Immunopathogenesis and serological markers in Inflammatory Bowel Diseases
Аннотация
Inflammatory Bowel Diseases (IBDs), encompassing Crohn's Disease (CD) and Ulcerative Colitis (UC), presents significant diagnostic and therapeutic challenges. The pathogenesis of IBDs, including CD and UC, involves the presence of pathogenic factors such as abnormal gut microbiota, immune response dysregulation, environmental changes, and gene variants. Although many investigations have tried to identify novel pathogenic factors associated with IBDs that are related to environmental, genetic, microbial, and immune response factors, a full understanding of IBDs pathogenesis is unclear. Cytokines have a crucial role in the pathogenesis of IBDs, where they control multiple aspects of the inflammatory response. The role of cytokines produced by innate and adaptive immune cells, as well as their relevance to the future therapy of IBDs are very important. Through a comprehensive analysis of the literature, we highlight the importance of antibodies such as Anti-Saccharomyces cerevisiae Antibodies (ASCA) and Perinuclear Anti-Neutrophil Cytoplasmic Antibodies (pANCA) in distinguishing between CD and UC, predicting disease behavior, and guiding treatment decisions. Despite the progress, the need for markers with improved specificity and sensitivity is evident. This review explores immunopathogenesis and the role of serological markers in IBDs management, discusses current challenges, and anticipates future research directions. The review concludes with an optimistic outlook on the role of microbiota and cytokine in pathogenesis of IBDs, potential of novel biomarkers, personalized medicine, and the integration of advanced technologies to transform IBDs management.
Литература
2. Vermeire S, Van Assche G, Rutgeerts P. Laboratory markers in IBD: useful, magic, or unnecessary toys? Gut. 2006;55:426–431. DOI:10.1136/gut.2005.069476.
3. Torres J, Bonovas S, Doherty G, Kucharzik T, Gisbert JP, Raine T, Adamina M, Armuzzi A, Bachmann O, Bager P, Biancone L, Bokemeyer B, Bossuyt P, Burisch J, Collins P, El-Hussuna A, Ellul P, Frei-Lanter C, Furfaro F, Gingert C, Gionchetti P, Gomollon F, González-Lorenzo M, Gordon H, Hlavaty T, Juillerat P, Katsanos K, Kopylov U, Krustins E, Lytras T, Maaser C, Magro F, Marshall JK, Myrelid P, Pellino G, Rosa I, Sabino J, Savarino E, Spinelli A, Stassen L, Uzzan M, Vavricka S, Verstockt B, Warusavitarne J, Zmora O, Fiorino G. ECCO Guidelines on Therapeutics in Crohn's Disease: Medical Treatment. Journal of Crohn's & Colitis. 2020;14(1):4–22. DOI:10.1093/ecco-jcc/jjz180.
4. Gisbert JP, Chaparro M. Clinical Usefulness of Proteomics in Inflammatory Bowel Disease: A Comprehensive Review. Journal of Crohn's & Colitis. 2019;13(3):374–384. DOI:10.1093/ecco-jcc/jjy158.
5. Nakov R, Velikova T, Nakov V, Ianiro G, Gerova V, Tankova L. Serum trefoil factor 3 predicts disease activity in patients with ulcerative colitis. European Review For Medical and Pharmacological Sciences. 2019;23(2):788–794. DOI:10.26355/eurrev_201901_16893.
6. Lichtenstein GR, Loftus EV, Isaacs KL, Regueiro MD, Gerson LB, Sands BE. ACG Clinical Guideline: Management of Crohn's Disease in Adults. The American Journal of Gastroenterology. 2018;113(4):481–517. DOI:10.1038/ajg.2018.27.
7. Rubin DT, Ananthakrishnan AN, Siegel CA, Sauer BG, Long MD. ACG Clinical Guideline: Ulcerative Colitis in Adults. The American Journal of Gastroenterology. 2019;114(3):384–413. DOI:10.14309/ajg.0000000000000152.
8. Huang JY, Lee SM, Mazmanian SK. The human commensal Bacteroides fragilis binds intestinal mucin. Anaerobe. 2011;17(4):137–141. DOI:10.1016/j.anaerobe.2011.05.017.
9. Hampe J, Franke A, Rosenstiel P, Till A, Teuber M, Huse K, Albrecht M, Mayr G, De La Vega FM, Briggs J, Günther S, Prescott NJ, Onnie CM, Häsler R, Sipos B, Fölsch UR, Lengauer T, Platzer M, Mathew CG, Krawczak M, Schreiber S. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nature Genet. 2007;39(2):207–211. DOI:10.1038/ng1954.
10. de Lange KM, Moutsianas L, Lee JC, Lamb CA, Luo Y, Kennedy NA, Jostins L, Rice DL, Gutierrez-Achury J, Ji SG, Heap G, Nimmo ER, Edwards C, Henderson P, Mowat C, Sanderson J, Satsangi J, Simmons A, Wilson DC, Tremelling M, Hart A, Mathew CG, Newman WG, Parkes M, Lees CW, Uhlig H, Hawkey C, Prescott NJ, Ahmad T, Mansfield JC, Anderson CA, Barrett JC. Genome-wide association study implicates immune activation of multiple integrin genes in inflammatory bowel disease. Nat. Genet. 2017;49(2):256–261. DOI:10.1038/ng.3760.
11. Mesko B, Poliska S, Szegedi A, Szekanecz Z, Palatka K, Papp M, Nagy L. Peripheral blood gene expression patterns discriminate among chronic inflammatory diseases and healthy controls and identify novel targets. BMC Med. Genom. 2010:3(15):1–13. DOI:10.1186/1755-8794-3-15.
12. Burakoff R, Hande S, Ma J, Banks PA, Friedman S, Makrauer F, Liew CC. Differential Regulation of Peripheral Leukocyte Genes in Patients with Active Crohn’s Disease and Crohn’s Disease in Remission. Clin. Gastroenterol. 2010;44(2):120–126. DOI:10.1097/MCG.0b013e3181a9ef53.
13. Burakoff R, Pabby V, Onyewadume L, Odze R, Adackapara C, Wang W, Friedman S, Hamilton M, Korzenik J, Levine J, Makrauer F, Cheng C, Smith HC, Liew CC, Chao S. Blood-based Biomarkers Used to Predict Disease Activity in Crohn’s Disease and Ulcerative Colitis. Inflamm. Bowel Dis. 2015;21(5):1132–1140. DOI:10.1097/MIB.0000000000000340.
14. van Lierop PP, Swagemakers SM, de Bie CI, Middendorp S, van Baarlen P, Samsom JN, van Ijcken WF, Escher JC, van der Spek PJ, Nieuwenhuis EE. Gene Expression Analysis of Peripheral Cells for Subclassification of Pediatric Inflammatory Bowel Disease in Remission. PLoS ONE. 2013;8(11):1–8. DOI:10.1371/journal.pone.0079549.
15. Palmela C, Chevarin C, Xu Z, Torres J, Sevrin G, Hirten R, Barnich N, Ng SC, Colombel JF. Adherent-invasive Escherichia coli in inflammatory bowel disease. Gut. 2018;67(3):574–587. DOI:10.1136/gutjnl-2017-314903.
16. Chervy M, Barnich N, Denizot J. Adherent-Invasive E. coli: Update on the Lifestyle of a Troublemaker in Crohn's Disease. International Journal of Molecular Sciences. 2020;21(10):1–34. DOI:10.3390/ijms21103734.
17. Boleij A, Hechenbleikner EM, Goodwin AC, Badani R, Stein EM, Lazarev MG, Ellis B, Carroll KC, Albesiano E, Wick EC, Platz EA, Pardoll DM, Sears CL. The Bacteroides fragilis toxin gene is prevalent in the colon mucosa of colorectal cancer patients. Clinical Infectious Diseases : an Official Publication of the Infectious Diseases Society of America. 2015;60(2):208–215. DOI:10.1093/cid/ciu787.
18. Pandey H, Jain D, Tang DWT, Wong SH, Lal D. Gut microbiota in pathophysiology, diagnosis, and therapeutics of inflammatory bowel disease. Intest Res. 2024;22(1):15–43. DOI:10.5217/ir.2023.00080.
19. Chung L, Thiele Orberg E, Geis AL, Chan JL, Fu K, DeStefano Shields CE, Dejea CM, Fathi P, Chen J, Finard BB, Tam AJ, McAllister F, Fan H, Wu X, Ganguly S, Lebid A, Metz P, Van Meerbeke SW, Huso DL, Wick EC, Pardoll DM, Wan F, Wu S, Sears CL, Housseau F. Bacteroides fragilis Toxin Coordinates a Pro-carcinogenic Inflammatory Cascade via Targeting of Colonic Epithelial Cells. Cell Host Microbe. 2018;23(2):203–214. DOI:10.1016/j.chom.2018.01.007.
20. Henke MT, Kenny DJ, Cassilly CD, Vlamakis H, Xavier RJ, Clardy J. Ruminococcus gnavus, a member of the human gut microbiome associated with Crohn's disease, produces an inflammatory polysaccharide. Proceedings of the National Academy of Sciences of the United States of America. 2019;116(26):12672–12677. DOI:10.1073/pnas.1904099116.
21. Hall AB, Yassour M, Sauk J, Garner A, Jiang X, Arthur T, Lagoudas GK, Vatanen T, Fornelos N, Wilson R, Bertha M, Cohen M, Garber J, Khalili H, Gevers D, Ananthakrishnan AN, Kugathasan S, Lander ES, Blainey P, Vlamakis H, Xavier RJ, Huttenhower C. A novel Ruminococcus gnavus clade enriched in inflammatory bowel disease patients. Genome Med. 2017;9(1):103. DOI:10.1186/s13073-017-0490-5.
22. Pittayanon R, Lau JT, Leontiadis GI, Tse F, Yuan Y, Surette M, Moayyedi P. Differences in Gut Microbiota in Patients With vs Without Inflammatory Bowel Diseases: A Systematic Review. Gastroenterology. 2020;158(4):930–946. DOI:10.1053/j.gastro.2019.11.294.
23. Sokol H, Pigneur B, Watterlot L, Lakhdari O, Bermúdez-Humarán LG, Gratadoux JJ, Blugeon S, Bridonneau C, Furet JP, Corthier G, Grangette C, Vasquez N, Pochart P, Trugnan G, Thomas G, Blottière HM, Doré J, Marteau P, Seksik P, Langella P: Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci USA. 2008;105(43):16731–16736. DOI:10.1073/pnas.0804812105.
24. Saunus JM, Wagner SA, Matias MA, Hu Y, Zaini ZM, Farah CS. Early activation of the interleukin-23-17 axis in a murine model of oropharyngeal candidiasis. Molecular Oral Microbiology. 2010;25(5):343–356. DOI:10.1111/j.2041-1014.2010.00570.x.
25. Conti HR, Shen F, Nayyar N, Stocum E, Sun JN, Lindemann MJ, Ho AW, Hai JH, Yu JJ, Jung JW, Filler SG, Masso-Welch P, Edgerton M, Gaffen SL. Th17 cells and IL-17 receptor signaling are essential for mucosal host defense against oral candidiasis. The Journal of Experimental Medicine. 2009;206(2):299–311. DOI:10.1084/jem.20081463.
26. Lee SH, Kwon JE, Cho ML. Immunological pathogenesis of inflammatory bowel disease. Intestinal Research. 2018;16(1):26–42. DOI:10.5217/ir.2018.16.1.26.
27. Bishop JL, Roberts ME, Beer JL, Huang M, Chehal MK, Fan X, Fouser LA, Ma HL, Bacani JT, Harder KW. Lyn activity protects mice from DSS colitis and regulates the production of IL-22 from innate lymphoid cells. Mucosal Immunology. 2014;7(2):405–416. DOI:10.1038/mi.2013.60.
28. Zindl CL, Lai JF, Lee YK, Maynard CL, Harbour SN, Ouyang W, Chaplin DD, Weaver CT. IL-22-producing neutrophils contribute to antimicrobial defense and restitution of colonic epithelial integrity during colitis. Proceedings of the National Academy of Sciences of the United States of America. 2013;110(31):12768–12773. DOI:10.1073/pnas.1300318110.
29. Heller F, Florian P, Bojarski C, Richter J, Christ M, Hillenbrand B, Mankertz J, Gitter AH, Bürgel N, Fromm M, Zeitz M, Fuss I, Strober W, Schulzke JD. Interleukin-13 is the key effector Th2 cytokine in ulcerative colitis that affects epithelial tight junctions, apoptosis, and cell restitution. Gastroenterology. 2005;129(2):550–564. DOI:10.1016/j.gastro.2005.05.002.
30. Dambacher J, Beigel F, Zitzmann K, De Toni EN, Göke B, Diepolder HM, Auernhammer CJ, Brand S. The role of the novel Th17 cytokine IL-26 in intestinal inflammation. Gut. 2009;58(9):1207–1217. DOI:10.1136/gut.2007.130112.
31. Leung JM, Davenport M, Wolff MJ, Wiens KE, Abidi WM, Poles MA, Cho I, Ullman T, Mayer L, Loke P. IL-22-producing CD4+ cells are depleted in actively inflamed colitis tissue. Mucosal Immunology. 2014;7(1):124–133. DOI:10.1038/mi.2013.31.
32. Neurath MF. Neurath. Cytokines in inflammatory bowel disease. Nature Reviews Immunology. 2014;14(5):329–342. DOI:10.1038/nri3661.
33. Angriman I, Scarpa M, D'Incà R, Basso D, Ruffolo C, Polese L, Sturniolo GC, D'Amico DF, Plebani M. Enzymes in feces: useful markers of chronic inflammatory bowel disease. Clinica Chimica Acta. 2007;381(1):63–68. DOI:10.1016/j.cca.2007.02.025.
34. Gisbert JP, McNicholl AG, Gomollon F. Questions and answers on the role of fecal lactoferrin as a biological marker in inflammatory bowel disease. Inflammatory Bowel Diseases. 2009;15(11):1746–1754. DOI:10.1002/ibd.20920.
35. Joishy M, Davies I, Ahmed M, Wassel J, Davies K, Sayers A, Jenkins H. Fecal calprotectin and lactoferrin as noninvasive markers of pediatric inflammatory bowel disease. Journal of Pediatric Gastroenterology and Nutrition. 2009;48(1):48–54. DOI:10.1097/MPG.0b013e31816533d3.
36. Lewis JD. C-reactive protein: anti-placebo or predictor of response. Gastroenterology. 2005;129(3):1114–1116. DOI:10.1053/j.gastro.2005.07.041.
37. Mitsuyama K, Niwa M, Takedatsu H, Yamasaki H, Kuwaki K, Yoshioka S, Yamauchi R, Fukunaga S, Torimura T. Antibody markers in the diagnosis of inflammatory bowel disease. World Journal of Gastroenterology. 2016;22(3):1304–1310. DOI:10.3748/wjg.v22.i3.1304.
38. Smids C, Horjus Talabur Horje CS, Groenen MJM, van Koolwijk EHM, Wahab PJ, van Lochem EG. The value of serum antibodies in differentiating inflammatory bowel disease, predicting disease activity and disease course in the newly diagnosed patient. Scandinavian Journal of Gastroenterology. 2017;52(10):1104–1112. DOI:10.1080/00365521.2017.1344875.
39. Peeters M, Joossens S, Vermeire S, Vlietinck R, Bossuyt X, Rutgeerts P. Diagnostic value of anti-Saccharomyces cerevisiae and antineutrophil cytoplasmic autoantibodies in inflammatory bowel disease. The American Journal of Gastroenterology. 2001;96(3):730–734. DOI:10.1111/j.1572-0241.2001.03613.x.
40. Schulte-Pelkum J, Radice A, Norman GL, Lόpez Hoyos M, Lakos G, Buchner C, Musset L, Miyara M, Stinton L, Mahler M. Novel clinical and diagnostic aspects of antineutrophil cytoplasmic antibodies. Journal of Immunology Research. 2014;2014:185416. DOI:10.1155/2014/185416.
41. Fleshner P, Ippoliti A, Dubinsky M, Vasiliauskas E, Mei L, Papadakis KA, Rotter JI, Landers C, Targan S. Both preoperative perinuclear antineutrophil cytoplasmic antibody and anti-CBir1 expression in ulcerative colitis patients influence pouchitis development after ileal pouch-anal anastomosis. Clinical Gastroenterology and Hepatology. 2008;6(5):561–568. DOI:10.1016/j.cgh.2008.01.002.
42. Däbritz J, Bonkowski E, Chalk C, Trapnell BC, Langhorst J, Denson LA, Foell D. Granulocyte macrophage colony-stimulating factor auto-antibodies and disease relapse in inflammatory bowel disease. The American Journal of Gastroenterology. 2013;108(12):1901–1910. DOI:10.1038/ajg.2013.360.
43. Florholmen JR, Johnsen KM, Meyer R, Olsen T, Moe ØK, Tandberg P, Gundersen MD, Kvamme JM, Johnsen K, Løitegård T, Raschpichler G, Vold C, Sørbye SW, Goll R. Discovery and validation of mucosal TNF expression combined with histological score - a biomarker for personalized treatment in ulcerative colitis. BMC Gastroenterology. 2020;20(1):321. DOI:10.1186/s12876-020-01447-0.
44. Quinton JF, Sendid B, Reumaux D, Duthilleul P, Cortot A, Grandbastien B, Charrier G, Targan SR, Colombel JF, Poulain D. Anti-Saccharomyces cerevisiae mannan antibodies combined with antineutrophil cytoplasmic autoantibodies in inflammatory bowel disease: prevalence and diagnostic role. Gut. 1998;42(6):788–791. DOI:10.1136/gut.42.6.788.
45. Annese V, Piepoli A, Perri F, Lombardi G, Latiano A, Napolitano G, Corritore G, Vandewalle P, Poulain D, Colombel JF, Andriulli A. Anti-Saccharomyces cerevisiae mannan antibodies in inflammatory bowel disease: comparison of different assays and correlation with clinical features. Alimentary Pharmacology & Therapeutics. 2004;20(10):1143–1152. DOI:10.1111/j.1365-2036.2004.02258.x.
46. Prideaux L, Kamm MA, De Cruz P, van Langenberg DR, Ng SC, Dotan I. Inflammatory bowel disease serology in Asia and the West. World Journal of Gastroenterology. 2013;19(37):6207–6213. DOI:10.3748/wjg.v19.i37.6207.
47. Malham M, Lilje B, Houen G, Winther K, Andersen PS, Jakobsen C. The microbiome reflects diagnosis and predicts disease severity in paediatric onset inflammatory bowel disease. Scandinavian Journal of Gastroenterology. 2019;54(8):969–975. DOI:10.1080/00365521.2019.1644368.
48. Røseth AG, Aadland E, Grzyb K. Normalization of faecal calprotectin: a predictor of mucosal healing in patients with inflammatory bowel disease. Scandinavian Journal of Gastroenterology. 2004;39(10):1017–1020. DOI:10.1080/00365520410007971.
49. Ferrante M, Henckaerts L, Joossens M, Pierik M, Joossens S, Dotan N, Norman GL, Altstock RT, Van Steen K, Rutgeerts P, Van Assche G, Vermeire S. New serological markers in inflammatory bowel disease are associated with complicated disease behaviour. Gut. 2007;56(10):1394–1403. DOI:10.1136/gut.2006.108043.
50. Sipponen T, Björkesten CG, Färkkilä M, Nuutinen H, Savilahti E, Kolho KL. Faecal calprotectin and lactoferrin are reliable surrogate markers of endoscopic response during Crohn's disease treatment. Scandinavian Journal of Gastroenterology. 2010;45(3):325–331. DOI:10.3109/00365520903483650.
51. Zhang H, Zeng Z, Mukherjee A, Shen B. Molecular diagnosis and classification of inflammatory bowel disease. Expert Review of Molecular Diagnostics. 2018;18(10):867–886. DOI:10.1080/14737159.2018.1516549.
52. Walkiewicz D, Werlin SL, Fish D, Scanlon M, Hanaway P, Kugathasan S. Fecal calprotectin is useful in predicting disease relapse in pediatric inflammatory bowel disease. Inflammatory Bowel Diseases. 2008;14(5):669–673. DOI:10.1002/ibd.20376.
53. Tibble JA, Sigthorsson G, Bridger S, Fagerhol MK, Bjarnason I. Surrogate markers of intestinal inflammation are predictive of relapse in patients with inflammatory bowel disease. Gastroenterology. 2000;119(1):15–22. DOI:10.1053/gast.2000.8523.
54. Taylor KD, Plevy SE, Yang H, Landers CJ, Barry MJ, Rotter JI, Targan SR. ANCA pattern and LTA haplotype relationship to clinical responses to anti-TNF antibody treatment in Crohn's disease. Gastroenterology. 2001;120(6):1347–1355. DOI:10.1053/gast.2001.23966.