirred for 1 h at room temperature (~20 °C) and
then filtered using cotton wool and rotary evaporated giving yellowish solid. Then the residue were dissolved
in MeOH : AcN (1:1, v:v) and mixed with NaHCO, (5 eq) and a suspension of CPF - HCI (1 eq) in MeOH.
The mixture was stirred for 30 min at 40 °C until forming clear solution. Then the solution was filtered using
cotton wool and evaporated giving off-white solid. The solid was dissolved in MeOH and purified by column
chromatography using AcN : MeOH (1: 1, v:v).

High performance liquid chromatography (HPLC) analysis was performed using Agilent liquid chromato-
graph, column Poroshell 120 EC-C18 (75 x4.6 mm, 2.7 um), elution at 30 °C with flow rate 0.5 mL/min using
a gradient of H,O : MeOH in a range of 5-100 % MeOH. Mass-spectrometric analysis was carried out using
LC-MS-2020 system as described [9] with AcN as eluent and MeOH for sample dilution.

AutoDock Vina [10] software was used for virtual screening; grid centers for all calculations were 4 x4 x4 nm
with their centers at geometrical centers of correspondent CYPs, exhaustiveness was set to 12. In general, we
have processed 28 structures of CYP51 from various organisms, 73 structures of other mycobacterial CYPs
and 185 structures of human CYPs. Values of energy of binding (E,,,,), the amino acids surrounding a ligand
and poses with close triazole — heme iron have been highlighted, tabulated and discussed.

Results and discussion

The compound CPF-bab-Z1 is a triazolomethylaniline conjugated with ciprofloxacin via their amino-
groups using —CO—CH,— linker derived from bromoacetyl bromide (see fig. 1). ESI-MS spectrum of
the compound was obtained (fig. 2), confirming the desired molecular weight (m/z of the mass-to-charge ra-
tio [M + H]" for C,4H,,FN,O, is equal 546.23; found 546.20); CPF-bab-Z1 purity was found to be ~95 % by
HPLC data (fig. 3).

CPF-bab-Z1 is also a azole and, thus, it is interesting as a potential fluorescent inhibitor of CYPs. Thus, to
rationalise further experimental investigations we performed in silico screening for a large set of structures of
CYPs using computational docking. First, we tested CYP51 structures due to it is a target for antifungal azoles
and the most studied CYP [3]. Docking results for CYP51 set are summarised in tables 1 and 2.

Table 1

E,;.q values for CPF-bab-Z1 in silico interactions with structures CYP51
of non-pathogenic baker yeast Saccharomyces cerevisiae

PDB code Data PDB code Data PDB code Data
41xj -11.9 Sead —11.8; Fe Sesi -9.3
4wmz -11.3 Seae —11.9; Fe Sesj —11.5
4zdy —11.8; Fe Seaf -93 Sesk —12.3; Fe
4zdz -10.8 Seag —10.7; Fe Sesl —11.8; Fe
47e0 —11.6; Fe Seah -9.3; Fe Sesm —11.9; Fe
4zel —12.1; Fe Seqb —11.7; Fe Sesn -11.2
4ze2 -11.1 Sese —12.4; Fe Shsl -8.6
4ze3 -11.9; Fe Sesf —12; Fe 5ul0 —11.4; Fe
Seab -11.3; Fe Sesg -11.9; Fe 6e8q -11.9; Fe
Seac —11.8; Fe Sesh —12.5; Fe - -
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Fig. 2. ESI-MS spectra of CPF-bab-Z1 in positive (a)
and negative (b) ions registration modes.
Interpretation of signals (cations: [M + H]" 546.20, [M + Na]" 568.21,
[M +K]" 584.20, [M + ACN + Na]” 609.24;
anions: [M + Br] 626.10 and 624.00, [M + CI] 580.20, [M — H] 544.20)
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Fig. 3. HPLC chromatogram of CPF-bab-Z1 (RT = 24.2 min)

CPF-bab-Z1 demonstrates the minimal value of E,, , (—12.5 kcal/mol) for Saccharomyces cerevisiae
CYP51 structure with PDB code Sesh, but the overage value of E,, , has been —11.3 kcal/mol for all structures
considered for the same enzyme. In the predicted complex with CYP51 (5esh) not azole, but cyclopropyl
ring of CPF-bab-Z1 is close to Fe of the structure heme. This indicates the compound behaves in silico as a
substrate, but not like azole inhibitor, of the enzyme. Cyclopropyl ring oxidation could cause formation of re-
active intermediate, which could attach covalently to an amino acid residue of such enzyme or to glutathione
resulting in its depletion in cellulo [11]. Poses with triazole proximity to heme have also been found for some
Saccharomyces cerevisiae CYP51 structures (4zdz, 4ze2, SesjcA, etc.), but in every case the N-Fe bond forma-
tion has been prohibited due to distance between the atoms. Results of the docking for CYP51 from pathogenic
microbes are in table 2.

Table 2
E, ;.. values for CPF-bab-Z1 in silico interactions
with structures CYP51 of pathogenic microorganisms
CYP of organism PDB Data CYP of organism PDB Data
code code
CYPS51 Aspergillus fumigatus 6cr2 —-11.6 CYP51 Mycobacterium tuberculosis | 1e9x -10.7
CYP51 Aspergillus fumigatus Sfrb —11.6; Fe || CYP51 Mycobacterium tuberculosis | 2vku -9.9
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Ending table 2

CYP of organism Ic)c])Dd]i Data CYP of organism Ic)c]iilz Data
CYP51 Aspergillus fumigatus 4uym —11.4; Fe || CYP51 Mycobacterium tuberculosis | 1h5z -9.8; Fe
CYP51 Aspergillus fumigatus 4uyl —10.6; Fe || CYP51 Mycobacterium tuberculosis | 1ul3 -9.6
CYPS51 Candida albicans Sfsa —12; Fe CYP51 Mycobacterium tuberculosis | 1x8v -9.5
CYP51 Candida albicans 5v5z —11.3; Fe || CYP51 Mycobacterium tuberculosis | 2bz9 -9.4; Fe
CYP51 Candida albicans Stzl —11.2; Fe || CYP51 Naegleria fowleri S5t18 —11.2; Fe
CYP51 Candida glabrata Sjle 11 CYP51 Naegleria fowleri 6ayc -11.1
CYP51 Leishmania infantum 314d —10.7; Fe || CYP51 Naegleria fowleri 6ay6 -10.9
SJeriluloﬁls);gobacterium 2w0b -12 CYP51 Naegleria fowleri 6ayb -10.8
CYP51 Trypanosoma brucei 4¢3j -10.5 CYP51 Trypanosoma cruzi 3khm —10.7; Fe
CYP51 Trypanosoma brucei 3p99 -10.3 CYP51 Trypanosoma cruzi 4ck9 -10.7
CYPS51 Trypanosoma brucei 2x2n -10.3 CYPS51 Trypanosoma cruzi 3klo -10.5
CYP51 Trypanosoma brucei 3glq -9.2 CYP51 Trypanosoma cruzi 3zg3 -10.4; Fe
CYP51 Trypanosoma brucei 3tik -9.7; Fe || CYP51 Trypanosoma cruzi 4ck8 —10.3; Fe
CYP51 Trypanosoma brucei 4g7g —9; Fe CYP51 Trypanosoma cruzi 4c27 -10.3
CYP51 Trypanosoma cruzi 6fmo —11.8 CYP51 Trypanosoma cruzi 4bmm | -10.2; Fe
CYP51 Trypanosoma cruzi 2wuz —11.4; Fe || CYPS51 Trypanosoma cruzi 4ugh —10.2; Fe
CYP51 Trypanosoma cruzi 2wx2 —10.9; Fe || CYPS51 Trypanosoma cruzi 4coh -9.8; Fe
CYP51 Trypanosoma cruzi 4h60 -10.9 CYPS51 Trypanosoma cruzi 4by0 -9.8
CYP51 Trypanosoma cruzi 4cka —10.7; Fe || CYPS51 Trypanosoma cruzi 3ksw -9.6; Fe

For the predicted docking positions with the lowest E,, , values indicated in table 2 in the frames of one
microorganism a cyclopropane-to-heme orientation has been found for CYP51 from Aspergillus fumigatus
(5frb), Candida albicans (5fsa), formally for Mycobacterium tuberculosis (2wO0b) and «brain-eating» amoeba
Naegleria fowleri (5t18). Classical azole-to-heme oriented positions have been found for CYPS51 from
Leishmania infantum (314d), Trypanosoma brucei (4g3j) and Trypanosoma cruzi (2wuz) (fig. 4).

CPF-bab-Z1 has demonstrated E,; , within the range of —11.1 kcal/mol (CYP121, 4ktj) to —7.5 kcal/mol
(CYP119, 4yof); mean E, , for all mycobacterial CYPs tested was found to be ~9.5 kcal/mol, excepting
CYP51. Poses with azole-to-heme orientation were rare, e. g., for PDB code 2x5w, 51i7, 2wh8 and 6dcd are
among good ones; the top 12 lowest E, , for the ligand and the enzymes’ structures are in the table 3.
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Fig. 4. In silico calculated positions of CPF-bab-Z1 in active sites of CYP51
from Trypanosoma cruzi (a) and Leishmania infantum (b)
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Table 3
Top 12 E,; , values for CPF-bab-Z1 in silico interactions
with structures of CYPs from mycobacteria, excepting CYP51

PDB code CYP E,;,¢ kecal/mol | Fe N41
4ktj CYPI121 —-11.1 — | N41-ALA167, ALA178, ASN181, TRP182
504k CYPI121 -11.1 — | N41-ALA167, ALA178, ASN181, TRP182
2wm4 CYPI124 -11.0 Fe | N41-THR271, VAL315
2x5w CYPI125 -10.9 Fe | N41-ALA268, HEM431
319 CYP164A2 -10.9 Fe | N41-ALA256
4g48 CYPI121 -10.9 — | N41-ALA167, ALA178, ASN181, TRP182
4ict CYPI121 -10.9 — | N41-ALA167, ALA178, ASN181, TRP182
4ktf CYPI121 -10.9 — | N41-LEU160, ASP185, PHE231
Sopa CYPI121 -10.9 — | N41-LEU160, LEU164, ASP185, PHE231
3g5h CYPI121 -10.8 — | N41-ALA167, ALA178, ASN181, TRP182
S51i7 CYPI26A1 -8.5 Fe | N41-THR257, HEM501
2wh8 CYP130 -9.2 Fe | N41-GLY243, HEM450

CPF-bab-Z1 has demonstrated E,, , from —12.3 kcal/mol (CYP3A4, 4d6z) to —7.1 kcal/mol (CYP2B6,
4zv8), whereas mean E,, , for all human CYPs tested is ~9.3 kcal/mol for CYPs from Homo sapiens. The top
10 lowest E, , for the ligand and the enzymes’ structures are in the table 4.

Table 4
Top 12 E,; , values for CPF-bab-Z1 in silico interactions

with structures of human CYPs
PDB code CYP E, ;¢ kcal/mol | Fe N41
4d6zcA CYP3A4 -12.3 Fe | N41-THR224
IwOecA CYP3A4 -12.1 Fe | N41-THR224, PRO227
SvedeA CYP3A4 -12.1 Fe | N41-ARG212, ALA370, HEM601
SveecA CYP3A4 -12 Fe | N41-ILE230
SveccA CYP3A4 -11.9 Fe | N41-ARG212, ALA305, THR309, HEM601
SvedcA CYP3A4 -11.9 — | N41-ILE223, ILE230
6bd6cA CYP3A4 -11.9 - | N41-LEU210, LEU211
6bdicA CYP3A4 -11.9 Fe | N41-ARG106
ItqncA CYP3A4 -11.8 Fe | N41-ARG106, THR224
3juscA CYP51 —-11.8 — | N41-VAL143, ALA144, MET304
4d6zcA CYP3A4 -11.8 — | N41-ARG106
SvegeA CYP3A4 —-11.8 — | N41-ILE223, THR224, PRO227

The data obtained indicates that CPF-bab-Z1 could not be a potent inhibitor of human CYPs, with the
exception of drug-metabolising liver CYP3A4. E,, , values have been found to be around —8.1, —9.0 and
—11.0 for human CYP19, CYP17 and CYP51 structures (e. g. for structures with PDB codes 5j16, 3ruk and
4uhi respectively).

In general, the new compound CPF-bab-Z1 was predicted to be able to bind effectively in the active sites of
human cytochromes P450 CYP3A4 and, less effectively, CYP51. Its ability to bound in the cyclopropane-to-
heme manner with some fungal CYP51 and in the azole-to-heme mode with some structures of CYP51 from
Leishmania and CYP51 from Trypanosoma (see table 2, fig. 4) has also been revealed. This points out on a
perspective of its practical testing as an inhibitor or a substrate for the corresponding enzymes.
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Conclusion

Aiming to design new fluorescent inhibitor of P450s, we have synthesised the triazole-containing conjugate
of ciprofloxacin, due to known ability of the anti-bacterial drug to fluorescent with blue light. The compound
has been designed and synthesised. It was confirmed using HPLC and ESI-MS (m/z of the mass-to-charge
ratio [M + H]" for C,;H,,FN, O, is equal 546.23; found 546.20). Using in silico docking simulations we have
tested the compound as a ligand for a number of cytochromes P450 of some pathogenic eukaryotes, baker
yeast, mycobacteria and human. Our results have demonstrated that CPF-bab-Z1 is a potentially good ligand
for CYP3A4 and CYP51 as well as for some fungal CYP51. Notably, the compound was predicted to be bound
with some CYP51 in the cyclopropane-to-heme orientation. By contrast, for CYP51 from Leishmania (314d)
and CYPS5I from Trypanosoma (4g3j and 6fmo) the azole-to-heme mode like classical azole inhibitors of
CYPs was predicted. The results offer interesting perspectives for testing of the compound as a new fluorescent
P450 inhibitor of the enzymes mentioned.
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