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Optimization models play an increasingly role in financial decisions. This paper analyzes the portfolio optimization 
model which is the most important of them. We are discussing the mathematical models and modern optimization tech-
niques for some classes of portfolio optimization problems more important criteria. Portfolio optimization problems are 
based on mean-variance models for returns and for riskneutral density estimation. The mathematical portfolio optimiza-
tion problems are the quadratic or linear parametrical programming sometimes with integer variables.
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ПОРТФЕЛЬНАЯ ОПТИМИЗАЦИЯ: ОБЗОР

И. В. БОЛЬШАКОВА1)

1)Белорусский государственный университет, пр. Независимости, 4, 220030, г. Минск, Беларусь

Показано, что оптимизационные модели играют все более значимую роль в принятии финансовых решений. 
Анализируются некоторые наиболее важные модели оптимизации инвестиционного портфеля. Обсуждаются со-
временные методы оптимизации для некоторых классов задач с наиболее важными критериями. Отмечено, что 
клаcсические оптимизационные портфельные задачи базируются на исторических рядах доходностей со средне-
квадратическим отклонением от ожидаемой прибыли в качестве меры риска; с математической точки зрения за-
дачи оптимизации портфеля являются задачами квадратичного или линейного программирования, иногда с цело-
численными ограничениями.

Ключевые слова: Г. Марковиц; портфельная оптимизация; абсолютное отклонение; диверсификация портфеля; 
эффективная граница; коэффициент Шарпа; модель минимакса; целочисленные переменные; нечеткая ожидаемая 
доходность.
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Introduction
Conception of an optimal portfolio of assets was first time mentioned by Louis Bacheliers in his doctoral 

thesis which was defended in 1900 in Paris. Unfortunately, this thesis exactly like the theory of optimization 
created by L. Kantorovich and T. Kupmans the Nobel Prize winners in economy were less common among fi-
nancial managers. They managed to use primary skills of actuarial mathematics, elementary concepts of share 
fare value (price). The modern portfolio theory was firstly reviewed in the work written by Markowitz [1] and 
Sharpe [2] who were awarded Nobel Prize in Economics in 1990. This theory is seems to be of high impor-
tance. If you make an inquiry about “portfolio theory” and “portfolio optimization” using the search engine 
Google.com you will be given about 2.5 million links for the first one and about 13,8 million links for the 
second one. Moreover the term “portfolio management” has about 21 million links. 

The standard Markowitz portfolio model  
(model based on Euclidean metric of risk estimation)

Letʼs suppose that investor has the possibility to choose from the variety of different financial assets like 
securities, bonds and investment projects. The main point is to define investment portfolio x x xn= …( )1, , , 
where xj is proportion of the asset  j. Then the budget constraint is

 x x j nj
j

n

j
=

∑ = ≥ =
1

1 0 1, , , .  (1)

It is valuable to say, that absolute weightings of assets could be included in the Markowitz. For instance, by  
K we denote the investorʼs initial capital. Then the budget constraint (1) might be replaced for

 K x K x j nj j
j

n

j
=

∑ = ≥ =
1

0 1, , , ,  (2)

where Kj is the price of asset  j. If all assets are infinitely divisible replaced variables

x
K x
Kj
j j= ,

we get budget constraint (1).
Markowitzʼs portfolio model [3] assumes to use two criteria: portfolio expected return and portfolio volati-

lity (measure of risk adjusted). Important to add that theory uses the historical parameter, volatility, as a proxy 
for risk, while return is an expectation on the future. 

The return R x( )  of the portfolio x is the component-weighted expected the return Rj of the constituent as-
sets. The expected return of an asset is a probability-weighted average of the return in all scenarios. Calling pt 
the probability of scenario t and rjt the return in scenario t, we may write the expected return as

r E R p rj j t jt
t

T

= ( ) =
=
∑ .
1

Itʼs assumed that all scenarios t (historical) are equal probability in the future, then p
Tt = 1  and r

r
Tj
jt

t

T

=
=
∑

1

 
(see table).

The function of the expected return of the portfolio is needed to be maximized

 r x E R x x rj j
j

n

( ) = ( )( ) = →
=

∑
1

max.  (3)

If we suppose that r1 ≥ … ≥ rn then optimal solution of the problem (1), (3) is xopt = …( )1 0 0, , , , i. e. all 
capi tal should invest in the most profitable asset (greedy solution). Clearly, it is very risky. That is why in-
vestors add (upper bound constraint) xj ≤ uj, j n=1, ,  to budget constraints. In this case greedy solution has 
following form

x u u uk j
j

k

opt = … −






…











=
∑1
1

1 0 0, , , , , , ,

where uj
j

k

≤
=

∑ 1
1

 and uj
j

k

≥
=

+

∑ 1
1

1

 and stays optimal. It is possible further to add constraints for diversification of 

risks. However, Markowitz proposed other approach. 
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One of the best-known measures of risk is standard deviation of expected returns. Letʼs si j is covariance of 

the returns i and j, i. e. sij it i jt j
t

T

T
r r r r= −( ) −( )

=
∑1
1

.

Markowitz derived the general formula for the standard deviation of the portfolio (risk of the portfolio) as 
follows:

 s sx E R x r x x xi ij j
j

n

i

n

( ) = ( ) − ( )( ) = →
==

∑∑2

11

min.  (4)

The variance of all assetʼs returns is the expected value of the squared devia tions from the expected return

s2 2

1

= − ( )( )
=
∑ p r E rt t
t

T

.

Remark that the covariance matrix s s= ( ) ×ij n n
 is positively semi-definite and consequently s x( ) and 

s2 x( ) are convex functions. That is why standard Markowitzʼs portfolio model (1) – (4) is bi-criteria optimi-
zation problem with linear (3) and convex quadratic (4) objective functions.

In some occasions standard deviation could be substituted for k-order target risk:

s x E R x r x
k k

( ) = ( ) − ( )( )




1/
.

Let’s apply Markowitzʼs model to the problem of the optimization portfolio of blue chips, hi-tech corpo-
rationʼs shares, real estate and treasure bonds. The annual times series for the return are given below for each 
asset between six years. 

Portfolio problem with four assets

j \ t
rjt r E Rj j= ( )

1 2 3 4 5 6

Blue chips x1 18.24 12.12 15.23 5.26 2.62 10.42 10.648 3
Hi-tech shares x2 12.24 19.16 35.07 23.46 –10.62 –7.43 11.98
Real estate market x3 8.23 8.96 8.35 9.16 8.05 7.29 8.34
Treasury bonds x4 8.12 8.26 8.34 9.01 9.11 8.95 8.631 7

Average annual percentage rjt is specified

r
P P
Pjt

jt jt

jt

=
−+ 1 ,

where Pjt is asset price  j at instant time t. 
The return and covariance matrixes can be easily find in the “Mathematica” system by using built-in func-

tions Mean and Covariance. The covariance matrix is

s =

− −
−

−

29 055 2 40 390 9 0 287 9 1 953 2
40 390 9 267 344 6 833 7 3 697 0
. . . .
. . . .
00 287 9 6 833 7 0 375 9 0 056 6
1 953 2 3 697 0 0 056 6 0 159 7
. . . .
. . . .

−
− − −



















.

The first approach leads to the task of minimizing the variance of the portfolio (1) return given a lower 
bound on the expected portfolio return
 r x k( ) ≥ ,  (5)
i. e. under all possible portfolios x, consider only those which satisfy the constraints, in particular those which 
return at least an expected return of k. Then among those portfolios determine the one with the smallest return 
variance. Problem (1), (4), (5) is quadratic optimization problem with a positive semi-definite objective matrix s:

s2
1
2

1 2 1 3 1 429 055 2 80 7818 0 5758 3 906 4 267 344x x x x x x x x( ) = + − − +. . . . . xx

x x x x x x x x
2
2

2 3 2 4 3
2

3 4 413 667 7 7 394 0 0 375 9 0 1133 0 159 7

+

+ + + − +. . . . . 22

1 2 3 4

1 2 3 4

10 648 3 11 98 8 34 8 6317

1

→
+ + + ≥

+ + + =

min,
. . . . ,

,

x x x x k

x x x x xjj j≥ =0 1 4, , .
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1
2

1 2 1 3 1 429 055 2 80 7818 0 5758 3 906 4 267 344x x x x x x x x( ) = + − − +. . . . . xx

x x x x x x x x
2
2

2 3 2 4 3
2

3 4 413 667 7 7 394 0 0 375 9 0 1133 0 159 7

+

+ + + − +. . . . . 22

1 2 3 4

1 2 3 4

10 648 3 11 98 8 34 8 6317

1

→
+ + + ≥

+ + + =

min,
. . . . ,

,

x x x x k

x x x x xjj j≥ =0 1 4, , .

This problem can be solved by using standard quadratic programming algorithms or in a very efficient way 
by using the computing system “Mathematica” and it’s built-in function Minimize. Setting in the problem (1), 
(4), (5) for portfolio optimization and solving it for guaranteed return k = 10.7 %, we get the optimal portfolio 
(x1 = 0.952 3, x2 = 0.043 7, x3 = 0, x4 = 0.004 0) with risk s x( ) = 5 495 9. %  (one of the corner portfolio).

The second approach we consider the task of maximizing the mean of the portfolio return r x( ) under a given 
upper bound k for the variance s x( ):
 s x k( ) ≤ .  (6)

Problem (1), (3), (6) is a linear parametric programming with an additional convex quadratic constraint (6) 
and parameter k.

This problem can be also efficiently solved by using the “Mathematica” system and it’s built-in function 
Maximize. Setting in the problem (1), (2), (6) for portfolio optimization and solving it for as example k = 1 %, 
we get the optimal portfolio (x1 = 0.218 9, x2 = 0.011 4, x3 = 0, x4 = 0.769 7) with return r x( ) = 9 110 3. %.

A portfolio x is efficient (Pareto optimal) if and only if no other feasible portfolio that improves at least 
one of the two optimization criteria without worsening the other. An efficient portfolio is the portfolio of risky 
assets that gives the lowest variance of return of all portfolios having the same expected return. Alternatively 
we may say that an efficient portfolio has the highest expected return of all portfolios having the same va riance. 
The efficient frontier sur-plane r, s( ) is the image r x x( ) ( )( ), s  of all efficient portfolios x. Let’s plot the effi-
cient frontier by using the built-in function ParametricPlot in “Mathematica” system (fig. 1).

While choosing an efficient portfolio we could apply for weighting objective function approach. The third 
approach is based on using the Carlin theorem of coincidence Pareto-optimal solutions in (1) – (4) in optimal 
solutions in the one-criterion parametric optimization with parameter k:
 kr x k x( ) − −( ) ( ) →1 s max.  (7)

Here the parameter k k0 1≤ ≤( )  shows investorʼs risk. This problem can be also easily solved by using 
built-in function Maximize in the system “Mathematica”.

The lower k = 0 the less risk we apply for the model, investor is more conservative. Minimal risk is 
0.088 4 % with portfolio (x1 = 0.053 7, x2 = 0, x3 = 0.177 6, x4 = 0.768 7) and return 8.687 % (another corner 
portfolio).

If k = 1 investor must accept risk in order to receive higher returns. Maximal risk is 16.350 7 % with port-
folio (x1 = 0, x2 = 1, x3 = 0, x4 = 0) and return 11.98 %. 

This algorithm for parametric quadratic programming solves the problem (1), (7) for all k in the interval 
0; 1[ ]. Starting from one point on the efficient portfolio the algorithm computes a sequence of so called corner 

portfolios x x x mopt opt opt= ( )1, , .  These corner portfolios define all efficient portfolio are convex combinations 

of the two adjacent corner portfolios: if ′xopt  and ′′xopt  are adjacent corner portfolios with expected returns 

Fig. 1. The efficient frontier
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r x′( )opt  and r x′′( )opt ,  r x r x′( ) ≤ ′′( )opt opt  then for every r x r x r xopt opt opt( ) = ⋅ ′( ) + −( ) ⋅ ′′( )l l1  the efficient portfo-

lio xopt is calculated as x x xopt opt opt= ′ + −( ) ′′l l1 ,  0 ≤ l ≤ 1.
For instance, find corner portfolios for treasury bonds (x4) with the portfolio return k ∈[ ]8 5 11 9. , .  by using 

built-in function Evaluate in the “Mathematica” system (fig. 2).

Corner portfolios for other assets can be find by the same way. There are three corner portfolios: for returns 
k1 = 8.687 %, k2 = 8.8 % and k3 = 10.7 %. Solving the portfolio optimization problem for return k = 8.8 %, get 
the optimal portfolio (x1 = 0.075 7, x2 = 0.005 1, x3 = 0, x4 = 0.919 2) with risk s x( ) = 0 1819. %  (the last corner 
portfolio).

The efficient portfolio xopt is calculated as
xopt = l1 xopt1 + l2 xopt 2 + l3 xopt 3,

where xopt1 (x1 = 0.053 7, x2 = 0, x3 = 0.177 6, x4 = 0.768 7), xopt 2 (x1 = 0.075 7, x2 = 0.005 1, x3 = 0, x4 = 0.919 2), 
xopt 3 (x1 = 0.952 3, x2 = 0.043 7, x3 = 0, x4 = 0.004 0) and l1 + l2 + l3 = 1, 0 ≤ lj ≤ 1.

Model with risk-free asset (Tobinʼs model)
Risk-free asset hypothetically corresponds to be short-term government securities. Conditionally it is as-

sumed that the variation of the government securities return r0 is equal zero. Considering the following Tobinʼs 
model [4] for portfolio x x x xn= …( )0 1, , ,  with risk free asset x0:

x x x j nj j
j

n

0
1

1 0 0+ = ≥ =
=

∑ , , , ,

r x x r x r x r x x rj j
j

n

0 0 0 0 0
1

, max,( ) = + ( ) = + →
=

∑

 s s s s s s sx x x x x x x x xp p p p p p p p0 0
2

0
2 2 2

0 0
2 22, .( ) = + + = = = ( )  (8)

Obviously, the expected rates of return on all risky assets are not less asset, i. e. rj ≥ r0.
If we take some definite efficient portfolio, we could figure all portfolios with risk free assets on CML 

(capital market line) (fig. 3):

E R r
E r r

C C
m

m
( ) = +

( ) −
0

0s
s

,

where rm is return of the market portfolio (depending on the market index and its risk is sm ).

Fig. 2. The corner portfolios for treasury bonds
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It is interesting to note, if someone has the possibility to choose not only between the given risk portfolio 
and risk-free assets but also to choose a structure of the risk portfolio then there exists the unique optimal 
solution (x1 = 0.057 031 2, x2 = – 0.005 940 04, x3 = 0.265 938, x4 = 0.682 971), not depended on investor’s risk 
(solving by the “Mathematica” system).

Multi-objective model for portfolio optimization
The main problem in optimization portfolios is that the portfolios are extremely concentrated on a few as-

sets which are a contradiction to the notion of diversification. Therefore there is scope for introducing another 
criterion with one for diversification and the best candidate for this. They usually solve quadratic problem for 
portfolio optimization and then apply entropy measure for infer how much portfolio is diversified. In paper [5] 
supplement maximize Shannonʼs entropy and skewness of portfolio:

E x x xn j j
i

n

( ) = − →
=
∑ log max,
1

S x x x xijk i j k
kji

( ) = →∑∑∑ γ max,

where γ ijk i i j j k kE R r R r R r= −( ) −( ) −( )   is central third moment of returns.

Model based on Minkowski absolute metric of risk estimation
Konno and Yamazaki [6] propose a linear programming model instead of the quadratic model. Quite wide-

spread to evaluate risk using the Minkowski metric l1 in which deviation is sum of absolute values, i. e. risk l1 
of the portfolio return (absolute deviation) is defined as 

s x E R E R E r x E r x
T

rj j j j
j

n

j

n

jt( ) = − ( ){ } = −
























=
==

∑∑
11

1 −−( )
==

∑∑ r xj j
j

n

t

T

11

.

Under the assumption on normal distribution the absolute deviation is equivalent to the standard deviation 
as the measure of risk [6]. 

That allow insert additional variables yt into the model (1), (3) and

 yt
t

T

→
=
∑ min,
1

 (9)

under the condition 
 y r r x t Tt jt j j

j

n

+ −( ) ≥ =
=

∑ 0 1
1

, , ,  (10)

 y r r x t Tt jt j j
j

n

− −( ) ≥ =
=

∑ 0 1
1

, , .  (11)

Remark that variable yt may take either sigh. In this model it is only necessary to solve a linear optimization 
problem. 

Fig. 3. The capital market line
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For the numerical example (see table), the Konno – Yamazaki model has the following form: 
y y y y y y1 2 3 4 5 6+ + + + + → min,

under the investment condition (1) and the following 12 inequalities:

y x x x1 1 2 318 24 10 65 12 24 11 98 8 23 8 34 8 12 8 63+ −( ) + −( ) + −( ) + −. . . . . . . .(( ) ≥

+ −( ) + −( ) + −( ) +

x
y x x x

4

2 1 2 3

0

12 12 10 65 19 16 11 98 8 96 8 34 8

,

. . . . . . .. . ,
..........................................

26 8 63 04−( ) ≥x
.............................................................................................

. . .y x6 110 42 10 65 7 4+ −( ) + − 33 11 98 8 29 8 34 8 95 8 63 0

18 24 10 65
2 3 4

1

−( ) + −( ) + −( ) ≥

− −(
. . . . . ,

. .

x x x
y )) − −( ) − −( ) − −( ) ≥x x x x1 2 3 412 24 11 98 8 23 8 34 8 12 8 63 0. . . . . . ,
........................................................................................................................................

. . . . . .y x x6 1 210 42 10 65 7 43 11 98 8 29 8 34− −( ) − − −( ) − −( )) − −( ) ≥x x3 48 95 8 63 0. . .

Solution of this problem with the minimum risk s x( ) = 0 092. %  and return r x( ) = 8 674. %  will be: 
x1 = 0.052 5; x2 = 0; x3 = 0.212 5; x4 = 0.735 0.

According to Konno and Yamazaki the mean absolute deviation portfolio optimization modelʼs advantages 
ever the Markowitzʼs model are (i) this model does not use the covariance matrix which therefore does not 
need to be calculated, (ii) solving this linear model is much easier than solving a quadratic model. 

In doing so it is possible to differentially penalize the upside from the downside deviation of the portfolio 
return from its mean. Let pu and pd denote penalty parameters for the upside and downside errors respectively. 
Then constrains (10) and (11) replaced

y p x r x t Tt d jt j j
j

n

+ −( ) ≥ = …
=

∑ 0 1
1

, , , ,

y p x r x t Tt u jt j j
j

n

+ −( ) ≥ = …
=

∑ 0 1
1

, , , .

For the old model is used a symmetric penalty with pu = pd = 1. It is of particular interest to consider case 
where pu = 0 and hence the model will penalize only downside risk. 

Feinstein and Thapa [7] modified model (9) – (11) proposed a following model that is equivalent to Konno 
and Yamazakiʼs:

ut t
t

T

+( ) →
=
∑ v min
1

subject to (1), (3) and

u r r x t Tt t jt j j
j

n

+ − −( ) ≥ =
=

∑v 0 1
1

, , ,

u t Tt t, , , .v ≥ =0 1

The calculation by model Feinstein and Thapa gives the result:
x1 = 0.054 33; x2 = 0; x3 = 0.174 769; x4 = 0.770 898.

Model based on Minkowski semi-absolute metric of risk estimation
In the standard Markowitzʼs portfolio model risk is estimated by the standard deviation with Euclidean 

metric. It is also applicable to use lower semi-variation in order to estimate a portfolio risk: 

s _ _ ,x E R x r x( ) = ( ) − ( ) 
2

where a a_ max ,= −{ }0  losses of expected return are taken into account. 
Extension of the semi-variance measure only computed expected return below zero (that is negative re-

turns) or returns below some specific asset such as Tbills, the rate of inflation or a benchmark. These measures 
of risk implicitly assume that investors want to minimize the damage from returns less than some target risk. 
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The main point of the model is to find an optimal portfolio in order to minimize sum of out of condition 
losses [8]. Therefore the risk is estimated by semi-absolute deviation: 

s x
T

r r xjt j j
j

n

t

T

( ) = −( )









==
∑∑1 0
11

min , .

Letʼs assume while choosing the portfolio that if in the history repeats itself then losses will be minimal. 
The given model is the module of the cautious investor. Certainly it is not applicable if the future tendency is 
fundamentally different from historical trends. 

Letʼs insert variables yt each of which represents losses of a portfolio x in the period of time t. Then portfolio 
optimization problem with semi-absolute deviation can be defined: 

yt
t

T

→
=
∑ min,
1

on conditions that (1), (3) and 

y r r x y t Tt jt j j t
j

n

+ −( ) ≥ ≥ =
=

∑ 0 0 1
1

, , , .

Since the model based on a mean semi-absolute deviation risk is bicriterial linear programming model with 
a smaller number of constraints. 

The optimal portfolio in the Konnoʼs model is the following: 

x1 = 0.054 33, x2 = 0, x3 = 0.174 77, x4 = 0.770 90

with risk s x( ) = 0 088 45. %  and return r x( ) = 8 69. %.

Model based on chebyshev metric  
of risk estimilation (Maxmin and Minimax model)

Young [9] introduced a minimax portfolio optimization criterion which defines the optimal portfolio as that 
one that would maximize minimum the return over all the past historical periods. Risk of the portfolio x in 
this model stands as the measure during the most unsuccessful worst case periods of historical trends, i. e. in 
metric l∞:

s x r x
t T jt j

j

n

( ) = →
= … =

∑min
1 1, ,

max.

According to this criterion (4) and budget constraints (1) which is system of linear inequality with parameter l: 

r x R t Tjt j
j

n

− ≥ =
=

∑ min , , ,0 1
1

and objective function max l we get simple bicriterial linear programming problem.

Assuming that R xj jmin max= →2
π s  and replace the risk criterion by a system of linear inequalities with 

a parameter Rmin , then the solution of the problem will be: x1 = 0; x2 = 0.038 2; x3 = 0.026 2; x4 = 0.935 4 with 
risk s x( ) = 0 53. %  and return r x( ) = 8 75. %.

It is worth nothing that Papahristodoulou and Dotzauer [10] compared Markowitzʼs model and Youngʼs 
model. 

Cai, Teo, Yang and Zhou [11] proposed an alternative minimax risk function in portfolio optimization. The su-
per cautious investor always tries to combine his portfolio proposing that if historical (scenario) situation repeats 
he should get highest possible earnings from portfolio (losses are minimal in case R x( )  is negative value). 

Such a risk function is defined as the average of maximum individual risks over number of past time periods, 
using the maximum absolute deviation risk model l∞ (Caiʼs model)

max min., ,j n j j j jE R x E R x= … − ( ) →1
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The alternative l∞ risk function is defined as (Teoʼs model, see [12]): 

1
4 1

1

max min,

min.

, ,j n it j jt j
t

T

E R x r x

y

= …
=

− →

→

∑

These models can be transformed into the following linear forms (1), (3) and y → min

E R r x y j nj j j− ≤ = …, , , ,1

yt
t

T

=
∑ →
1

min,

E R E R y t T j njt jt t− ( ) ≤ = … = …, , , , , , .1 1

sharpe model with fractional criteria
The main content of this model is replacement of the bi-criterion model (1), (3), (4) for the one-criterion 

model with budget constraint (1) and linear-fractional objective function [13]:

r x

x x

j j
j

n

i ij j
j

n

i

n

=

==

∑

∑∑
→1

11

s
max  (Sharpe-ratio).

In [14] describes a direct method to obtain the optimal risky portfolio by constructing a convex quad-
ratic programming problem equivalent to Sharpe-ratio. In that form, this problem is not easy to solve. But 
the “Mathematica” system easily does it by using only one built-in function Maximise. The unique optimal 
portfolio is (x1 = 0.053 7; x2 = 0; x3 = 0.177 6; x4 = 0.768 7) with risk 0.088 3 % and return 8.687 % (the corner 
portfolio with minimal risk).

Linear models of returns
These models are based on the Sharpeʼs idea to present expected return function of the market coefficients 

(market index, GDP, inflation index and etc.). Let it be Rm is the return for the aggregate stock market (market 
index). More particularly to use single-factor model: 

rj = aj + bj Rm + ej,
in which bj Rm assets return rj is the sum of: linear function with coefficient (beta-coefficient), which shows 
share sensitivity asset bj to market trend, constant aj of the asset j (alpha-coefficient) which doesn’t depend on 
the market conditions and random variable ei with E ie( ) = 0.  It’s supposed that ei and Rm are independent, i. e. 
its covariation is equal zero. In compliance with made assumption expected return of the portfolio x is equal: 

R x x E Rj j j m j
j

n

( ) = + ( ) +( )
=

∑ a b e
1

and it’s risk

s b s s b b sex x x x xj i m
j

n

j i j i j m
jjj

n

j
( ) = + +

= ≠≠=
∑ ∑∑∑2 2

1

2 2 2

111

.

Other more simply criteria firstly assumed by W. Sharpe [2]:

r x

x

j j
j

n

j j
j

n
=

=

∑

∑
→1

1

b
max.
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Where bi is regression coefficient between dividend assets j and market index. Let’s give the example of 
similar function 

rj j j
j j= + =0 045 0 06. . , ,b b

s r
s

DAX

DAX

where rj DAX is correlation between asset  j and index DAX (30 benchmark German companies) of the his-
torical data. 

Model with limited number assets (cardinality constrained)
Generally investors incline to limit number of assets m included in the portfolio. Markowitzʼ model with 

additional discrete (boolean) variables d j include the following meaning: dj = 1 – asset  j is putted on the port-
folio, d j = 0 – asset  j is not putted on. Then new constraints are following (a small number of assets): 

d d

d

j
j

n

j

j j

m

x j n

≤

≤ =
=

∑ ,

, , ,
1

0

1

equals or 1,

and new model of portfolio optimization is mixed integer programming problem. 
Buy-in thresholds prevent assets from being included in a portfolio with small weights only. They deter-

mine that asset weights are either above a lower bound lj or the asset is not part of the portfolio at all. The main 
reason for such a constraint might be that some costs are – at least partially-determined by the number of 
different asset (shares) that are held (e. g. information costs, fixed transaction costs). N. Jobst, M. Horniman, 
C. Lucas, G. Mitra [15] have shown that a portfolio optimization problem with buy-in thresholds can be for-
mulated as a mixed-integer programming (1) – (4) and supplement constraint:

lj d j ≤ xj ,  j = 1, …, n (thresholds constraint).
For example, it’s common for German Investment Law to use constraint (5, 10, 40). The point of this rule 

is that investor should combine no more than 40 % of mutual funds shares in portfolio, less than 10 % certain 
type shares in the portfolio and shares of the same issuer are allowed to amount to up to 5 %. These conditions 
could be modeled by following limits: 

x x j nj j j j
j

n

d d≤ − ≤ = … −
=

∑ 0 4 0 05 0 05 1 5 4 10
1

. , . . , , , ( , , constraint).

Models with transactions costs
In the Markowitz’s classical work transaction costs associated with buying and selling of equities were not 

allowed. The objective is to find the portfolio x that has minimal transactions costs. 
Let’s bring to the return model transaction costs dj xj of the acquiring asset  j. 
Thus the function of return takes a form: 

 r d xj j j
j

n

−( ) →
=

∑ max.
1

 (12)

Inserted variable do not changed an essence of the objective function. Some of the economists give conside-
rations towards the concave function of the transaction costs d xj j( ).  In this criterion (12) becomes convex. 

It is supposed to be more complicated to create a model of fixed costs  fj  which do not depend on the size 
of acquiring assets,  fj  is a payment for market entering  j. The fixed costs are discrete and it’s assumed the 
inserting of Boolean variables d j. The criterion of expected return (3) in this case is replaced on: 

r x fj j j j
j

n

−( ) →
=

∑ d max
1

and it adds constraint xj ≤ dj , dj equals 0 or 1,  j = 1, …, n.

Model with integer (lot) assets
It is supposed under the Markowitzʼs model that investment capital and its equal 1 and portfolio x combine 

shares of the assets. At some times shares of the assets could be multiple of the asset value. For instance, at the 
moment of purchasing asset  j has actual price pj or asset  j sells by lots in quantity pj, 2 pj, 3 pj, ….
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According to this let insert new variable yj , which indicate quantity of the asset  j, to be included in a portfo-
lio should be an integer multiple of the number of lot, usually 1000 stocks in the Tokyo Stock Exchange. Well 
the equation (1) should be substituted for inequality: 

 K p y K y j nj j j
j

n

0 1
1

0 1≤ ≤ ≥ =
=

∑ , int , , ,and eger  (13)

where K0 , K1 are upper and lower limit of the investor’s capital. The integer variable yj represents the number 
of lots for each asset  j which will make part of the optimal portfolio:

x
p y

p y
j

j j

j j
j

n=

=
∑
1

.

Mansini and Speranza [16] present three different heuristics for model (2), (3), (13) with integer variables 
(using data from the Milan Stock Exchange). The heuristics proposed are based the idea of constructing and 
solving mixed integer subproblems with consider subsets. The subsets are generated by exploiting the infor-
mation obtained from the relaxed linear optimization problem. 

Integer variables, sometimes also called minimum transaction lots or round lots, are another type of  “comp-
lex” constrain often mentioned in publications [16 –18]. Another way to handle this would be to introduce an 
asset that represents cash and is divisible up to the smallest currency unit (e. g. cent, ounce of gold). The prob-
lem (2), (3), (4) becomes considerably more mathematically compound and concerns to category of the integer 
quadratic programming. 

Model using fuzzy expected return
Choosing optimal portfolios, fuzzy decision theory provides an excellent framework for analysis. Here 

two reasons: it guaranties a minimum rate of return and gets returns above the risk-free rate for certain market 
scenarios. 

Some authors use fuzzy numbers to represent the future return of assets that approximated as fuzzy num-
bers the expected return and risk are evaluated by interval-valued means [19; 20]. Let us denote by rj  the fuzzy 
return on the asset  j in the portfolio P x( ),  then its interval-valued mean is defined as the following interval: 

E r E r E rj j j  ( ) = ( ) ( ) *
*, .

We consider a fuzzy portfolio optimization problem, assuming that the returns assets are modeled by means 
of a trapezoidal fuzzy number. A fuzzy number A  is said to be a trapezoidal fuzzy number A a a c du l= ( ), , ,  
if its membership function has the following form (fig. 4). 

If in addition al = au it is a triangular fuzzy number. 
An essential question connected with solving the fuzzy portfolio optimization problem is related to the 

defuzzification process for minimization the fuzzy downside for risk considered as a crisp objective and maxi-
mize the expected return: 

a a c d xuj lj j j
j

n

j− + +( )





→
=

∑ 1
21

min

or when the interval-valued possible mean is used, the objective functions are the following: 

Fig. 4. Trapezoidal fuzzy number
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a a c d xuj lj j j
j

n

j− + +( )





→
=

∑ 1
31

min,

1
2

1
61

a a d c xuj lj j j
j

n

j−( )+ −( )





→
=

∑ max.

conclusions
The expected return and the risk measured by the variance are the two main characteristics of an optimal 

portfolio. The optimal portfolio is desirable (the target portfolio). The real portfolio of assets can not be done 
by human intuition alone and some other characteristics [21]: closeness to the target portfolio; exposure to 
different economic sectors close to that of the target portfolio; a small number of names; a small number of 
transactions; high liquidity; low transaction costs. 

The mathematical problem can be formulated in many ways but the principal problems can be summarized 
as follows [22]: 

 • bicriterial convex quadratic optimization with simple budget constraints;
 • bicriterial linear optimization;
 • linear optimization with simple polymatroidal budget and risk diversification constraints; 
 • convex quadratic or linear bicreterial optimization with integer (mixed integer variables).

All models are easily and visually solved by using the “Mathematica” system [23]. That allows to see the 
optimal variant of capital investments among valid range of solutions.
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