Влияние модифицирующих добавок Pd, Pt и Au на сенсорные свойства SnO2 и In2O3 при определении паров ацетона

  • Евгений Андреевич Оводок Научно-исследовательский институт физико-химических проблем БГУ, ул. Ленинградская, 14, 220006, г. Минск, Беларусь
  • Мария Ивановна Ивановская Научно-исследовательский институт физико-химических проблем БГУ, ул. Ленинградская, 14, 220006, г. Минск, Беларусь
  • Татьяна Васильевна Гаевская Научно-исследовательский институт физико-химических проблем БГУ, ул. Ленинградская, 14, 220006, г. Минск, Беларусь
  • Валентина Васильевна Кормош Научно-исследовательский институт средств аналитической техники Ужгородского национального университета, ул. Мукачевская, 25, 88000, г. Ужгород, Украина
  • Виталий Степанович Биланич Ужгородский национальный университет, пл. Народная, 3, 88000, г. Ужгород, Украина

Аннотация

Исследованы свойства планарных сенсоров на основе синтезированных нанопорошков диоксида олова и оксида индия при определении паров ацетона. Полученные сенсоры показали высокую чувствительность к низким концентрациям ацетона во влажной среде, моделирующим выдох человека, что необходимо для экспресс-контроля и диагностики заболевания диабетом. Введение каталитически активных металлов в виде Pd(II), Pt(IV) и Au(III) по-разному влияет на чувствительность при определении паров ацетона. Добавление небольшого количества ионов Au(III) (0,5 мас. %) в золь гидроксида индия или нанесение Pt(IV) (1,0 мас. %) на поликристаллический диоксид олова повышает как пороговую чувствительность, так и отклик сенсоров In2O3 – Au и SnO2 – Pt. Высокая чувствительность полученных сенсоров обусловлена особенностями структуры, состоянием поверхности оксидов и наночастиц металлов, которые определяются условиями синтеза образцов.

Биографии авторов

Евгений Андреевич Оводок, Научно-исследовательский институт физико-химических проблем БГУ, ул. Ленинградская, 14, 220006, г. Минск, Беларусь

кандидат химических наук, доцент; ведущий научный сотрудник лаборатории химии тонких пленок

Мария Ивановна Ивановская, Научно-исследовательский институт физико-химических проблем БГУ, ул. Ленинградская, 14, 220006, г. Минск, Беларусь

кандидат химических наук, доцент; ведущий научный сотрудник лаборатории химии тонких пленок

Татьяна Васильевна Гаевская, Научно-исследовательский институт физико-химических проблем БГУ, ул. Ленинградская, 14, 220006, г. Минск, Беларусь

кандидат химических наук, доцент; заведующий лабораторией химии тонких пленок

Валентина Васильевна Кормош, Научно-исследовательский институт средств аналитической техники Ужгородского национального университета, ул. Мукачевская, 25, 88000, г. Ужгород, Украина

научный сотрудник

Виталий Степанович Биланич, Ужгородский национальный университет, пл. Народная, 3, 88000, г. Ужгород, Украина

кандидат физико-математических наук; доцент кафедры прикладной физики физического факультета

Литература

  1. Hill D, Binions R. Breath analysis for medical diagnosis. International Journal on Smart Sensing and Intelligent Systems. 2012;5(2):401–440. DOI: 10.21307/ijssis-2017-488.
  2. Buszewski B, Kęsy M, Ligor T, Amann A. Human exhaled air analytics: biomarkers of diseases. Biomedical Chromatography. 2007;21(6):553–566. DOI: 10.1002/bmc.835.
  3. Saasa V, Malwela T, Beukes M, Mokgotho M, Liu C-P, Mwakikunga B. Sensing technologies for detection of acetone in human breath for diabetes diagnosis and monitoring. Diagnostics. 2018;8(1):12. DOI: 10.3390/diagnostics8010012.
  4. Righettoni M, Tricoli A. Toward portable breath acetone analysis for diabetes detection. Journal of Breath Research. 2011;5(3):037109. DOI: 10.1088/1752-7155/5/3/037109.
  5. Masikini M, Chowdhury M, Nemraoui O. Review. Metal oxides: application in exhaled breath acetone chemiresistive sensors. Journal of the Electrochemical Society. 2020;167(3):037537. DOI: 10.1149/1945-7111/ab64bc.
  6. Alizadeh N, Jamalabadi H, Tavoli F. Breath acetone sensors as non-invasive health monitoring systems: a review. IEEE Sensors Journal. 2020;20(1):5–31. DOI: 10.1109/jsen.2019.2942693.
  7. Ovodok EA, Ivanovskaya MI, Gaevskaya TV, Kormosh VV, Bilanych VS. [Properties of sensors based on tin and indium oxides for the determination of acetone vapors]. In: Ivashkevich OA, Vorob’eva TN, Artem’ev MV, Arshanskii EYa, Vasilevskaya EI, Kuntsevich ZS, et al., editors. Sviridov readings. Issue 18. Minsk: StroiMediaProekt; 2022. p. 42–53. Russian.
  8. Ivanovskaya M. Ceramic and film metaloxide sensors obtained by sol-gel method: structural features and gas-sensitive properties. Electron Technology. 2000;33(1–2):108–112.
  9. Ovodok E, Ivanovskaya M, Kotsikau D, Kormosh V, Alyakshev I. The structure and the gas sensing properties of nanocrystalline tin dioxide sinthesized from tin(II) sulphate. In: Borisenko VE, Gaponenko SV, Gurin VS, Kam CH, editors. Physics, chemistry and applications of nanostructures: reviews and short notes. Proceedings of International conference nanomeeting – 2015; 2015 May 26–29; Minsk, Belarus. Singapore: World Scientific; 2015. p. 313–316. DOI: 10.1142/9789814696524_0078.
  10. Kustov LM, Kazansky VB, Figueras F, Tichit D. Investigation of the acidic properties of ZrO2 modified by SO4 2− anions. Journal of Catalysis. 1994;150(1):143–149. DOI: 10.1006/jcat.1994.1330.
  11. Ovodok E, Ivanovskaya M, Kotsikau D, Kormosh V, Pylyp P, Bilanych V. Structural characterization and gas sensing properties of nanosized tin dioxide material synthesized from tin(II) sulfate. Ukrainian Journal of Physics. 2021;66(9):803–810. DOI: 10.15407/ujpe66.9.803.
  12. Gurlo A, Ivanovskaya M, Pfau A, Weimar U, Göpel W. Sol-gel prepared In2O3 thin films. Thin Solid Films. 1997;307(1–2):288–293. DOI: 10.1016/S0040-6090(97)00295-2.
  13. Ivanovskaya MI, Ovodok EA, Kotsikau DA. Sol-gel synthesis and features of the structure of Au – In2O3 nanocomposites. Glass Physics and Chemistry. 2011;37(5):560–567. DOI: 10.1134/S1087659611050051.
  14. Ivanovskaya MI, Ovodok EA, Kotsikau DA. [Gas-sensitivity properties of nanoscale Au – In2O3 materials]. Zhurnal obshchei khimii. 2011;81(10):1621–1626. Russian.
  15. Ivanovskaya M, Ovodok E, Gaevskaya T, Kotsikau D, Kormosh V, Bilanych V, et al. Effect of Au nanoparticles on the gas sensitivity of nanosized SnO2. Materials Chemistry and Physics. 2021;258:123858–123866. DOI: 10.1016/j.matchemphys.2020.123858.
  16. Ivanovskaya M, Bogdanov P, Bârsan N, Kappler J. The influence of humidity to a sensitive behavior of In2O3-based sensors. In: de Reus R, Bouwstra S, editors. Eurosensors XIV. The 14 th European conference on solid-state transducers; 2000 August 27–30; Copenhagen, Denmark. Copenhagen: Mikroelektronik Centret; 2000. p. 170–173.
  17. Li Yangen, Qiao Liang, Yan Dong, Wang Lili, Zeng Yi, Yang Haibin. Preparation of Au-sensitized 3D hollow SnO2 microspheres with an enhanced sensing performance. Journal of Alloys and Compounds. 2014;586:399–403. DOI: 10.1016/j.jallcom.2013.09.147.
  18. Li Gaojie, Cheng Zhixuan, Xiang Qun, Yan Liuming, Wang Xiaohong, Xu Jiaqiang. Bimetal PdAu decorated SnO2 nanosheets based gas sensor with temperature-dependent dual selectivity for detecting formaldehyde and acetone. Sensors and Actuators B: Chemical. 2019;283:590–601. DOI: 10.1016/j.snb.2018.09.117.
  19. Jeong Yong Jin, Koo Won-Tae, Jang Ji-Soo, Kim Dong-Ha, Kim Min-Hyeok, Kim Il-Doo. Nanoscale PtO2 catalysts-loaded SnO2 multichannel nanofibers toward highly sensitive acetone sensor. ACS Applied Materials & Interfaces. 2018;10(2):2016–2025. DOI: 10.1021/acsami.7b16258.
  20. Xing Ruiqing, Li Qingling, Xia Lei, Song Jian, Xu Lin, Zhang Jiahuan, et al. Au-modified three-dimensional In2O3 inverse opals: synthesis and improved performance for acetone sensing toward diagnosis of diabetes. Nanoscale. 2015;7(30):13051–13060. DOI: 10.1039/c5nr02709h.
  21. Karmaoui M, Leonardi SG, Latino M, Tobaldi DM, Donato N, Pullar RC, et al. Pt-decorated In2O3 nanoparticles and their ability as a highly sensitive (<10 ppb) acetone sensor for biomedical applications. Sensors and Actuators B: Chemical. 2016;230:697–705. DOI: 10.1016/j.snb.2016.02.100.
  22. Liu Wei, Xu Lin, Sheng Kuang, Zhou Xiangyu, Dong Biao, Lu Geyu, et al. A highly sensitive and moisture-resistant gas sensor for diabetes diagnosis with Pt@In2O3 nanowires and a molecular sieve for protection. NPG Asia Materials. 2018;10(4):293–308. DOI: 10.1038/s41427-018-0029-2.
  23. Gong Feilong, Liu Huanzhen, Liu Chunyuan, Gong Yuyin, Zhang Yonghui, Meng Erchao, et al. 3D hierarchical In2O3 nanoarchitectures consisting of nanocuboids and nanosheets for chemical sensors with enhanced performances. Materials Letters. 2016;163:236–239. DOI: 10.1016/j.matlet.2015.10.106.
  24. Abokifa AA, Haddad K, Fortner J, Lo CS, Biswas P. Sensing mechanism of ethanol and acetone at room temperature by SnO2 nano-columns synthesized by aerosol routes: theoretical calculations compared to experimental results. Journal of Materials Chemistry A. 2018;6(5):2053–2066. DOI: 10.1039/C7TA09535J.
  25. Kohl D. Surface processes in the detection of reducing gases with SnO2-based devices. Sensors and Actuators. 1989;18(1):71–113. DOI: 10.1016/0250-6874(89)87026-X.
  26. Ivanovskaya M, Kotsikau D, Faglia G, Nelli P. Influence of chemical composition and structural factors of Fe2O3/In2O3 sensors on their selectivity and sensitivity to ethanol. Sensors and Actuators B: Chemical. 2003;96(3):498–503. DOI: 10.1016/S0925-4005(03)00624-5.
  27. Ivanovskaya MI, Ovodok EA, Kotsikau DA. Interaction of carbon monoxide with In2O3 and In2O3 – Au nanocomposite. Journal of Applied Spectroscopy. 2012;78(6):842–847. DOI: 10.1007/s10812-012-9542-1.
  28. Kiselev VF, Krylov OV. Adsorption and catalysis on transition metals and their oxides. Berlin: Springer-Verlag; 1989. Chapter 4, Adsorption and catalysis on oxides of transition metals; p. 136–265 (Ertl G, Gomer R, editors. Springer series in surface sciences; volume 9). DOI: 10.1007/978-3-642-73887-6_4.
  29. Thoren W, Kohl D, Heiland G. Kinetic studies of the decomposition of CH3COOH and CH3COOD on SnO2 single crystals. Surface Science. 1985;162(1–3):402–410. DOI: 10.1016/0039-6028(85)90927-6.
  30. Harrison PG, Maunders BM. Tin oxide surfaces. Part 11, Infrared study of the chemisorption of ketones on tin(IV) oxide. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases. 1984;80(6):1329–1340. DOI: 10.1039/f19848001329.
  31. Daniel M-C, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chemical Reviews. 2004;104(1):293–346. DOI: 10.1021/cr030698+.
  32. Romanovskaya V, Ivanovskaya M, Bogdanov P. A study of sensing properties of Pt- and Au-loaded In2O3 ceramics. Sensors and Actuators B: Chemical. 1999;56(1–2):31–36. DOI: 10.1016/S0925-4005(99)00018-0.
Опубликован
2023-08-22
Ключевые слова: сенсоры, ацетон, SnO2, In2O3, Au, Pt, Pd
Поддерживающие организации Работа выполнена в рамках научно-исследовательской работы 2.1.04.02 государственной программы научных исследований «Химические процессы, реагенты и технологии, биорегуляторы и биооргхимия» на 2021−2025 гг. и совместного белорусско-украинского проекта (грант № 0121U14006) (Украина).
Как цитировать
Оводок, Е. А., Ивановская, М. И., Гаевская, Т. В., Кормош, В. В., & Биланич, В. С. (2023). Влияние модифицирующих добавок Pd, Pt и Au на сенсорные свойства SnO2 и In2O3 при определении паров ацетона. Журнал Белорусского государственного университета. Химия, 2, 3-12. Доступно по https://journals.bsu.by/index.php/chemistry/article/view/5542