УДК 546.03.05 + 535-15

АНАЛИЗ СПЕКТРОВ ИК-ПОГЛОЩЕНИЯ КЕТОИМИНАТА ВАНАДИЯ(III) И АЦЕТИЛАЦЕТОНАТОВ ВАНАДИЯ(III) И ВАНАДИЛА

*Н. Н. КОСТЮК*¹⁾, *Т. А. ДИК*¹⁾, *А. Р. ЦЫГАНОВ*²⁾

¹⁾Белорусский государственный университет, пр. Независимости, 4, 220030, г. Минск, Беларусь ²⁾Белорусский государственный технологический университет, ул. Свердлова, 13а, 220006, г. Минск, Беларусь

Аннотация. Методом электрохимического синтеза получены кетоиминат ванадия(III) [V(CH₃C(N)C(H)C(O)CH₃)₃], ацетилацетонат ванадия(III) [V(CH₃C(O)C(H)C(O)CH₃)₃] и ацетилацетонат ванадила [VO(CH₃C(O)C(H)C(O)CH₃)₂]. На основании данных ИК-спектроскопии установлено, что в результате электролиза произошло формирование квазиароматического металлоцикла – основного структурного элемента хелата. Периферийные метильные группы кетоиминат и ацетилацетона не подверглись трансформации под воздействием электрического тока.

Ключевые слова: ацетилацетон; кетоиминат ванадия(III); ацетилацетонат ванадия(III); ацетилацетонат ванадия; ила; хелат; ИК-спектр; полоса поглощения.

IR SPECTRAL ASSAY OF THE VANADIUM(III) KETIMINATE AND VANADIUM(III) AND VANADYL ACETYLACETONATES

N. N. KOSTYUK^a, T. A. DICK^a, A. R. TSYHANAU^b

^aBelarusian State University, 4 Niezaliezhnasci Avenue, Minsk 220030, Belarus ^bBelarusian State Technological University, 13a Sviardlova Street, Minsk 220006, Belarus Corresponding author: T. A. Dick (dick@bsu.by)

Образец цитирования:

Костюк НН, Дик ТА, Цыганов АР. Анализ спектров ИК-поглощения кетоимината ванадия(III) и ацетилацетонатов ванадия(III) и ванадила. Журнал Белорусского государственного университета. Химия. 2024;2:61–69. EDN: MWCMPO

Авторы:

Николай Николаевич Костюк – кандидат химических наук; ведущий научный сотрудник научно-исследовательской лаборатории прикладной механики кафедры теоретической и прикладной механики механико-математического факультета.

Татьяна Алексеевна Дик – доктор физико-математических наук; ведущий специалист деканата механико-математического факультета.

Александр Риммович Цыганов – доктор сельскохозяйственных наук, кандидат химических наук, академик НАН Беларуси, профессор; профессор кафедры физической, коллоидной и аналитической химии факультета технологии органических веществ.

For citation:

Kostyuk NN, Dick TA, Tsyhanau AR. IR spectral assay of the vanadium(III) ketiminate and vanadium(III) and vanadyl acetylacetonates. *Journal of the Belarusian State University. Chemistry.* 2024;2:61–69. Russian. EDN: MWCMPO

Authors:

Nikolai N. Kostyuk, PhD (chemistry); leading researcher at the laboratory of applied mechanics, department of theoretical and applied mechanics, faculty of mechanics and mathematics. *nnkostyuk@bsu.by*

Tatiana A. Dick, doctor of science (physics and mathematics); leading specialist at the dean's office of the faculty of mechanics and mathematics.

dick@bsu.by

Alexander R. Tsyhanau, doctor of science (agricultural science), PhD (chemistry), academician of the National Academy of Sciences of Belarus, full professor; professor at the department of physical, colloidal and analytical chemistry, faculty of organic substances technology.

tziganov@belstu.by

Abstract. Vanadium(III) ketiminate $[V(CH_3C(N)C(H)C(O)CH_3)_3]$, vanadium(III) acetylacetonate $[V(CH_3C(O)C(H)C(O)CH_3)_3]$ and vanadyl acetylacetonate $[VO(CH_3C(O)C(H)C(O)CH_3)_2]$ were obtained by electrochemical synthesis. Based on IR spectroscopy data, it was established that as a result of electrolysis, the formation of a quasi-aromatic metallocycle, the main structural element of the chelate, took place. The peripheral methyl groups of ketiminate and acetylacetone did not undergo transformation under the influence of electric current.

Keywords: acetylacetone; vanadium(III) ketiminate; vanadium(III) acetylacetonate; vanadyl acetylacetonate; chelate; IR spectrum; absorption band.

Введение

В настоящее время соединения ванадия широко применяются в промышленности в качестве легирующих компонентов износо- и коррозионно-стойких сталей и сплавов, способных функционировать в агрессивных средах, а также при высоких температурах. В технологиях порошковой металлургии ванадий используют для изготовления постоянных магнитов. Последние два десятилетия в металлургической, судостроительной, автомобильной, аэрокосмической и химической промышленности, в ядерной энергетике при изготовлении катализаторов, автономных источников электропитания, систем вентиляции и отопления и других изделий все большее применение находит фольга из ванадия [1]. Использование фольги из ванадия позволяет в значительной степени экономить этот достаточно дорогостоящий металл.

Гораздо большим потенциалом для экономии ванадия обладают пленки и покрытия, полученные методом химического осаждения из газовой фазы (*chemical vapor deposition*, CVD). Для синтеза ванадиевых пленок и покрытий CVD-методом ранее использовался галогенидно-водородный метод разложения при температуре испарения исходных галогенидов ванадия 600–900 °C и нагреве подложки до 1100–1300 °C. В настоящее время более перспективным считается карбонильный метод разложения с применением вакуума (1–10 Па). В качестве исходных веществ для реализации CVD-метода пытались также использовать циклопентадиенильные и бисареновые соединения ванадия. Однако все методы имеют определенные недостатки. Так, при галогенидно-водородном методе разложения и при использовании циклопентадиенильных и бисареновых соединений ванадия выделяются агрессивные газы (иод и иодоводород), продукты пиролиза циклопентадиена, бензола, толуола и др. В результате термического разложения карбонилов ванадия выделяется также угарный газ. Покрытия и пленки из металлического ванадия, полученные данными методами, содержат примеси оксидов и карбидов металла [2].

Альтернативными прекурсорами для получения ванадиевых пленок и покрытий CVD-методом являются β-дикетонаты ванадия [2; 3]. Они способны переходить в газовую фазу при умеренно высоких температурах (до 300 °C) без разложения, а также нечувствительны (в отличие от карбонилов, циклопентадиенилов и бисареновых соединений ванадия) к влаге воздуха. Кроме того, β-дикетонаты ванадия используются в качестве катализаторов при полимеризации пропилена при низких температурах (до -65 °C) [4]. С их помощью также проводят сополимеризацию этилена с пропиленом.

Одними из наиболее эффективных методов получения β -дикетонатов переходных металлов являются одностадийный электрохимический синтез [5; 6], позволяющий получать хелаты металлов высокой степени чистоты [5], и гомофазный метод, базирующийся на реакциях обмена лигандами в растворах [2]. Синтез β -дикетонатов металлов методами обменных реакций в растворах требует дополнительной очистки целевого продукта: либо многократной перекристаллизации его из органических растворителей, либо вакуумной сублимации [3], что значительно снижает выход целевого продукта. В то же время электрохимический метод синтеза позволяет получать β -дикетонаты переходных металлов с выходом по металлу более 100 % и гарантированно высокой степенью чистоты [5–7]. Однако применение электролиза для получения хелатов переходных металлов требует повышенного контроля за состоянием лиганда (β -дикетона) в связи с тем, что по ходу проведения электролиза возможна трансформация лиганда как за счет вовлечения в электролиз периферийных групп, так и за счет отщепления второго протона в γ -положении с последующей димеризацией β -дикетона [8]. В качестве контрольного метода исследования состояния лиганда можно использовать ИК-спектральный метод анализа, позволяющий получать исчерпывающую информацию как об образовании квазиароматического металлоцикла, так и о состоянии периферийных групп

Целью настоящей работы является электрохимическое получение кетоимината ванадия(III) и ацетилацетонатов ванадия(III) и ванадила, а также их детальное исследование методом ИК-спектроскопии для контроля процесса комплексообразования: формирования основного координационного узла квазиароматического металлоцикла и состояния периферийных метильных групп лигандов.

Материалы и методы исследования

В качестве исходных лигандов использовались ацетилацетон (2,4-пентандион, Насас, $C_5H_8O_2$) и кетоиминат (2-имино-4-пентанон, Hkimi, C_5H_8ON) компаний *Merk* (Германия) или *Aldrich Chemical* (США), которые перегонялись непосредственно перед проведением электролиза.

При синтезе ацетилацетоната и кетоимината ванадия(III) и ацетилацетоната ванадила в качестве растворителей применяли дистиллированную воду или бидистиллят, ацетонитрил квалификации «для хроматографии», бензол и дихлорметан квалификации «ч. д. а.». Ацетонитрил дополнительно перегоняли над осушителями непосредственно перед экспериментом.

Электролиз проводили в бездиафрагменной электрохимической ячейке при постоянном токе от стабилизированного источника питания в инертной атмосфере (аргон) или при барботировании осушенным воздухом в потенциометрическом режиме при напряжении 3 В. В качестве электролита использовали раствор 0,1 моль/л бромида тетраэтиламмония и 1 моль/л ацетилацетона или кетоимината в ацетонитриле. Анодом служила пластина из ванадия марки BhM-2 (чистота металла более 99 %), катодом – пластина из никеля. Температура электролита поддерживалась равной (40 ± 0,5) °C с помощью термостата U-15 (Германия). Полученные ацетилацетонаты ванадия(III) и ванадила, а также кетоиминат ванадия(III) после упаривания на роторном испарителе реакционной смеси экстрагировали бензолом или смесью бензола и дихлорметана в соотношении 1 : 1 и повторно перекристаллизовывали из дихлорметана.

ИК-спектры в интервале частот 4000–400 см⁻¹ регистрировали на спектрофотометре Specord 75IR (*Analytik Jena*, Германия). Образцы готовили в виде таблеток с бромидом калия и суспензий в вазелиновом масле.

Содержание ванадия в полученных соединениях определяли гравиметрическим методом. Весовая форма – V₂O₅. Анализ на содержание углерода и водорода осуществляли по методу Прегля. Полученные данные приведены в табл. 1.

Таблица 1

Результаты элементного анализа ацетилацетоната и кетоимината ванадия(III) и ацетилацетоната ванадила

Table 1

			-	-			
Формула хелата	Брутто-формула	Содержание V, %		Содержание С, %		Содержание Н, %	
		Найдено	Вычислено	Найдено	Вычислено	Найдено	Вычислено
V(acac) ₃	VC ₁₅ H ₂₁ O ₆	14,57	14,63	51,37	51,73	6,69	6,08
V(kimi) ₃	VC ₁₅ H ₂₁ O ₃ N ₃	14,84	14,88	52,48	52,64	6,31	6,18
VO(acac) ₂	VC ₁₀ H ₁₄ O ₅	19,15	19,21	45,84	45,30	5,47	5,32

Results of elementary analysis of vanadium(III) acetylacetonate and ketiminate and vanadyl acetylacetonate

Результаты и их обсуждение

В табл. 2 представлены значения колебательных частот ИК-спектров ацетилацетонатов ванадия(III) и ванадила. Отнесение наблюдаемых полос поглощения проводилось на основании данных, изложенных в расчетных статьях [9–13]. В работе [13] была изучена роль кинематических факторов в формировании валентных колебаний v(CO) и v(CC)_{ch} в β -дикетонатных комплексах. В частности, показано, что частоты колебаний v(CC)_{ch} оказались слабочувствительными к изменению длины координационной связи металл – кислород хелата. Аналогичный результат получен при исследовании частот колебаний v(CO). Установлено, что не изменяются также частоты колебаний периферийных групп. На основании этого можно сделать вывод о корректности использования данных расчетных статей, описывающих, например, спектральное поведение хелатов меди, золота и хрома [9; 10; 14], для отнесения частот колебаний в ИК-спектрах ацетилацетонатов ванадия(III) и ванадила, а также кетоимината ванадия(III). Основным структурным узлом β -дикетонатного координационного соединения является шестичленный квазиароматический металлоцикл, имеющий сопряжение типа $\pi - \pi$ и характеризующийся тем, что делокализация общего электрона не распространяется на атом металла [15; 16].

На рисунке изображена обобщенная структурная формула *трис*-ацетилацетоната ванадия на основании данных, представленных в работах [9–14].

Таблица 2

Значения колебательных частот в ИК-спектрах ацетилацетонатов ванадия(III) и ванадила и их отнесение

Table 2

Values of vibrational frequencies in the IR spectra of vanadium(III) and vanadyl acetylacetonates and their assignment

Колебательные частоты V(acac) ₃ , ν , см ^{-1}	Отнесение	Колебательные частоты VO $(acac)_2$, v, см ^{-1}	Отнесение	
2995 пл.		3000 о. сл.	v(CH) _{CH}	
2975 сл.	v(CH) _{CH}	2973 о. сл.		
2923 сл.	2923 сл.			
_	_	1585 пл.	$v(CC)_{ch} + v(CO) + \delta(CH_3)$	
1568 o. c.	$v(CC)_{ch} + v(CO) + \delta(CH_3)$	1560 пл.	δ(CH ₃)	
1556 пл.	δ(CH ₃)	1550 o. c.	$y(CC) + y(CO) + \delta(CH)$	
1539 пл.		1530 o. c.	$V(CC)_{ch} + V(CO) + \delta(CH_3)$	
1518 o. c.	$v(CC)_{ch} + v(CO) + \delta(CH_3)$	_	_	
1505 пл.		1505 пл.	$v(CC)_{ch} + v(CO) + \delta(CH_3)$	
_	_	1455 пл.	δ(CH ₃)	
1422 сл.	$v(CC)_{ch} + v(CO) + v(CC) + \delta(CCH\gamma)$	1418 cp.	$v(CC)_{ch} + v(CO) + v(CC) + \delta(CCH\gamma)$	
_	_	1390 пл.	δ(CH ₃)	
1380 c.	$v(CC)_{ch} + \delta(CH_3) + \delta(CCH_3)$	1373 c.	$\nu(CC)_{ch} + \delta(CH_3) + \delta(CCH_3)$	
1358 c.	$\delta(CH_3) + \delta_{ch}$	1357 c.	$\delta(CH_3) + \delta_{ch}$	
1274 cp.	$v(CC)_{ch} + v(CC) + \delta_{ch}$	1284 cp.	$v(CC)_{ch} + v(CC) + \delta_{ch}$	
1180 о. сл.	$v(CO) + v(CC) + \delta(CCH\gamma)$	1190 сл.	$v(CO) + v(CC) + \delta(CCH\gamma)$	
1025 c.	$v(CC) + \delta(CH_3)$ (качание)	1022 cp.	$v(CC) + \delta(CH_3)$ (качание)	
1020 пл.	$\nu(CC) + \delta(CH_3)$	_	_	
_	_	999 o. c.	ν(VO) (ванадил)	
933 cp.	$v(CC)_{ch} + v(CO) + \delta_{ch}$	939 c.	$v(CC)_{ch} + v(CO) + \delta_{ch}$	
801 сл.		800 c.	δ (СН γ) (внепл.) + δ_{ch}	
791 о. сл.	δ (СН γ) (внепл.) + δ_{ch}	791 ср.		
773 ср.		_	_	
690 пл.	$\nu(VO) + \nu(CO) + \delta(CCH_3)$	687 c.	$\nu(VO) + \nu(CO) + \nu(CC) + \delta(CCH_3)$	
668 cp.	ν(VO) + δ _{ch} (внепл.)	_	_	
660 пл.	$\delta(CCH_3) + \delta_{ch}$ (внепл.)	660 сл.	$\delta(CH_3) + \delta_{ch}$ (внепл.)	
612 о. сл.	$\nu(VO) + \delta(CCH_3)$	612 ср.	$v(VO) + \delta(CCH_3)$	
590 сл.	$\delta(CCH_3) + \delta_{ch}$ (внепл.)	_	_	
575 о. сл.	575 о. сл.		$v(VO) + \delta$	
492 сл. ν(VO) + δ _{ch}		489 o. c.	$V(VO) + O_{ch}$	
475 о. сл.		_	-	
450 c.	$\nu(VO) + \delta(CCH_3)$	467 о. сл.	$v(VO) + \delta(CCH_3)$	
442 сл.	$\nu(VO) + \nu(CC) + \delta(CCH_3) + \delta_{ch}$	_		
420 сл.	$v(VO) + \delta_{ch}$	427 сл.	$v(VO) + \delta_{ch}$	

Примечание. Обозначение интенсивности: с. – сильная, ср. – средняя, сл. – слабая, о. с. – очень сильная, о. сл. – очень слабая. Обозначение колебаний: ν – валентные, δ – деформационные, внепл. – внеплоскостные. Другие обозначения: пл. – плечо, ch – хелат.

Структурная формула *mpuc*-ацетилацетоната ванадия The structural formula of *tris*-acetylacetonate vanadium

В области частот 3000–2920 см⁻¹ (см. табл. 2) для ацетилацетонатов ванадия(III) и ванадила наблюдается ряд слабых или очень слабых полос поглощения валентных колебаний v(CH)_{CH₃}. Данные колебания имеют выраженную степень характеристичности (от 99 до 100 %) [10].

Полосы поглощения валентных колебаний СС- и СО-связей квазиароматического металлоцикла ацетилацетонатов ванадия(III) и ванадила наблюдаются в интервале частот 1585–1500 см⁻¹. Все они имеют смешанный характер: кроме валентных колебаний v(CC)_{ch} и v(CO), свой вклад в них вносят деформационные колебания δ(CH₃). Для полос поглощения с максимумами 1568 см⁻¹ (ацетилацетонат ванадия(III)) и 1550 см⁻¹ (ацетилацетонат ванадила) вклад деформационных колебаний б(CH₃) может составлять 40 %, а суммарный вклад деформационных колебаний v(CC)_{ch} и v(CO) – 51 % [10]. Полосы поглощения с максимумами частот 1556 см⁻¹ (ацетилацетонат ванадия(III)) и 1560 см⁻¹ (ацетилацетонат ванадила) являются практически характеристическими, так как вклад деформационных колебаний δ(CH₃) составляет 82 %. Полосы поглощения с максимумами 1518 и 1505 см⁻¹ (ацетилацетонат ванадия(III)) и 1530 и 1505 см⁻¹ (ацетилацетонат ванадила) имеют смешанный характер, причем суммарный вклад валентных колебаний v(CC)_{ch} и v(CO) составляет 34 %, а вклад деформационных колебаний δ(CH₃) – 60 %. В ИК-спектре ацетилацетоната ванадила наблюдается полоса поглощения с максимумом 1455 смполностью принадлежащая к деформационным колебаниям $\delta(CH_2)$. Аналогичная полоса поглощения в спектре ацетилацетоната ванадия(III) не наблюдается (см. табл. 2) [10]. Полосы поглощения с макси-мумами 1422 см⁻¹ (ацетилацетонат ванадия(III)) и 1418 см⁻¹ (ацетилацетонат ванадила) на 43 % состоят из валентных колебаний v(CC)_{ch} и v(CO), на 18 % – из валентных колебаний v(CC) метильных групп и квазиароматического металлоцикла, на 23 % – из деформационных колебаний $\delta(CCH\gamma)$.

Как видно из представленной спектральной картины, основные полосы поглощения валентных колебаний v(CC)_{ch} и v(CO) квазиароматического металлоцикла лежат ниже 1585 см⁻¹, что свидетельствует о наличии сильного батохромного сдвига частот (более 100 см⁻¹) в связи с образованием хелатного координационного узла. Полос поглощения валентных колебаний СО-связей ацетилацетона в ИК-спектрах обоих соединений не наблюдается. Данный факт позволяет сделать вывод об отсутствии в составе полученных хелатов нейтрального ацетилацетона.

Полоса поглощения с максимумом 1390 см⁻¹ в ИК-спектре ацетилацетоната ванадила на 79 % обусловлена деформационными колебаниями δ (CH₃). Как и полоса поглощения с максимумом 1455 см⁻¹, полоса поглощения с максимумом 1390 см⁻¹ в ИК-спектре комплекса ванадила не имеет аналога в ИК-спектре комплекса ванадия(III). В более низкочастотной области спектров обоих соединений вплоть до 400 см⁻¹ характеристических полос поглощения не наблюдается: для ацетилацетоната ванадия(III) характеристичность составляет менее 13 %, а для ацетилацетоната ванадила – чуть более 22 %.

В результате расчета нормальных колебаний и распределения потенциальной энергии по естественным колебательным координатам для полос поглощения с максимумом 1380 см⁻¹ (ацетилацетонат ванадия(III)) и 1373 см⁻¹ (ацетилацетонат ванадила) вклад деформационных колебаний δ (CH₃) составляет 52 %, вклад деформационных колебаний δ (CH₃) составляет 52 %, вклад деформационных колебаний δ (CH₃). В дальнейшем при продвижении в низкочастотную область спектра вклад валентных колебаний v(CC)_{ch} – 13 % [12]. В дальнейшем при продвижении в низкочастотную область спектра вклад валентных колебаний v(CC)_{ch} и v(CO) заметно уменьшается. Так, в ИК-спектре ацетилацетоната ванадия(III) для полосы поглощения с максимумом 1274 см⁻¹

вклад колебаний v(CC)_{ch} падает до 13 %, а вклад колебаний v(CC) возрастает до 51 %. Для полосы поглощения с максимумом 1180 см⁻¹ вклад валентных колебаний v(CO) составляет 14 %, в то время как вклад деформационных колебаний δ (CCH γ) достигает 74 %. Аналогичная спектральная картина наблюдается для ацетилацетоната ванадила для полос поглощения с максимумами 1284 и 1190 см⁻¹ соответственно.

В полосы поглощения с максимумами 1025 и 1020 см⁻¹ (ацетилацетонат ванадия(III)) и 1022 см⁻¹ (ацетилацетонат ванадила) основной вклад (до 95 %) вносят деформационные колебания $\delta(CH_3)$ [10].

В спектре ацетилацетоната ванадила присутствует очень сильная полоса поглощения с максимумом 999 см⁻¹, которая относится к валентным колебаниям v(VO) ванадила [3].

Полосы поглощения для ацетилацетоната ванадия(III) и ацетилацетоната ванадила с максимумами 933 и 939 см⁻¹ соответственно носят смешанный характер и состоят главным образом из валентных колебаний v(CO) (на 23 %) и v(CC)_{ch} (на 43 %) [10]. Серии полос поглощения в интервале частот 800–770 см⁻¹ для обоих хелатов также носят смешан-

Серии полос поглощения в интервале частот 800–770 см⁻¹ для обоих хелатов также носят смешанный характер и состоят из внеплоскостных деформационных колебаний δ(CHγ) и деформационных колебаний δ_{ch}.

В низкочастотной области спектра, начиная с 670 см⁻¹ и ниже, наблюдается серия полос, принадлежащих в том числе к валентным колебаниям v(VO). Так, вклад колебаний v(VO) в полосы поглощения с максимумом 690 см⁻¹ (ацетилацетонат ванадия(III)) и 687 см⁻¹ (ацетилацетонат ванадила) составляет 17 %. При продвижении по спектру в более низкочастотную область их вклад возрастает. Так, например, для полос поглощения с максимумами 450 и 442 см⁻¹ (ацетилацетонат ванадия (III)) вклад валентных колебаний v(VO) достигает 49 и 45 % соответственно.

В табл. 3 представлены значения колебательных частот в ИК-спектре кетоимината ванадия(III) и их отнесение. В области частот $3005-2850 \text{ cm}^{-1}$ присутствуют пять характеристических полос, из которых две первые полосы относятся к валентным колебаниям v(CH γ). Три другие полосы поглощения принадлежат к валентным колебаниям v(CH $_{CH_3}$. В ИК-спектре кетоимината ванадия(III), кроме упомянутых выше пяти полос поглощения, характеристической является еще только одна полоса поглощения с максимумом 1374 см⁻¹. Она относится к деформационным колебаниям δ (HCH) метильных групп. При этом степень ее характеристических полос поглощения то 95 % [14]. В целом в ИК-спектре кетоимината ванадия(III) количество характеристических полос поглощения не превышает 20 % (см. табл. 3).

Таблица 3

Значения колебательных частот в ИК-спектре кетоимината ванадия(III) и их отнесение

Table 3

Values of vibrational frequencies in the IR spectrum of vanadium(III) ketiminate and their assignment

Колебательные частоты V(kimi) ₃ ,	Отнесение		
ν, см ⁻¹			
3003 сл.	ν(CHγ)		
2975 о. сл.			
2965 о. сл.			
2925 о. сл.	v(CH) _{CH3}		
2860 сл.			
1590 пл.	$\nu(CC)_{ch} + \nu(CO) + \nu(CN) + \nu(CCC)_{ch} + \delta(CH_3)$		
1565 пл.	$\mathcal{N}(\mathbb{C}\mathbb{C}) \to \mathcal{N}(\mathbb{C}\mathbb{N})$		
1555 o. c.	$v(CC)_{ch} + v(CO) + v(CN)$		
1533 o. c.	$v(CC)_{ch} + \delta(CH\gamma) + \delta(CH_3)$		
1518 пл.			
1504 пл.	$V(CC)_{ch} + V(CO) + V(CN)$		
1418 cp.	S(CIL) + S		
1413 пл.	$O(CH\gamma) + O_{ch}$		
1374 o. c.	δ(HCH)		

Колебательные частоты $V(kimi)_3, \nu, cm^{-1}$	Отнесение
1359 o. c.	$\delta(CH_3) + \delta_{ch}$
1340 пл.	$v(CC)_{ch} + \delta(HCH) + \delta(CCH)$
1287 c.	$v(CC)_{ch} + v(CC) + \delta(HCH) + \delta_{ch}$
1189 о. сл.	$\nu(CC)_{ch} + \nu(CC) + \nu(CO) + \delta(HCH) + \delta(CCH) + \delta(CH\gamma)$
1026 c.	$\nu(CC) + \delta(CCH) + \delta_{ch}$ (внепл.) + $\delta(CH_3)$ (качание)
1000 c.	$v(CC) + v(CC)_{ch} + \delta_{ch} + \delta(CH_3)$ (качание)
945 пл.	$\nu(CC)_{ch} + \nu(CO) + \nu(CN) + \delta_{ch}$
939 cp.	$\nu(CC)_{ch} + \nu(CO) + \nu(CN)$
800 c.	$\nu(CC) + \delta(CCH) + \delta(CCH_3)$
792 ср.	$\delta(CCH) + \delta(CH\gamma)$
687 c.	$v(VO) + v(VN) + \delta(CCH) + \delta_{ch}$
662 сл.	$\delta(CH_3) + \delta(CH\gamma)$ (внепл.) + δ_{ch} (внепл.)
613 cp.	$\nu(VO) + \delta_{ch} + \delta(CCH_3) + \delta(CH_3) + \delta(CCH)$
565 о. сл.	$\nu(VO) + \delta_{ch}$ (внепл.) + $\delta(CCH)$
489 o. c.	$\nu(VO) + \delta(CCH_3)$
467 о. сл.	$\nu(VO) + \nu(CC) + \nu(CC)_{ch} + \delta_{ch} + \delta(CH_3)$

Окончание табл. 3 Ending of the table 3

В интервале частот 1600–1500 см⁻¹ присутствует серия полос поглощения, сформированная преимущественно валентными колебаниями v(CO), v(CN) и v(CC)_{ch} квазиароматического металлоцикла. При этом полосы поглощения с максимумами 1565; 1555; 1518 и 1504 см⁻¹ имеют составной характер и принадлежат к упомянутым выше трем типам колебаний. Значения вкладов разных типов колебаний в полосы поглощения с перечисленными максимумами частот варьируются в следующих пределах: v(CO) – от 11 до 37 %, v(CN) – от 17 до 47 %, v(CC)_{ch} – от 31 до 47 %. Аналогичная серия полос поглощения, сформированная этими тремя типами колебаний, лежит в области 950–930 см⁻¹, при этом вклад колебаний v(CC)_{ch} составляет 40 %, вклад колебаний v(CO) – 14 %, вклад колебаний v(CN) – 13 %. Наличие сложного контура полос поглощения, который проявляется дополнительно в виде плечей, может быть обусловлено присутствием различных надмолекулярных структур, формируемых в результате дативного взаимодействия ванадия с атомами кислорода и азота, принадлежащими координационным узлам, образованным соседними атомами металла [14].

Согласно расчетным данным [14] ниже 705 см⁻¹ в большинство наблюдаемых полос поглощения будут вносить свой вклад валентные колебания v(VN) и v(VO). Однако оценить количественно этот вклад не представляется возможным, так как при формировании данного типа связи преимущественную роль будет играть не распределение потенциальной энергии по естественным колебательным координатам, а соотношение склонности металла-комплексообразователя к жесткому или мягкому типу взаимодействия с лигандами в рамках концепции ЖМКО (жестких и мягких кислот и оснований).

Таким образом, в ИК-спектрах ацетилацетоната и кетоимината ванадия(III) и ацетилацетоната ванадила наблюдаются все типы полос, характерные для ацетилацетонатов меди, золота и хрома [9–12; 14]. Об образовании квазиароматического металлоцикла свидетельствует батохромный сдвиг частот v(CO) ацетилацетона, который составляет более 100 см⁻¹. В интервале частот 1570–1410 см⁻¹ валентные колебания квазиароматического металлоцикла представлены сериями полос поглощения, основной вклад в которые вносят проявляющиеся попарно валентные колебания v(CC)_{ch} и v(CO), а для кетоимината ванадия еще и валентные колебания v(CN), что является характерным для ацетилацетонатов переходных металлов [3; 9–12]. Наличие валентных колебаний v(CH)_{CH3}, проявляющихся в интервале частот 3000–2900 см⁻¹, свидетельствует об отсутствии какой-либо их трансформации под действием электрического тока. Дополнением и подтверждением для данного вывода служит проявление деформационных колебаний $\delta(CH_3)$, которые не только вносят вклад в образование ряда полос поглощения в ИК-спектре, но и присутствуют в качестве характеристических полос в спектрах всех трех соединений.

Заключение

В результате детального рассмотрения ИК-спектров кетоимината ванадия(III) и ацетилацетонатов ванадия(III) и ванадила можно сделать вывод об образовании квазиароматических хелатных циклов. Основной координационный узел для ацетилацетоната ванадия(III) состоит из трех квазиароматических металлоциклов (см. рисунок), а для ацетилацетоната ванадила – из двух квазиароматических металлоциклов. Показано, что под действием электрического тока не наблюдается каких-либо трансформаций периферийных метильных групп.

Библиографические ссылки

1. Чапала ЮИ. *Ванадий: свойства и применение* [Интернет]. Москва: Метотехника; 2018 [процитировано 21 марта 2024 г.]. 28 с. Доступно по: https://www.metotech.ru/articles/art vanadiy 2.pdf.

2. Сыркин ВГ. CVD-метод. Химическая парофазная металлизация. Москва: Наука; 2000. 496 с.

3. Malkerova IP, Makarevich AM, Alikhanyan AS, Kuz'mina NP. Volatility and thermal stability of vanadyl β-diketonate complexes. *Russian Journal of Inorganic Chemistry*. 2017;62(6):818–821. DOI: 10.1134/S0036023617060134.

4. Ma Y, Reardon D, Gambarotta S, Yap G, Zahalka H, Lemay C. Vanadium-catalyzed ethylene – propylene copolymerization: the question of the metal oxidation state in Ziegler – Natta polymerization promoted by (β -diketonate)₃V. *Organometallics*. 1999;18(15): 2773–2781. DOI: 10.1021/om9808763.

5. Kostyuk NN, Dick TA. Synthesis of ultrapure copper chelates. *Russian Journal of General Chemistry*. 2020;90(11):2141–2146. DOI: 10.1134/S1070363220110195.

6. Скопенко ВВ, Гарновский АД, Кокозей ВН, Кужаров АС, Гохон-Зоррилла Г, Бурлов АС и др. *Прямой синтез координационных соединений*. Скопенко ВВ, редактор. Киев: Вентури; 1997. 176 с.

7. Гарновский АД, Харисов БИ, Гохон-Зоррилла Г, Гарновский ДА. Прямой синтез координационных соединений из нульвалентных металлов и органических лигандов. *Успехи химии*. 1995;64(3):215–236.

8. Костюк НН, Дик ТА, Требников АГ. Анодное окисление металлического гадолиния в присутствии теноилтрифторацетона. Журнал прикладной химии. 2006;79(1):77–81. EDN: HSTQRR.

9. Краденов КВ, Колесов БА. Анализ нормальных колебаний β-дикетонатов меди(II). Новосибирск: [б. и.]; 1986. 41 с.

10. Краденов КВ, Колесов БА. *Расчет распределения колебательной энергии по естественным координатам на примере* β-дикетонатов меди(II). Новосибирск: [б. и.]; 1986. 28 с.

11. Краденов КВ, Колесов БА, Игуменов ИК. Влияние лигандных заместителей на колебания и силовую постоянную координационной связи в β-дикетонатах меди(II). *Координационная химия*. 1987;13(9):1178–1187.

12. Слабженников СН, Денисенко ЛА, Литвинова ОБ, Вовна ВИ. Расчет нормальных колебаний комплекса *трис*-ацетилацетоната хрома. *Координационная химия*. 2000;26(2):105–111.

13. Дик ТА, Костюк НН, Умрейко ДС. Роль кинематических факторов в формировании СО-, СС-колебаний в β-дикетонатных металлокомплексах. *Журнал прикладной спектроскопии*. 1991;54(5):736–739.

14. Краденов КВ, Колесов БА. Анализ нормальных колебаний комплексов (CH_3)₂Au(AA), (CH_3)₂Au(KuAA), (CH_3)₂Au(TuoAA), (CH_3)₂Au(KuTuoAA). Новосибирск: [б. и.]; 1988. 38 с.

15. Вовна ВИ, Андреев ВА, Чередниченко АИ. Фотоэлектронные спектры и электронная структура β-дикетонатов π- и δ-элементов. В: Мартыненко ЛИ, редактор. β-*Дикетонаты металлов. Том 1*. Владивосток: Издательство Дальневосточного университета; 1990. с. 7–31.

16. Вовна ВИ, Чередниченко АИ, Устинов АЮ, Реутов ВА, Свистунов ГМ, Шапкин НП. Фотоэлектронные спектры γ-замещенных ацетилацетонатов металлов. В: Мартыненко ЛИ, редактор. β-Дикетонаты металлов. Том 1. Владивосток: Издательство Дальневосточного университета; 1990. с. 165–177.

References

1. Chapala YuI. *Vanadii: svoistva i primenenie* [Vanadium: properties and applications] [Internet]. Moscow: Metotekhnika; 2018 [cited 2024 March 21]. 28 p. Russian. Available from: https://www.metotech.ru/articles/art vanadiy 2.pdf.

2. Syrkin VG. *CVD-metod. Khimicheskaya parofaznaya metallizatsiya* [CVD method. Chemical vapor-phase metallisation]. Moscow: Nauka; 2000. 496 p. Russian.

3. Malkerova IP, Makarevich AM, Alikhanyan AS, Kuz'mina NP. Volatility and thermal stability of vanadyl β-diketonate complexes. *Russian Journal of Inorganic Chemistry*. 2017;62(6):818–821. DOI: 10.1134/S0036023617060134.

4. Ma Y, Reardon D, Gambarotta S, Yap G, Zahalka H, Lemay C. Vanadium-catalyzed ethylene – propylene copolymerization: the question of the metal oxidation state in Ziegler – Natta polymerization promoted by (β -diketonate)₃V. *Organometallics*. 1999;18(15): 2773–2781. DOI: 10.1021/om9808763.

5. Kostyuk NN, Dick TA. Synthesis of ultrapure copper chelates. *Russian Journal of General Chemistry*. 2020;90(11):2141–2146. DOI: 10.1134/S1070363220110195.

6. Skopenko VV, Garnovskii AD, Kokozei VN, Kuzharov AS, Gojon-Zorrilla G, Burlov AS, et al. *Pryamoi sintez koordinatsion-nykh soedinenii* [Direct synthesis of coordination compounds]. Skopenko VV, editor. Kyiv: Venturi; 1997. 176 p. Russian.

7. Garnovskii AD, Kharisov BI, Gojon-Zorrilla G, Garnovskii DA. Direct synthesis of coordination compounds from zero-valent metals and organic ligands. *Uspekhi khimii*. 1995;64(3):215–236. Russian.

8. Kostyuk NN, Dick TA, Trebnikov AG. [Anodic oxidation of gadolinium metal in the presence of thenoyltrifluoroacetone]. *Zhurnal prikladnoi khimii*. 2006;79(1):77–81. Russian. EDN: HSTQRR.

9. Kradenov KV, Kolesov BA. Analiz normal'nykh kolebanii β -diketonatov medi(II) [Analysis of normal vibrations of copper(II) β -diketonates]. Novosibirsk: [s. n.]; 1986. 41 p. Russian.

10. Kradenov KV, Kolesov BA. *Raschet raspredeleniya kolebatel'noi energii po estestvennym koordinatam na primere* β -*diketo-natov medi(II)* [Calculation of the distribution of vibrational energy over natural coordinates using the example of copper(II) β -diketonates]. Novosibirsk: [s. n.]; 1986. 28 p. Russian.

11. Kradenov KV, Kolesov BA, Igumenov IK. [Effect of ligand substituents on vibrations and force constant of coordination bonds in copper(II) β -diketonates]. *Koordinatsionnaya khimiya*. 1987;13(9):1178–1187. Russian.

12. Slabzhennikov SN, Denisenko LA, Litvinova OB, Vovna VI. [Calculation of normal vibrations of chromium *tris*-acetylacetonate complex]. *Koordinatsionnaya khimiya*. 2000;26(2):105–111. Russian.

13. Dick TA, Kostyuk NN, Umreiko DS. [The role of kinematic factors in the formation of CO-, CC-vibrations in β-diketonate metal complexes]. *Zhurnal prikladnoi spektroskopii*. 1991;54(5):736–739. Russian.

14. Kradenov KV, Kolesov BA. Analiz normal'nykh kolebanii kompleksov $(CH_3)_2Au(AA)$, $(CH_3)_2Au(KuAA)$, $(CH_3)_2Au(TuoAA)$, $(CH_3)_2Au(TuoAA)$ [Analysis of normal vibrations of complexes $(CH_3)_2Au(AA)$, $(CH_3)_2Au(KuAA)$, $(CH_3)_2Au(TuoAA)$, $(CH_3)_2Au(KuTuoAA)$]. Novosibirsk: [s. n.]; 1988. 38 p. Russian.

15. Vovna VI, Andreev VA, Cherednichenko AI. [Photoelectron spectra and electronic structure of β-diketonates of π - and δ-elements]. In: Martynenko LI, editor. β-*Diketonaty metallov. Tom 1* [Metal β-diketonates. Volume 1]. Vladivostok: Izdatel'stvo Dal'nevostochnogo universiteta; 1990. p. 7–31. Russian.

16. Vovna VI, Cherednichenko AI, Ustinov AYu, Reutov VA, Svistunov GM, Shapkin NP. [Photoelectron spectra of γ -substituted metal acetylacetonates]. In: Martynenko LI, editor. β -*Diketonaty metallov. Tom 1* [Metal β -diketonates. Volume 1]. Vladivostok: Izdatel'stvo Dal'nevostochnogo universiteta; 1990. p. 165–177. Russian.

Получена 12.04.2024 / исправлена 25.06.2024 / принята 25.06.2024. Received 12.04.2024 / revised 25.06.2024 / accepted 25.06.2024.