Дозы облучения щитовидной железы населения после Чернобыльской аварии
Аннотация
Авария на Чернобыльской атомной электростанции (ЧАЭС) в Украине 26 апреля 1986 г. привела к выбросу радиоактивных веществ в атмосферу, в частности йода-131 (131I), причем наибольшие выпадения этого радионуклида были в Беларуси, Украине и западной части России. Увеличение числа случаев рака щитовидной железы (ЩЖ) и других заболеваний ЩЖ среди облученного населения в этих странах стал основным медицинским последствием аварии на ЧАЭС. Поэтому большое внимание было уделено оценке доз облучения ЩЖ за счет поступления 131I с продуктами питания в течение двух месяцев после аварии. В данной статье рассматриваются как индивидуальные дозы облучения ЩЖ для лиц, включенных в радиационные эпидемиологические исследования, так и средние дозы облучения для населения пострадавших стран. Индивидуальные дозы облучения ЩЖ от 131I варьировали до 42 Гр и зависели от возраста человека, региона проживания на момент аварии и уровней потребления коровьего молока. Средние дозы облучения ЩЖ среди детей возраста 1 год достигли 0,75 Гр в наиболее загрязненной Гомельской обл. в Беларуси. Поступление 131I было основным путем облучения ЩЖ: его средний вклад в дозу облучения составил более 90 %. Помимо облучения от 131I, поступление короткоживущих изотопов йода (132I, 133I, 135I) и теллура (131mTe, 132Te), внешнее облучение от гамма-излучающих радионуклидов, выпавших по поветхность почвы, и внутреннее облучения от 134Cs, 137Cs вносили вклад в дозу облучения ЩЖ, как правило, не более 10 %. Неопределенности, связанные с оценками доз, характеризуются в данной работе геометрическим стандартным отклонением распределения индивидуальных стохастических доз, которое варьировалось в среднем от 1,6 для доз, основанных на измерениях активности 131I в ЩЖ, до 2,6 для доз, рассчитанных с использованием дозиметрических моделей. С радиологической точки зрения, 131I был наиболее важным радионуклидом, воздействие которого привело к росту случаев рака ЩЖ среди населения, облученного после аварии на ЧАЭС.
Литература
2. Kazakov VS, Demidchik EP, Astakhova LN. Thyroid cancer after Chernobyl. Nature 1992;359:21. DOI: 10.1038/359021a0.
3. Prisyazhiuk A, Pjatak OA, Buzanov VA, et al. Cancer in the Ukraine, post Chernobyl. Lancet. 1991;338:1334-1335. DOI: 10.1016/0140-6736(91)92632-c
4. Ivanov VK, Tsyb AF, Matveenko YG, et al. Radiation epidemiology of cancer- and non-cancer thyroid diseases in Russia after the ChNPP accident: Prognostication and risk estimation. Radiat Risk. 1995; 1:3-29.
5. Brenner AV, Tronko MD, Hatch M, et al. I-131 dose response for incident thyroid cancers in Ukraine related to the Chornobyl accident. Environ Health Perspect 2011; 119:933-939. DOI: 10.1289/ehp.1002674.
6. Cahoon EK, Nadirov EA, Polanskaya ON, et al. Risk of prevalent thyroid nodules in residents of Belarus exposed to Chernobyl fallout as children and adolescents. Journal Clin Endocrinol Metab. 2017; 102:2207-2221. DOI: 10.1210/jc.2016-3842.
7. Ostroumova E, Rozhko A, Hatch M, et al. Measures of thyroid function among Belarusian children and adolescents exposed to 131I from the accident at the Chernobyl nuclear plant. Environ Health Perspect. 2013; 121:865-871. DOI: 10.1289/ehp.1205783
8. Tronko M, Brenner A, Bogdanova T, et al. Thyroid neoplasia risk is increased nearly 30 years after the Chernobyl accident. International Journal Cancer. 2017;141:1585-1588. DOI: 10.1002/ijc. 30857.
9. Zablotska LB, Ron E, Rozhko AV, et al. Thyroid cancer risk in Belarus among children and adolescents exposed to radioiodine after the Chornobyl Accident. British Journal of Cancer 2011; 104:181-187. DOI: 10.1038/sj.bjc.6605967.
10. Astakhova LN, Anspaugh LR, Beebe GW, et al. Chernobyl-related thyroid cancer in children of Belarus: a case-control study. Radiat Research. 1998; 150:349-356.
11. Cardis E, Kesminiene A, Ivanov V, et al. Risk of thyroid cancer after exposure to 131I in childhood. Journal Natl Cancer Inst 2005; 97:724-732. DOI: 10.1093/jnci/dji129.
12. Davis S, Stepanenko V, Rivkind N, et al. Risk of thyroid cancer in the Bryansk Oblast of the Russian Federation after the Chernobyl power station accident. Radiat Research. 2004; 162:241-248. DOI: 10.1667/rr3233
13. Hatch M, Brenner AV, Cahoon EK, et al. Thyroid cancer and benign nodules after exposure in utero to fallout from Chernobyl benign thyroid nodules. Journal Clin Endocrinol Metab. 2019; 104:41-48. DOI: 10.1210/jc.2018-00847.
14. Bratilova AA, Zvonova IA, Balonov MI, et al. 131I content in the human thyroid estimated from direct measurements of the inhabitants of Russian areas contaminated due to the Chernobyl accident. Radiat Prot Dosim. 2003;105:623-626. DOI: 10.1093/ oxfordjournals. rpd.a006315.
15. Gavrilin YI, Khrouch VT, Shinkarev SM, et al. Chernobyl accident: Reconstruction of thyroid dose for inhabitants of the Republic of Belarus. Health Phys. 1999;76:105-119. DOI: 10.1097/00004032-199902000-00002.
16. Masiuk S, Chepurny M, Buderatska V, et al. Thyroid doses in Ukraine due to 131I intake after the Chornobyl accident. Report I: revision of direct thyroid measurements. Radiat Environ Biophys. 2021;60:267-288. DOI: 10.1007/s00411-021-00896-9.
17. European Commission. Atlas on 137Cs deposition on Europe after the Chernobyl accident. Brussels, Luxembourg: European Commission; 1998.
18. Drozdovitch V, Zhukova O, Germenchuk M, et al. Database of meteorological and radiation measurements made in Belarus during the first three months following the Chernobyl accident. Journal Environ Radioact. 2013;116:84-92. DOI: 10.1016/j.jenvrad.2012. 09.010.
19. Khrushchinskii AA, Kuten SA, Minenko VF, et al. Radionuclide ratios in precipitation on the territory of Belarus after the Chernobyl accident: Calculation from gamma-spectrometric measurements on soil in May-July 1986. Atomic Energy. 2014;117:143-148. DOI: 10.1007/s10512-014-9902-4.
20. Muck K, Prohl G, Likhtarev I, et al. A consistent radionuclide vector after the Chernobyl accident. Health Phys. 2002;82:141-156. DOI: 10.1097/00004032-200202000-00002.
21. Drozdovitch V, Germenchuk M, Bouville A. Using total beta-activity measurements in milk to derive thyroid doses from Chernobyl fallout. Radiat Prot Dosim. 2006;118:402-411. DOI: 10.1093/rpd/nci360.
22. Minenko V, Viarenich K, Zhukova O, et al. Activity concentrations of 131I and other radionuclides in cow’s milk in Belarus during the first month following the Chernobyl accident. Journal Environ Radioact. 2020;220-221:106264. DOI: 10.1016/j.jenvrad.2020. 106264.
23. Ashizawa K, Shibata Y, Yamashita S, et al. Prevalence of goiter and urinary iodine excretion levels in children around Chernobyl. Journal Clin Endocrinol Metab. 1997;82:3430-3433. DOI: 10.1210/jcem.82.10.4285.
24. Likhtarov I, Kovgan L, Masiuk S, et al. Estimating thyroid masses for children, infants, and fetuses in Ukraine exposed to 131I from the Chernobyl accident. Health Phys. 2013;104:78-86. DOI:10.1097/HP.0b013e31826e188e.
25. Skryabin AM, Drozdovitch V, Belsky Y, et al. Thyroid mass in children and adolescents living in the most exposed areas to Chernobyl fallout in Belarus. Radiat Prot Dosim. 2010;142:292-299. DOI: 10.1093/rpd/ncq209.
26. Stezhko VA, Buglova EE, Danilova LI, et al. A cohort study of thyroid cancer and other thyroid diseases following the Chornobyl accident: objectives, design, and methods. Radiat Research. 2004;161:481-492. DOI: 10.1667/3148.
27. Drozdovitch V, Minenko V, Khrouch V, et al. Thyroid dose estimates for a cohort of Belarusian children exposed to radiation from the Chernobyl accident. Radiat Research. 2013; 179:597-609. DOI: 10.1667/RR3153.1.
28. Likhtarov I, Kovgan L, Masiuk S, et al. Thyroid cancer study among Ukrainian children exposed to radiation after the Chornobyl accident: improved estimates of the thyroid doses to the cohort members. Health Phys. 2014;106:370-396. DOI: 10.1097/HP. 0b013e31829f3096.
29. Hatch M, Brenner A, Bogdanova T, et al. A screening study of thyroid cancer and other thyroid diseases among individuals exposed in utero to Iodine-131 from Chornobyl fallout. Journal Clin Endocrin Metab. 2009;94:899-906. DOI: 10.1210/jc.2008-2049.
30. Yauseyenka V, Drozdovitch V, Ostroumova E, et al. Belarusian in utero cohort: new opportunity to evaluate health effects of prenatal and early-life exposure to ionizing radiation. Journal Radiol Prot. 2020;40:280-295. DOI: 10.1088/1361-6498/ab5c08.
31. Drozdovitch V, Minenko V, Kukhta T, et al. Thyroid dose estimates for a cohort of Belarusian persons exposed in utero and during early life to Chernobyl fallout. Health Phys. 2020;118:170-184. DOI: 10.1097/HP.0000000000001135.
32. Masiuk S, Chepurny M, Buderatska V, et al. Assessment of internal exposure to 131I and short-lived radioiodine isotopes and associated uncertainties in the Ukrainian in utero cohort. Journal Radiat Research. (submitted).
33. Drozdovitch V, Minenko V, Golovanov I, et al. Thyroid dose estimates for a cohort of Belarusian children exposed to 131I from the Chernobyl accident: Assessment of uncertainties. Radiat Research. 2015;184:203-218. DOI: 10.1667/rr13791.1.
34. Masiuk S, Chepurny M, Buderatska V, et al. Thyroid doses in Ukraine due to 131I intake after the Chornobyl accident. Report II: dose estimates for the Ukrainian population. Radiat Environ Biophys. 2021;60:591-609. DOI: 10.1007/s00411-021-00930-w.
35. Stepanenko VF, Voilleque PG, Gavrilin YI, et al. Estimating individual thyroid doses for a case-control study of childhood thyroid cancer in Bryansk Oblast, Russia. Radiat Prot Dosim. 2004;108:143-160. DOI: 10.1093/rpd/nch017.
36. Zvonova IA, Balonov MI, Bratilova AA. Thyroid dose reconstruction for the population of Russia after the Chernobyl accident. Radiat Prot Dosim. 1998;79:175-178. DOI: 10.1093/ oxfordjournals.rpd.a032386.
37. Drozdovitch VV, Goulko GM, Minenko VF, et al. Thyroid dose reconstruction for the population of Belarus after the Chernobyl accident. Radiat Environ Biophys. 1997;36:17-23. DOI: 10.1007/s004110050050.
38. Kruk JE, Prohl G, Kenigsberg JI. A radioecological model for thyroid dose reconstruction of the Belarus population following the Chernobyl accident. Radiat Environ Biophys. 2004;43:101-110. DOI: 10.1007/s00411-004-0241-z.
39. Vlasov OK, Pitkevich VA. Agro-climate model for estimation of radionuclides transport on food chain and for formation of internal exposure to population. Radiat Risk. 1999;11:65-85. Russian.
40. Drozdovitch V, Kesminiene A, Moissonnier M, et al. Uncertainties in radiation doses for a case-control study of thyroid cancer among persons exposed in childhood to Iodine-131 from Chernobyl fallout. Health Phys. 2020;119:222-235. DOI: 10.1097/HP. 0000000000001206.
41. Drozdovitch V, Minenko V, Kukhta T, et al. Thyroid dose estimates for the genome-wide association study of thyroid cancer in persons exposed to 131I after the Chernobyl accident. Journal Radiat Research. 2021;62:982-998. DOI: 10.1093/jrr/rrab082.
42. Gavrilin Y, Khrouch V, Shinkarev S, et al. Individual thyroid dose estimation for a case-control study of Chernobyl-related thyroid cancer among children of Belarus. Part 1: 131I, short-lived radioiodines (132I, 133I, 135I), and short-lived radiotelluriums (131mTe and 132Te). Health Phys. 2004;86:565-585. DOI: 10.1097/00004032-200406000-00002.
43. Likhtarov I, Thomas G, Kovgan L, et al. Reconstruction of individual thyroid doses to the Ukrainian subjects enrolled in the Chernobyl Tissue Bank. Radiat Prot Dosim. 2013;156:407-423. DOI: 10.1093/rpd/nct096.
44. Bouville A, Likhtarev I, Kovgan L, et al. Radiation dosimetry for highly contaminated Ukrainian, Belarusian and Russian populations, and for less contaminated populations in Europe. Health Phys. 2007;93:487-501. DOI: 10.1097/01. HP.0000279019.23900.62.
45. Cardis E, Howe G, Ron E, et al. Cancer consequences of the Chernobyl accident: 20 years after. Journal Radiol Prot. 2006;26:127-140. DOI: 10.1088/0952-4746/26/2/001.
46. Goulko GM, Chumak VV, Chepurny NI, et al. Estimation of 131I thyroid doses for the evacuees from Pripjat. Radiat Environ Biophys. 1996;35:81-87.
47. Drozdovitch V, Bouville A, Chobanova N, et al. Radiation exposure to the population of Europe following the Chernobyl accident. Radiat Prot Dosim. 2007;123:515-528. DOI: 10.1093/rpd/ncl528.
48. Likhtarev IA, Kovgan LN, Vavilov ES, et al. Internal exposure from ingestion of foods contaminated by 137Cs after the Chernobyl accident. Report II. Ingestion doses of the rural population of Ukraine up to 12 y after the accident (1986-1997). Health Phys. 2000;79:341-357. DOI: 10.1097/00004032-200010000-00002.
49. Likhtarev IA, Kovgan LN, Jacob P, et al. Chornobyl accident: retrospective and prospective estimates of external dose of the population of Ukraine. Health Phys. 2002;82:290-303. DOI: 10.1097/00004032-200203000-00002.
50. Minenko VF, Ulanovsky A, Drozdovitch V, et al. Individual thyroid dose estimates for a case-control study of Chernobyl-related thyroid cancer among children of Belarus. Part II. Contributions from long-lived radionuclides and external radiation. Health Phys 2006; 90:312-327. DOI: 10.1097/01.HP.0000183761.30158.c1
51. Drozdovitch V, Khrouch V, Maceika E, et al. Reconstruction of radiation doses in a case-control study of thyroid cancer following the Chernobyl accident. Health Phys. 2010;99:1-16. DOI: 10.1097/HP.0b013e3181c910dd.
52. Balonov M, Kaidanovsky G, Zvonova I, et al. Contributions of short-lived radioiodines to thyroid doses received by evacuees from the Chernobyl area estimated using early in vivo measurements. Radiat Prot Dosim. 2003;105:593-599. DOI: 10.1093/oxfordjournals. rpd. a006309.