Механизм огнезадерживающего действия азот- и фосфорсодержащих антипиренов в полимерах различных классов
Аннотация
Обобщены исследования по выявлению механизма огнезадерживающего действия азот- и фосфорсодержащих замедлителей горения в синтетических карбоцепных (полиэтилен, полипропилен), гетероцепных (пенополиуретан) и природных коксующихся (древесина, торф) полимерах. В качестве замедлителей горения использованы органические и (или) неорганические азот- и фосфорсодержащие синтетические продукты. Механизм огнезадерживающего действия синтезированных замедлителей горения устанавливали по результатам исследования физикохимических, физико-механических свойств и состава продуктов термолиза полимерных композиций с различным уровнем огнестойкости. Определено содержание ингибирующих элементов (азота, фосфора) в исходных и прогретых полимерных композициях для достижения ими нормативного уровня огнестойкости. Обнаружено различие между факторами, оказывающими определяющее влияние на прекращение горения карбоцепных, гетероцепных и коксующихся полимеров. Сделан вывод о механизме синергического действия азот- и фосфорсодержащих замедлителей горения, заключающийся в участии фосфора в образовании теплоизолирующих вспененных структур в конденсированной фазе и в поступлении летучих азотсодержащих ингибиторов горения в газовую фазу.
Литература
- Zaikov GE, editor. Gorenie, destruktsiya i stabilizatsiya polimerov [Combustion, destruction and stabilization of polymers]. Saint Petersburg: Nauchnye osnovy i tekhnologii; 2008. 422 p. Russian.
- Aseeva RM, Serkov BV, Sivenkov AB. Gorenie drevesiny i ee pozharoopasnye svoistva [Combustion of wood and its flammable properties]. Moscow: Akademiya GPS MChS Rossii; 2010. 262 p. Russian.
- Dasaria A, Yub Z-Z, Caic G-P, Maic Y-W. Recent developments in the fire retardancy of polymeric materials. Progress in Polymer Science. 2013;38(9):1357–1387.
- Weil ED. Fire-protective and flame-retardant coatings – a state-of-the-art review. Journal of Fire Sciences. 2011;29(3):259–296. DOI: 10.1177/0734904110395469.
- Lomakin SM, Zaikov GE, Mikitaev AK, Kochnev AM, Stoyanov OV, Shkodich VF, et al. [Flame retardants for polymers]. Vestnik Kazanskogo tekhnologicheskogo universiteta. 2012;15(7):71–86. Russian.
- Khobragade PS, Hansora DP, Naik JB, Chatterjee A. Flame retarding performance of elastomeric nanocomposites: a review. Polymer Degradation and Stability. 2016;130:194–244. DOI: 10.1016/j.polymdegradstab.2016.06.001.
- Salmeia KA, Fage J, Liang S, Gaan S. An overview of mode of action and analytical methods for evaluation of gas phase activities of flame retardants. Polymers. 2015;7(3):504–526. DOI: 10.3390/polym7030504.
- Kablov VF, Novopoltseva OM, Kochetkov VG, Lapina AG. The main ways and mechanisms to improve fire- and heat resistance of materials. Izvestija Volgogradskogo gosudarstvennogo tekhnicheskogo universiteta. 2016;4:46–60. Russian.
- Khalturinskii IA, Bermen AA. [Modern ideas about the combustion of polymers and the mechanisms of action of inhibitors]. In: Volgograd State Technical University, Semenov Institute of Chemical Physics of the Russian Academy of Science. Polimernye materialy ponizhennoi goryuchesti. IV Mezhdunarodnaya konferentsiya; 17–19 oktyabrya 2000 g.; Volgograd, Russia [Polymeric materials of low flammability. 4th International conference; 2000 October 17–19; Volgograd, Russia]. Volgograd: RPK «Politekhnik»; 2000. p. 123–142. Russian.
- Horrocks AR, Price D. Fire retardant materials. Cambridge: Woodhead Publishing Limited; 2001. 442 p.
- Laoutid F, Bonnaud L, Alexandre M, Lopez-Cuesta JM, Dubois P. New prospects in flame retardant polymer materials: from fundamentals to nanocomposites. Materials Science and Engineering R: Reports. 2009;63(3):100–125. DOI: 10.1016/j.mser.2008.09.002.
- Laoutid F, editor. Advanced flame retardant materials. Basel: MDPI; 2020. 190 p. DOI: 10.3390/books978-3-03928-351-4.
- Paletsky AA, Gonchikzhapov MB, Shundrina IK, Korobeinichev OP. The mechanism of reducing combustibility of polyethylene of different molecular weight by adding phosphorus-containing compounds. Izvestiya YuFU. Tekhnicheskie nauki. 2013;8:57–67. Russian.
- Chattopadhyay DK, Webster DC. Thermal stability and flame retardancy of polyurethanes. Progress in Polymer Science. 2009;34(10):1068–1133. DOI: 10.1016/j.progpolymsci.2009.06.002.
- Markwart JC, Battig A, Zimmermann L, Wagner M, Fischer J, Schartel B, et al. Systematically controlled decomposition mechanism in phosphorus flame retardants by precise molecular architecture: P−O vs P−N. ACS Applied Polymer Materials. 2019;1(5):1118–1128. DOI: 10.1021/acsapm.9b00129.
- Wang C, Wang Y, Han Z. Enhanced flame retardancy of polyethylene/magnesium hydroxide with polycarbosilane. Scientific Reports. 2018;8:14494. DOI: 10.1038/s41598-018-32812-5.
- Aqlibous A, Tretsiakova-McNally S, Fateh T. Waterborne intumescent coatings containing industrial and bio-fillers for fire protection of timber materials. Polymers. 2020;12(4):757–772. DOI: 10.3390/polym12040757.
- Ali S, Hussain SA, Tohir MZM. Fire test and effects of fire retardant on the natural ability of timber: a review. Pertanika Journal of Science and Technology. 2019;27(2):867–895.
- Velencoso MM, Battig A, Markwart JC, Schartel B, Wurm FR. Molecular firefighting – how modern phosphorus chemistry can help solve the challenge of flame retardancy. Angewandte Chemie. 2018;57(33):10450–10467. DOI: 10.1002/anie.201711735.
- Schartel B. Phosphorus-based flame retardancy mechanisms – old hat or a starting point for future development? Materials. 2010;3(10):4710–4745. DOI: 10.3390/ma3104710.
- Leonovich AA, Sheloumov AV. [Comparative analysis of the effectiveness of fire retardants on the example of wood materials]. Izvestiya SPbGLTU. 2013;204:161–171. Russian.
- Wendels S, Chavez T, Bonnet M, Salmeia KA, Gaan S. Recent developments in organophosphorus flame retardants containing P–C bond and their applications. Materials. 2017;10(7):784–816. DOI: 10.3390/ma10070784.
- Rabe S, Chuenban Y, Schartel B. Exploring the modes of action of phosphorus-based flame retardants in polymeric systems. Materials. 2017;10(5):455–478. DOI: 10.3390/ma10050455.
- Yuan Y, Yang H, Yu B, Shi Y, Wang W, Song L, et al. Phosphorus and nitrogen-containing polyols: synergistic effect on the thermal property and flame retardancy of rigid polyurethane foam composites. Industrial and Engineering Chemistry Research. 2016;55(41):10813–10822. DOI: 10.1021/acs.iecr.6b02942.
- Bogdanova VV, Kobets OI. Research of fire-retardant efficiency of ammonium metallophosphate compositions on the base of di- and trivalent metals depending on conditions of synthesis. Vestnik BGU. Seriya 2, Khimiya. Biologiya. Geografiya. 2009;1:34–39. Russian.
- Bogdanova VV, Kobets OI. Synthesis and physicochemical properties of di- and trivalent metal-ammonium phosphates. Zhurnal prikladnoi khimii. 2014;87(10):1385–1399. Russian.
- Serkov BB, Aseeva RM, Sivenkov AB. Physical and chemical nature of combustion and fire hazard of wooden materials (part 1). Tekhnologii tekhnosfernoi bezopasnosti [Internet]. 2011 [cited 2022 March 31];6:[18 p.]. Russian.
- Arinushkina EV. Rukovodstvo po khimicheskomu analizu pochv [Guide to the chemical analysis of soils]. 2nd edition, revised, and expanded. Moscow: Izdatel’stvo Moskovskogo universiteta; 1970. 487 p. Russian.
- Marchenko Z. Fotometricheskoe opredelenie elementov [Photometric determination of elements]. Zolotov YuA, editor; Matveeva IV, Nemodruka AA, translators. Moscow: Mir; 1971. 502 p. Russian.
- Klimova VA. Osnovnye metody analiza organicheskikh soedinenii [Basic methods for the analysis of organic compounds]. Moscow: Khimiya; 1967. 208 p. Russian.
- Bogdanova VV. Transformations of antimony-halogen- and nitrogen-phosphorus-based flame retardants in polyolefins and their performance. Vysokomolekulyarnye soedineniya. Seriya B. 2001;43(4):746–750. Russian.
- Bogdanova VV, Lakhvich VV, Vrublevskiy AV, Dmitrichenko AS. [Fire-extinguishing efficiency of liquid chemical compositions when extinguishing class A fires with spray fire extinguishing devices]. Vestnik of the Institute for Command Engineers of the MES of the Republic of Belarus. 2008;1:35–41. Russian.
- Bogdanova VV, Kobets OI, Buraja ON. Directional regulation of the fire-protective and extinguish efficiency of N–P-containing fire retardants in synthetic and natural polymers. Gorenie i vzryv. 2019;12(2):106–115. Russian.
- Tikhonov MM. The fire-retardant composition based on rigid sprayed polyurethane foam. Chrezvychainye situatsii: preduprezhdenie i likvidatsiya. 2013;1:50–60. Russian.
- Bogdanova VV, Kobets OI. Regulation of physico-chemical properties of metal ammonium phosphatic compositions showing fire-retardant and fire-extinguish effect. Sviridovskie chteniya. 2011;7:21–27. Russian.
- Powder diffraction file: ICPDS alphabetical index. Inorganic phases. Swarthmore: International Centre for Diffraction Data; 1989. 835 p.
- Lesnykovich AI, Bogdanova VV, Levchik SV, Levchik GF. [Thermochemical transformations in heterogeneous systems of the polymer – fire retardant type]. In: Sviridov VV, editor. Khimicheskie problemy sozdaniya novykh materialov i tekhnologii. Minsk: Belarusian State University; 1998. p. 145–168. Russian.
- König A, Kroke E. Flame retardancy working mechanism of methyl-DOPO and MPPP in flexible polyurethane foam. Fire and Materials. 2012;36(1):1–15.
- Luchkina LV, Rud’ DA, Rudakova TA, Sukhov AV. [Influence of flame retardant concentration and chemical structure of rigid polyurethane foams on their fire hazard]. In: N. N. Semenov Institute of Chemical Physics of the Russian Academy of Sciences, Academy of the State Fire Service EMERCOM of Russia. Polimernye materialy ponizhennoi goryuchesti. Trudy VI Mezhdunarodnoi konferentsii; 14–18 marta 2011 g.; Vologda, Rossiya [Polymeric materials of low flammability. Proceedings of the 6th International conference; 2011 March 14–18; Vologda, Russia]. Vologda: Vologda State Technical University; 2011. p. 43–45. Russian.
- Bogdanova VV, Tikhonov MM, Kirlitsa VP. [Optimisation of the content of flame retardant mixture components for obtaining slow-burning polyurethane foam by the method of full factorial experiment]. Vestnik of the Institute for Command Engineers of the MES of the Republic of Belarus. 2012;2:12–19. Russian.
- Yudin YuV, Maisuradze MV, Vodolazskii FV. Organizatsiya i matematicheskoe planirovanie eksperimenta [Organization and mathematical planning of the experiment]. Yekaterinburg: Izdatel’stvo Ural’skogo universiteta; 2018. 124 p. Russian.
- Lowden LA, Hull TR. Flammability behaviour of wood and a review of the methods for its reduction. Fire Science Reviews. 2013;2:4. DOI: 10.1186/2193-0414-2-4.
- Huang X, Rein G. Smouldering combustion of peat in wildfires: inverse modelling of the drying and the thermal and oxidative decomposition kinetics. Combustion and Flame. 2014;161(6):1633–1644. DOI: 10.1016/j.combustflame.2013.12.013.
- Liodakis S, Tsapara V, Agiovlasitis IP, Vorisis D. Thermal analysis of Pinus sylvestris L. wood samples treated with a new gel-mineral mixture of short- and long-term fire retardants. Thermochimica Acta. 2013;568:156–160. DOI: 10.1016/j.tca.2013.06.011.
- Liping Li, Hongdan Hu, Haiqing Hu. Effect of ammonium polyphosphate modified with 3-(methylacryloxyl)propyltrymethoxy silane on the flammability and thermal degradation of pine-needles. Polymers and Polymer Composites. 2014;22(9):837–842. DOI: 10.1177/096739111402200911.
- Gusev VG, Arzybashev ES. Researches Saint Petersburg Forestry Research Institute in the field of protection of forests from fires. Trudy Sankt-Peterburgskogo nauchno-issledovatel’skogo instituta lesnogo khozyaistva. 2014;2:56–73. Russian.
- Deveci I, Sacli C, Turkoglu T, Baysal E, Toker H, Peker H. Effect of SiO2 and Al2O3 nanoparticles treatment on thermal behavior of oriental beech wood. Wood research. 2018;63(4):573–582.
- Antsupov EV, Radivilov SM. [Reducing the combustibility of wooden structures with impregnating compounds]. Gorenie i plazmokhimiya. 2011;9(1):43–50. Russian.
- Demchyna RO, Grynjkiv AS, Fedyna MF, Behta PA. New flame retardant for a wood based on the condensed compounds of phosphorous, nitrogen and boron. Aktual’nye problemy lesnogo kompleksa. 2013;37:155–160. Russian.
- Portnov FA. Influence of modifiers on coked foam structure and properties formed with thermal decomposition of wood. Fire and Explosion Safety. 2018;27(4):24–31. Russian. DOI: 10.18322/PVB.2018.27.04.24-31.
- Balakin VM, Polishchuk EYu. [Nitrogen-phosphorus-containing fire retardants for wood and wood composite materials (literature review)]. Fire and Explosion Safety. 2008;17(2):43–51. Russian.
- Popescu C-M, Pfriem A. Treatments and modification to improve the reaction to fire of wood and wood based products – an overview. Fire and Materials. 2020;44(1):100–111. DOI: 10.1002/fam.2779.
- Ivchenko OA, Pankin KE. Extinguishing forest flammable materials with hydrogels based on aluminum hydroxide. Lesotekhnicheskii zhurnal. 2019;1:76–84. Russian. DOI: 10.12737/article_5c92016e1314b2.49705560.
- Kireev AA, Zhernokljov KV. Investigation the fire extinguishment properties of gelforming composition on model seat of fire by class A with chipboard and fibreboard. Problemy pozharnoi bezopasnosti. 2011;30:83–88. Russian.
- Antonov DV, Voytkov IS, Volkov RS, Zhdanova AO, Kuznetsov GV, Khasanov IR, et al. Influence of specialized additives on the efficiency of localization of flame burning and thermal decomposition of forest fuel materials. Fire and Explosion Safety. 2018;27(9):5–16. Russian. DOI: 10.18322/PVB.2018.27.09.5-16.
- Liodakis S, Antonopoulos I, Tsapara V. Forest fire retardancy evaluation of carbonate minerals using DTG and LOI. Journal of Thermal Analysis and Calorimetry. 2009;96(1):203–209. DOI: 10.1007/s10973-008-9378-3.
- Yu AC, Hernandez HL, Kim AH, Appel EA. Wildfire prevention through prophylactic treatment of high-risk landscapes using viscoelastic retardant fluids. PNAS. 2019;116(42):20820–20827. DOI: 10.1073/pnas.1907855116.
- Vinogradov AV, Kuprin DS, Abduragimov IM, Kuprin GN, Serebriyakov E, Vinogradov VV. Silica foams for fire prevention and firefighting. Applied Materials and Interfaces. 2016;8:294–301. DOI: 10.1021/acsami.5b08653.
- Abduragimov IM, Kuprin GN, Kuprin DS. Fast-hardening foams – a new era in fighting forest fires. Pozhary i chrezvychainye situatsii: predotvrashchenie, likvidatsiya. 2016;2:7–13. Russian. DOI: 10.25257/FE.2016.2.7-13.
- Loskutov SR, Shapchenkova OA, Aniskina AA. Thermal analysis of wood of the main tree species of Central Siberia. Siberian Journal of Forest Science. 2015;6:17–30. Russian. DOI: 10.15372/SJFS20150602.
- Purmalis O, Porsnovs D, Klavins M. Differential thermal analysis of peat and peat humic acids. Scientific Proceedings of Riga Technical University. Material Science and Applied Chemistry. 2011;24:89–94.
Copyright (c) 2023 Журнал Белорусского государственного университета. Химия
Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial» («Атрибуция — Некоммерческое использование») 4.0 Всемирная.
Авторы, публикующиеся в данном журнале, соглашаются со следующим:
- Авторы сохраняют за собой авторские права на работу и предоставляют журналу право первой публикации работы на условиях лицензии Creative Commons Attribution-NonCommercial. 4.0 International (CC BY-NC 4.0).
- Авторы сохраняют право заключать отдельные контрактные договоренности, касающиеся неэксклюзивного распространения версии работы в опубликованном здесь виде (например, размещение ее в институтском хранилище, публикацию в книге) со ссылкой на ее оригинальную публикацию в этом журнале.
- Авторы имеют право размещать их работу в интернете (например, в институтском хранилище или на персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу. (См. The Effect of Open Access).