Синтез, структурные особенности и газочувствительные свойства высокодефектного диоксида титана

  • Наталья Евгеньевна Боборико Белорусский государственный университет, пр. Независимости, 4, 220030, г. Минск, Беларусь https://orcid.org/0000-0002-4794-7424
  • Дмитрий Вадимович Свиридов Белорусский государственный университет, пр. Независимости, 4, 220030, г. Минск, Беларусь https://orcid.org/0000-0003-4650-6122

Аннотация

За счет химического восстановления TiO2, синтезированного золь-гель методом, получен наноразмерный черный диоксид титана анатазной модификации, характеризующийся наличием большого количества кислородных вакансий и выраженным примесным поглощением. Полупроводниковые химические газовые сенсоры на основе полученного высокодефектного диоксида титана демонстрируют высокий выходной сигнал по отношению к парам этилового спирта, который дополнительно значительно возрастает в условиях актиничного облучения.

Биографии авторов

Наталья Евгеньевна Боборико, Белорусский государственный университет, пр. Независимости, 4, 220030, г. Минск, Беларусь

кандидат химических наук, доцент; доцент кафедры неорганической химии химического факультета

Дмитрий Вадимович Свиридов, Белорусский государственный университет, пр. Независимости, 4, 220030, г. Минск, Беларусь

член-корреспондент Национальной академии наук Беларуси, доктор химических наук, профессор; декан химического факультета

Литература

  1. Matos J, Ocares-Riquelme J, Poon PS, Montana R, Garcia X, Campos K, et al. C-doped anatase TiO2: adsorption kinetics and photocatalytic degradation of methylene blue and phenol, and correlations with DFT estimations. Journal of Colloid and Interface Science. 2019;547:14–29. DOI: 10.1016/j.jcis.2019.03.074.
  2. Li H, Wang D, Fan H, Wang P, Jiang T, Xie T. Synthesis of highly efficient C-doped TiO2 photocatalyst and its photo-generated charge-transfer properties. Journal of Colloid and Interface Science. 2011;354(1):175–180. DOI: 10.1016/j.jcis.2010.10.048.
  3. Di Valentin C, Finazzi E, Pacchioni G, Selloni A, Livraghi S, Paganini MC, et al. N-doped TiO2: theory and experiment. Chemical Physics. 2007;339(1–3):44–56. DOI: 10.1016/j.chemphys.2007.07.020.
  4. Cravanzola S, Cesano F, Gaziano F, Scarano D. Sulfur-doped TiO2: structure and surface properties. Catalysts. 2017;7(7):214–224. DOI: 10.3390/catal7070214.
  5. Zhu M, Zhai C, Qiu L, Lu C, Paton AS, Du Y, et al. New method to synthesize S-doped TiO2 with stable and highly efficient photocatalytic performance under indoor sunlight irradiation. ACS Sustainable Chemistry and Engineering. 2015;3(12):3123–3129. DOI: 10.1021/acssuschemeng.5b01137.
  6. Tojo S, Tachikawa T, Fujitsuka M, Majima T. Iodine-doped TiO2 photocatalysts: correlation between band structure and mechanism. The Journal of Physical Chemistry C. 2008;112(38):14948–14954. DOI: 10.1021/jp804985f.
  7. Dozzi MV, D’Andrea C, Ohtani B, Valentini G, Selli E. Fluorine-doped TiO2 materials: photocatalytic activity vs time-resolved photoluminescence. The Journal of Physical Chemistry C. 2013;117(48):25586–25595. DOI: 10.1021/jp4095563.
  8. Hu Y, Song X, Jiang S, Wei C. Enhanced photocatalytic activity of Pt-doped TiO2 for NOx oxidation both under UV and visible light irradiation: a synergetic effect of lattice Pt4+ and surface PtO. Chemical Engineering Journal. 2015;274:102–112. DOI: 10.1016/j.cej.2015.03.135.
  9. Ali T, Ahmed A, Alam U, Uddin I, Tripathi P, Muneer M. Enhanced photocatalytic and antibacterial activities of Ag-doped TiO2 nanoparticles under visible light. Materials Chemistry and Physics. 2018;212:325–335. DOI: 10.1016/j.matchemphys.2018.03.052.
  10. Santos LM, Machado WA, Franca MD, Borges KA, Paniago RM, Patrocinio AOT, et al. Structural characterization of Ag-doped TiO2 with enhanced photocatalytic activity. RSC Advances. 2015;5:103752–103759. DOI: 10.1039/C5RA22647C.
  11. Ganesh I, Kumar PP, Annapoorna I, Sumliner JM, Ramakrishna M, Hebalkar NY, et al. Preparation of Cu-doped TiO2 materials for electrochemical, photoelectrochemical, and photocatalytic applications. Applied Surface Science. 2014;293:229–247. DOI: 10.1016/j.apsusc.2013.12.140.
  12. Moradi H, Eshaghi A, Hosseini SR, Ghani K. Fabrication of Fe-doped TiO2 nanoparticles and investigation of photocatalytic decolorization of reactive red 198 under visible light irradiation. Ultrasonics Sonochemistry. 2016;32:314–319. DOI: 10.1016/j.ultsonch.2016.03.025.
  13. Al-Jawad SMH, Taha AA, Salim MM. Synthesis and characterization of pure and Fe doped TiO2 thin films for antimicrobial activity. Optik. 2017;142:42–53. DOI: 10.1016/j.ijleo.2017.05.048.
  14. Mathew S, Ganguly P, Rhatigan S, Kumaravel V, Byrne C, Hinder SJ, et al. Cu-doped TiO2: visible light assisted photocatalytic antimicrobial activity. Applied Sciences. 2018;8:2067–2087. DOI: 10.3390/app8112067.
  15. Larumbe S, Monge M, Gomez-Polo C. Comparative study of (N, Fe) doped TiO2 photocatalysts. Applied Surface Science. 2015;327:490–497. DOI: 10.1016/j.apsusc.2014.11.137.
  16. Basavarajappa PS, Patil SB, Ganganagappa N, Reddy KR, Raghu AV, Reddy ChV. Recent progress in metal-doped TiO2, non-metal doped/codoped TiO2 and TiO2 nanostructured hybrids for enhanced photocatalysis. International Journal of Hydrogen Energy. 2020;45(13):7764–7778. DOI: 10.1016/j.ijhydene.2019.07.241.
  17. Teng F, Li M, Gao G, Zhang P, Wang Y, Chen L, et al. Preparation of black TiO2 by hydrogen plasma assisted chemical vapor deposition and its photocatalytic activity. Applied Catalysis B: Environmental. 2014;148–149:339–343. DOI: 10.1016/j.apcatb.2013.11.015.
  18. Xiong L-B, Li J-L, Yang B, Yu Y. Ti3+ in the surface of titanium dioxide: generation, properties and photocatalytic application. Journal of Nanomaterials. 2012;2012:831524. DOI: 10.1155/2012/831524.
  19. Xia T, Zhanga Y, Murowchick J, Chen X. Vacuum-treated titanium dioxide nanocrystals: optical properties, surface disorder, oxygen vacancy, and photocatalytic activities. Catalysis Today. 2014;225:2–9. DOI: 10.1016/j.cattod.2013.08.026.
  20. Tian M, Liu Ch, Ge J, Geohegan D, Duscher G, Eres G. Resent progress in characterization of core-shell structure of black titania. Journal of Materials Research. 2019;34:1138–1153. DOI: 10.1557/jmr.2019.46.
  21. Hou X, Shang M, Bi Y, Jiao Z. Synthesis of Ti3+ self-doped SrTiO3/TiO2 hetero-photoanodes with enhanced photoelectrochemical performances under visible light. Materials Letters. 2016;176:270–273. DOI: 10.1016/j.matlet.2016.04.139.
  22. Alamelu K, Raja V, Shiamala L, Jaffar A. Biphasic TiO2 nanoparticles decorated graphene nanosheets for visible light driven photocatalytic degradation of organic dyes. Applied Surface Science. 2018;430:145–154. DOI: 10.1016/j.apsusc.2017.05.054.
  23. Guan Y, Xia M, Marchetti A, Wang X, Cao W, Guan H, et al. Photocatalytic reduction of CO2 from simulated flue gas with colored anatase. Catalysts. 2018;8(2):78–88. DOI: 10.3390/catal8020078.
  24. Chen X, Mao SS. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chemical Reviews. 2007;107(7):2891–2959. DOI: 10.1021/cr0500535.
  25. Chen X, Liu L, Huang F. Black titanium dioxide (TiO2) nanomaterials. Chemical Society Reviews. 2015;44(7):1861–1885. DOI: 10.1039/C4CS00330F.
  26. Hoang S, Berglund SP, Hahn NT, Bard AJ, Mullins CB. Enhancing visible light photo-oxidation of water with TiO2 nanowire arrays via cotreatment with H2 and NH3: synergistic effects between Ti3+ and N. Journal of American Chemical Society. 2012;134(8):3659–3663. DOI: 10.1021/ja211369s.
  27. Chen X, Cui Y. Black TiO2 nanomaterials for energy applications. New Jersey: World Scientific Publishing Europe Ltd.; 2017. 322 p.
  28. Boboriko NE, Bobrikov IA, Lapchuk NM, Sviridov DV. The role of structural features in heterogeneous catalytic oxidation of H2 on TiO2 : MoO3 nanocomposites. Journal of Solid State Chemistry. 2019;275:181–186. DOI: 10.1016/j.jssc.2019.04.009.
  29. Wendlandt WW, Hecht HG. Reflectance Spectroscopy. New York: Interscience; 1966. 306 p.
  30. Ischenko V, Polarz S, Grote D, Stravarache V, Fink K, Driess M. Zink oxide nanoparticles with defects. Advanced Functional Materials. 2005;15:1945–1954. DOI: 10.1002/adfm.200500087.
  31. Zhuang J, Weng S, Dai W, Liu P, Liu Q. Effects of interface defects on charge transfer and photoinduced properties of TiO2 bilayer films. Journal of Physical Chemistry C. 2012;116(48):25354–25361. DOI: 10.1021/jp307871y.
  32. Dohshi S, Anpo M, Okuda S, Kojima T. Effect of γ-ray irradiation on the wettability of TiO2 single crystals. Topics in Catalysis. 2005;35(3–4):327–330. DOI: 10.1007/s11244-005-3841-1.
  33. Moya A, Cherevan A, Marchesan S, Gebhardt P, Prato M, Eder D, et al. Oxygen vacancies and interfaces enhancing photocatalytic hydrogen production in mesoporous CNT/TiO2 hybrids. Applied Catalysis B: Environmental. 2015;179:574–582. DOI: 10.1016/j.apcatb.2015.05.052.
  34. Janotti A, Varley JB, Rinke P, Umezawa N, Kresse G, Van de Walle CG. Hybrid functional studies of the oxygen vacancy in TiO2. Physical Review B. 2010;81(8):085212. DOI: 10.1103/PhysRevB.81.085212.
  35. Chen S, Xiao Y, Wang Y, Hu Z, Zhao H, Xie W. A facile approach to prepare black TiO2 with oxygen vacancy for enhancing photocatalytic activity. Nanomaterials. 2018;8(4):245. DOI: 10.3390/nano8040245.
  36. Bateni A, Erdem E, Repp S, Acar S, Kokal I, Hassler W, et al. Electron paramagnetic resonance and Raman spectroscopy studies on carbon-doped MgB2 superconductor nanomaterials. Journal of Applied Physics. 2015;117(15):153905. DOI: 10.1063/1.4918608.
  37. Prasad BLV, Sato H, Enoki T, Hishiyama Y, Kaburagi Y, Rao AM, et al. Heat-treatment effect on the nanosized graphite π-electron system during diamond to graphite conversion. Physical Review B. 2000;62(16):11209–11218. DOI: 10.1103/PhysRevB.62.11209.
Опубликован
2020-08-27
Ключевые слова: черный диоксид титана, анатаз, кислородные вакансии, газочувствительные свойства, этанол
Поддерживающие организации Данная работа была выполнена при частичной поддержке Белорусского республиканского фонда фундаментальных исследований (договор № Х19М-046).
Как цитировать
Боборико, Н. Е., & Свиридов, Д. В. (2020). Синтез, структурные особенности и газочувствительные свойства высокодефектного диоксида титана. Журнал Белорусского государственного университета. Химия, 2, 89-97. https://doi.org/10.33581/2520-257X-2020-2-89-97