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In this paper the generalized autoregressive conditional heteroscedastic models were applied for modeling volatility
of the exchange rate of EUR/USD for daily observations using dataset of period starting 1 January 2010 to 30 December
2016. The paper analyzes both asymmetric and symmetric models that found numerous facts about exchange rate returns
such as volatility clustering and leverage effect. The performance of GARCH and GARCH-M models as well EGARCH,
GJR-GARCH and APARCH (models with different residual distributions were analyzed to a given dataset. The best
models for forecasting volatility of EUR/USD exchange rates are APARCH, GJR-GARCH and EGARCH model with
Student’s #-distribution.
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Description of existing approaches
to definition and analysis of volatility

Financial markets can be analyzed in very different ways. On the one hand, there are economic theories that
focus directly on the valuation of financial assets, on the other — theories related to individual markets (curren-
cy, interest, stock, derivatives, etc.). Among the well-known examples, we can name the parity of exchange
rates, the model of the time structure of interest rates, the capital asset pricing model (CAPM), and the option
pricing model of Black—Scholes. Most of these models are based on theoretical concepts that use expectations,
utility functions and risk preferences. It is usually assumed that market participants act rationally, have rational
expectations and are not prone to risk. Under such conditions, prices and returns can be determined within the
framework of equilibrium models, such as CAPM, which «clean» the markets, i. e. equalize supply and aggre-
gate demand. Another approach follows the arbitrage theory (for example, Black—Scholes), suggesting that the
possibility of obtaining a risk-free profit will be immediately noticed by market participants and eliminated
by adjusting prices [1]. Arbitrage theory and the equilibrium theory are closely related, although the former is
repelled by fewer assumptions, and the latter contains more precisely defined solutions for complex situations.

In the last few years the forex market has become the most liquid and volatile among all other financial mar-
kets in the whole world. This fact resulted in unpredictable behavior of some of the currency markets, so the
dynamics of the foreign exchange market can become even more dangerous in the nearest future. That’s why
it is essential to study some of the important historical events relating to currencies and currency exchange.
The modeling and forecasting exchange rates volatility has important implications in a range of areas in macro-
economics and finance. One of the most popular implications is Value at Risk (VaR)' is a risk measurement
tool based on loss distributions. The Basel III framework, which was developed by the Basel Committee on
Banking Supervision requires that banks and investment firms keep a minimum amount of capital to cover po-
tential losses from their exposure to many kind of risks, including credit risk, operational risk and market risk.
For measuring market risk, Basel Il recommend the use of VaR. Inaccurate portfolio VaR estimates may lead
firms to maintain insufficient risk capital reserves so that they have an inadequate capital cushion to absorb
large financial shocks [2].

Numerous models were developed to analyze volatility for different countries, currencies and other finan-
cial assets. The most applied models for forecasting exchange rate volatility is the ARCH* model, which was
written by R. F. Engle in 1982 and the generalized ARCH or GARCH model developed by T. A. Bollerslev
and R. Taylor in 1986 [3]. However, in numerous papers GARCH models have been criticized because they
do not provide a theoretical explanation of volatility. Another known weakness of the GARCH model is in
fact that the model also responds equally to asymmetric shocks, and cannot cope with significantly skewed
time series which can often result in biased estimates of the conditional volatility. The key purpose of ARCH

'"VaR is a statistical technique used to measure and quantify the level of financial risk within a firm or investment portfolio over
a specific time frame. This metric is most commonly used by investment and commercial banks to determine the extent and occurrence
ratio of potential losses in their institutional portfolios.

2ARCH model — autoregressive conditional heteroscedastic model.
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model and its variations is to estimate the conditional variance of a given time series. In his early work

R. F. Engle described the conditional variance by a quadratic function of lagged values of time series. Than
Bollerslev in 1986 had extended the basic Engle’s ARCH model and described the conditional variance in

a different way: he stated that conditional variance depends on its own lagged values and the square of the
lagged values of shocks. To overcome ARCH and GARCH models’ drawbacks Bollerslev used the Student’s
t-distributions. Up-to-date there were created tons of variation of different GARCH models or so called
«extensionsy». The most used are Exponential GARCH, Threshold GARCH, GJR-GARCH (Glosten Jagan-
nathan Runkle GARCH) model and power GARCH models. These models were developed address some or
all of weaknesses mentioned above. Because of all these studies the modern GARCH family models capture
heteroscedasticity and volatility clustering in financial data across different financial markets [3; 4].

Studying the volatility of the return on assets has made an important contribution to understanding modern
financial markets. Volatility is considered a measure of risk, and the riskiness of any financial asset is a decisive
characteristic that determines its equilibrium price.

The main objective of this paper is to model exchange rate volatility for EUR/USD, by applying different
univariate specifications of GARCH type models for daily observations of the exchange rate time series for the
period between 1 January 2010 and 30 December 2016. The volatility models applied in this paper include the
GARCH (1, 1), GARCH-M (1, 1), EGARCH (1, 1), GIR-GARCH (1, 1), and Power GARCH (1, 1).

The auto regression process and the theoretical foundations
of ARCH and GARCH models

ARCH models were developed to account for empirical patterns in financial data. Many financial time se-
ries are characterized by the following facts:

e o non-stationarity of asset prices with a stationary return (relative indicator);

e o autocorrelation in time series of returns is usually absent or extremely low;

e o the volatility is clustered into high and low volatility intervals;

e o the distribution of financial time series, as a rule, does not have a normal distribution, and distributions
are characterized by long tails;

e o in most of the time series data effect of the leverage can be observed, which result in fact that changes
in the prices of a financial instrument (stocks, quotes, currencies, etc.) negatively correlate with changes in
volatility rate;

e o volatility of various financial assets within the same financial market very often move together.

The ARCH model was first proposed by R. F. Engle and was based on modeling the standard deviation of
the yield of a financial instrument using the sum of constant basic volatility and a linear function of the absolute
values of several recent changes in its prices [5]. The level of volatility is calculated by the following recursive
formula (according to ARCH (g)):

q
o =a+Y be_,
i=1
where a — base volatility (constant); € — previous change in prices; ¢ — model parameter — the number of recent
price changes that affect the current volatility rate; b, — weight coefficients that determine the degree of in-
fluence of previous price changes on the current rate of volatility.

ARCH model assumes the dependence of volatility only on the squares of past values of time series. If we
assume that it also depends on the past values of the conditional variance itself, we get a GARCH and other
modifications. Their main task is to consider the information asymmetry: bad news (negative shocks) usually
have a greater impact on volatility than good news (positive shocks), so volatility is higher in the falling market
than on the growing one — the leverage effect. In the framework of classical GARCH models, this effect cannot
be explained, since the conditional variance depends on the squares of the past values of the series and does
not depend on their signs.

GARCH:

EGARCH: j
2 % z P
Ing; = a+2b,.g(8 ) Z 1n6, - g ) d¢,+ 9, (|£t| - EJ
i=1 - \/

ARCH model is only the starting point of an empirical study and relies on a wide range of specification
tests. Some practice-oriented discrepancies have been identified relatively recently, for example, the definition
and modeling of shocks and the problem of modeling asymmetry [3].
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The first studies in the field of econometric modeling of volatility were extremely parametric, but in recent
years there has been a shift towards less parametric and even completely nonparametric methods. Non-para-
metric approaches for modeling volatility, which, as a rule, do not make assumptions about functional distri-
butions, allow to obtain flexible and at the same time steady estimates of actual volatility.

Methodology behind analyzing EUR/USD volatility

At its most basic level, fitting ARIMA and GARCH models is an exercise in uncovering the way in which
observations, noise and variance in a time series affect subsequent values of the time series. Such a model,
properly fitted, would have some predictive utility, assuming of course that the model remained a good fit for
the underlying process for some time in the future.

In finance, high risk is often expected to lead to high returns. To model such a phenomenon one may consider
the GARCH-M Model of Engle, Lilien, and Robins developed in 1987 where «M» stands for GARCH in the
mean. This model is an extension of the basic GARCH framework which allows the conditional mean of a se-
quence to depend on its conditional variance or standard deviation. A simple GARCH-M (1, 1) model is given by

F=W+AC +Y, y,=0,¢, g N(O,Gf),

tCts
2 2 2
Gt =0+ (X'lyt—l + Blct—l’

where [ and A are constants. The parameter A is called the risk premium parameter. A positive A indicates that
the return is positively related to its volatility.

In practice, the price of financial assets often reacts more pronouncedly to «bad» news than «good» news.
Such a phenomenon leads to a so-called leverage effect, as first noted by Black in 1976. The term «leverage»
stems from the empirical observation that the volatility (conditional variance) of a stock tends to increase when
its returns are negative. The leverage effect causes the asymmetries of variance dynamics and points out the
drawbacks of GARCH model because of its symmetric effect towards the conditional variance. In order to
capture the asymmetry in return volatility («leverage effect»), a new class of models was developed, termed
the asymmetric GARCH models. This paper uses the following asymmetric GARCH models; EGARCH GJR-
GARCH and Asymmetric Power ARCH (APARCH) model for capturing the asymmetric phenomena [5; 6].

Validation and comparison of different ARCH models

Conditional volatility is usually estimated using different probability distributions. These distributions can
be found and estimated via «rugarch» package in R and Python. This package includes normal, Student ¢ and
skewed Student #-distribution. One of Engle’s key assumptions is that asset returns follow a normal distribu-
tion. However, in practice the asset returns (as well as fluctuations on currency markets) are not normally dis-
tributed, so the normality assumption could cause significant bias in VaR estimation and could underestimate
the volatility. It is indicated that standard GARCH models with normal empirical distributions have inferior
forecasting performance compared to models that reflect skewness and kurtosis in innovations. To capture the
excess kurtosis in financial asset returns, Bollerslev in 1987 introduced the GARCH model with a standardized
Student’s ¢-distribution with 2 degrees of freedom. The common methodology used for GARCH estimation is
maximum likelihood [3; 4]. The parameters of the GARCH model can be found by maximizing the objective
log-likelihood function:

1n2(0)=~1 3 [1n(25) + n(c3(0) + (0.

t=1

where 6 is the vector of parameters (o, W, o, 3;) estimated that maximize the objective function (In®); z, rep-
resents the standardized residual.

Maximum likelihood estimates of the parameters are obtained by numerical maximization of the log-like-
lihood function using the Marquardt algorithm’. The quasi-maximum likelihood estimator (QMLE) used
since then.

Empirical results of forecasting EUR/USD forex market

The data set consists of the daily currency exchange rate of the EUR vs. USD (EUR/USD). These data are
obtained from European Central Bank (ECB) website (www.ech.europa.eu). The data set was for the period

*In mathematics and computing the Levenberg — Marquardt algorithm (LMA), also known as the damped least-squares (DLS)
method, is used to solve non-linear least squares problems. These minimization problems arise especially in least squares curve fitting.
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from 1 January 2010 to 30 December 2016, a total of 1826 observation. A visual inspection of fig. 1 shows that
daily EUR/USD exchange rate prices are not stationary. To test for stationarity an Augmented Dickey — Fuller
test (ADF) for a unit root in a time series sample is performed. The computed ADF test-statistic in table 1 is
(=3.0) which greater than the critical values at 1 % significance level. Therefore, we fail to reject the null hypo-
thesis that there is a unit root and that the series needs to be differenced to make it stationary.

However, if we make a logarithmic transformation of the time series, then we get directly a series of returns
of the chosen financial instrument, graphically this process (fig. 2) is very similar to white noise”.

A plot of the log returns series for EUR/USD exchange rates given in fig. 2 shows periods of high volatility,
occasional extreme movements and volatility clustering, as upward movements tend to be followed by other
upward movements and downward movements also followed by other downward movements. This indicates
that the logarithm of EUR/USD exchange rates is stationary after taking the first-difference, and the ADF test
results in table 1 confirm the stationarity of the return series data. The computed ADF test-statistic in table 1 is
(—9.3) which smaller than the critical values at 5 % significance level.

The mean of analyzed data is positive, suggesting that exchange returns increase slightly over time.
The coefficient of skewness indicates that returns have asymmetric distribution, i. e., they are skewed to the
left. The kurtosis of returns is 73.677 6 which is greater than three, indicating that the distribution of returns
follows a fat-tailed distribution, thereby exhibiting one of the important characteristics of financial time series
data, namely that of leptokurtosis. The non-normality condition is supported by a Jarque — Bera test which
indicate that the null hypothesis of normality is rejected at the 5 % level of significance.

A
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EUR/USD exchange rate
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Fig. 1. Daily EUR/USD currency exchange rates

Fig. 2. Logarithmic price indices (@) and a typical Gaussian
white noise (b) for the EUR/USD currency quote

*A scalar random process is called white noise if it is stationary (in a broad sense) and has a constant spectral density, called the
intensity of white noise.

8



Journal of the Belarusian State University. Economics. 2018. No. 1. P. 4-13

Table 1
Augmented Dickey — Fuller test of the daily returns
ADEF test statistic Confidence level, % Critical Value
1 -3.436 1
-93 5 —2.863 2
10 -2.5677

The Ljung — Box test is applied to the daily log returns of the EUR/USD exchange rates and the test re-
sults are shown in table 2. The null hypothesis of the Ljung — Box is rejected for the returns, squared returns
and absolute returns, at lags 1, 6, 10, 15 and 20. The test statistics are statistically significant with p-values
not greater than 0.01, indicating that the returns are not white noise. Indeed, the daily exchange rate returns
exhibits correlation.

Table 2
P-Values based on the Ljung — Box test for the EUR/USD exchange rates
Variable Metric Lag 1 Lag 6 Lag 10 Lag 15 Lag 20
Returns Qm 10 40 50 60 90
p-value (0.0003) (0.0000) (0.0000) (0.0000) (0.0000)
Squared returns Qm 6 20 30 40 600
p-value (0.02) (0.01) (0.0004) (0.002) (0.0000)
Absolute returns Qm 200 800 1000 1200 1400
p-value (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

From the results of Ljung — Box test in table 2 and the autocorrelation (ACF) and partial autocorrela-
tion (PACF) for the exchange rate return series, absolute and squared return series shows that the return series
exhibit autocorrelation at some lags at 5 % level of significance. The presence of autocorrelation detected in the
log return can be removed by fitting the simplest plausible ARMA (p, ¢) model to the data. On the other hand,
the autocorrelation detected in the squared log returns, indicate that there exists conditional heteroskedasticity
of the exchange rate returns series which could be removed by fitting the simplest plausible GARCH model to
the ARMA filtered data.

An ARMA (p, g) model is used to fit the mean returns, as it provides a flexible and parsimonious approxi-
mation to conditional mean dynamics. The Autocorrelation Function (ACF) and Partial Autocorrelation Func-
tion (PACF) are used to determine the order of ARMA (p, ¢) models. The ACF and PACF plots given in table 3
suggest that the returns may be modeled by an ARMA (2, 2) process. It is often proposed to use extended auto-
correlation function (EACF) technique to identify the orders of a stationary or non-stationary ARMA process
based on iterated least square estimates of the autoregressive parameters. The output of EACF is a two-way
table, where the rows correspond to AR order p and the columns to MA order g. Therefore, the EACF suggests
that the daily log returns of EUR/USD exchange rate follow an ARMA (2, 0) model. This agrees with the result
in table 3 suggested by the best fitting model selected based on Bayesian Information Criterion (BIC) values.
The criterion is to choose a model with minimum AIC and BIC and largest log-likelihood function. BIC always
gives penalty for the additional parameters more than AIC does. So the ARMA (1, 1) is selected as the mean
equation that mainly takes account of the BIC.

Table 3
Criterion for ARMA (p, ¢) order selection
Model specification BIC value AIC value
ARMA (1, 0) —19 267 —19 349
ARMA (1, 1) -19 152 -19 234
ARMA (1, 2) —19 326 —19 326
ARMA (1, 3) -19 337 -19 337
ARMA (2, 0) —19 348 —19 348
ARMA (2, 1) -19 359 -19 359
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Ending table 3

Model specification BIC value AIC value
ARMA (2,2) —-19 370 -19370
ARMA (2, 3) —19 381 -19 381
ARMA (0, 0) —-19 392 -19 392
ARMA (0, 1) -19403 —19 403
ARMA (0, 2) —-19 370 -19370
ARMA (0, 3) —19 381 -19 381
ARMA (0, 0) —19 348 —19 348

The results of the fitted ARMA (1, 1) - GARCH (1, 1) and ARMA (1, 1) - GARCH-M (1, 1) models to
the EUR/USD log return series with normal distribution, Student’s ¢-distribution and skewed #-distribution for
the standardized residuals are presented in table 4. The estimates of the model parameters are all significant
for normal, Student’s ¢ and skewed 7 distribution except for the ® parameter which is not significant for all the
distributions. The estimates of @, and @, are significant, supporting the use of the ARMA (1, 1) model for the
returns. Volatility shocks are persistent since the sum of the ARCH and GARCH coefficients are very close
to one. The Box — Pierce Q-statistics is insignificant up to lag 20, indicating that there is no excessive auto-
correlation left in the residuals. Comparing the log-likelihood and information criterion in table 4 within the
three conditional distributions, the model with conditional distribution of skewed ¢ has larger log-likelihood
and smaller information criterion statistics than estimated by normal and #-distribution that means this model
is better fitted.

Table 4
Estimation of ARMA (1, 1) - GARCH (1, 1) and ARMA (1, 1) - GARCH-M (1, 1) with different distributions’

ARMA (1, 1)~ GARCH (1, 1) ARMA (1, 1) - GARCH-M (1, 1)
Coefficient
Normal t Skew ¢ Normal t Skew ¢
0.00016 0.00011 0.00013 0.00017 0.00098 0.00013
a -0.00301 -0.01613 -0.01644 —-0.004 33 -0.01812 -0.01613
0.12526 0.12823 0.12803 0.12123 0.12815 0.12784
AR (1)
0 0 0 0 0 0
MA (1) —0.04226 -0.03234 -0.03126 -0.04327 -0.03131 -0.03337
0 —0.01054 -0.01131 —0.00001 -0.01126 -0.01031
0 0 0 0 0 0
Omega
—0.63738 —0.43463 -0.46283 —0.65327 -0.46172 —0.46372
0.11027 0.31093 0.29924 0.10915 0.31262 0.30933
o
0 0 0 0 0 0
8 0.78272 0.57232 0.57339 0.79127 0.57244 0.57391
0 0 0 0 0 0
1.02179
Skew — — — — —
0
3.19337 1.00219 3.20702 3.20923
Shape — -
0 0 0 0
LLF 11 318 11916 11 921 11 318 11916 11 921
AIC -8.1166 -8.3778 -8.3772 -8.1166 -8.3778 -8.3772
BIC -8.1039 -8.363 -8.8303 -8.1039 -8.363 -8.8303

’p-Values are shown in parentheses.
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To capture the asymmetry dynamics and the presence of the «leverage effect» in the EUR/USD ex-
change rate returns, the nonlinear asymmetric models; ARMA (1, 1) - EGARCH (1, 1), ARMA (1, 1) - GJR-
GARCH (1, 1) and ARMA (1, 1) — APARCH (1, 1) with conditional distributions; normal distribution, Stu-
dent’s ¢ distribution and skewed #-distribution are fitted to the exchange returns. Table 5 gives the results of
the parameter estimates for the ARMA (1, 1) — EGARCH (1, 1), ARMA (1, 1) - GJR-GARCH (1, 1) and
ARMA (1, 1) — APARCH (1, 1) models. The parameters estimate for these three models are all significant
except for the mean under the ARMA (1, 1) — EGARCH (1, 1) for the normal and skew #-distribution, also
the coefficient of the second term of autoregressive process under the skew -distribution and the coefficients
of o, under the Student’s ¢ and skew ¢-distribution are not significant. For both the ARMA (1, 1) — GJR-
GARCH (1, 1) and ARMA (1, 1) - APARCH (1, 1) o is not significant for all the distribution. The parameter y
is not significant for the ARMA (1, 1) — APARCH (1, 1) under the #-distribution. The coefficient y in the case
of ARMA (1, 1) - APARCH (1, 1) is statistically significant at level of significance of 5 % implying that there
is an asymmetry under the normal distribution. On the other hand, its negative value indicates the presence
of the «leverage effect». The coefficient ¥ in the ARMA (1, 1) - EGARCH (1, 1) and ARMA (1, 1) — GJR-
GARCH (1, 1) is significantly different from zero, which indicates the presence of asymmetry. The value of
y which is less than zero implies presence of the «leverage effect». According to the log-likelihood value and
information criterion of the estimated models, the APARCH model has the larger log-likelihood value and
smaller information criterion compared with EGARCH model and GJR-GARCH model. Secondly, comparing
within the APARCH models under normal distribution, and Student’s ¢-distribution, the model with conditional
Student’s #-distribution outperforms the normal distribution that means this model is superior in modeling the
EUR/USD exchange rate returns with asymmetry and fat tail.

The estimated power parameter & in the APARCH model is 2.44 that is slightly different from the estimated
result of Ding, Granger and Engle work under the normal distribution that is 1.43. This may be caused by the time
period of the data is different and then mean equation is different to model the data. However, § in this paper is
still significantly different from 1 (GJR-GARCH) or 2 (GARCH). When the conditional distribution changes to
t-distribution 9 is getting smaller to 0.73. However, using the same test as in Ding, Granger and Engle’s paper:
let /, be the log-likelihood of value under the GARCH model which is set as the null hypothesis, while the alter-
native hypothesis is APARCH model with log-likelihood is 1, then 2(/ — ) have a " distribution with 2 degrees
of freedom when H; is true. Then, under the Student’s z-distribution 2(/ — /) = 2(12 547 — 12 511) = 72, which
means we can reject the null hypothesis that the data is generated from GARCH model. In the same way, we can
reject that the data is generated from EGARCH model and GJIR-GARCH model.

Table 5
Estimation of ARMA (1, 1) - EGARCH (1, 1)
and ARMA (1, 1) - GJR-GARCH (1, 1) with different distributions
ARMA (1, 1) -
ARMA (1, 1) - EGARCH (1, 1 ARMA (1, 1) - GJR-GARCH (1, 1

Coefficient — (L1 (1) L1 APARCH (1, 1)

Normal t Skew ¢ Normal t Skew ¢ Normal t
—0.000128 | 0.000069 0.000074 0.000158 0.000141 0.000094 0.000158 0.000052
H (0.100463) | (0.011437) | (0.051372) | (0.000428) | (0.011327) | (0.010423) | (0.029627) | (0.00000)
AR (1) 0.12526 0.128233 0.128031 0.135163 0.138173 0.128072 0.133617 0.096342
(0.00001) | (0.00000) | (0.00000) | (0.00000) | (0.00000) | (0.00000) | (0.00000) | (0.00000)
MA (1) —-0.04226 | —-0.02834 | —0.02884 | —0.08921 —-0.04334 | —-0.04377 | —0.10936 | —0.01256
(0.00000) | (0.03178) | (0.06282) | (0.00001) | (0.01263) | (0.01237) | (0.00000) | (0.00000)

Omega —0.523262 | —0.562862 | —0.562984 0 0 0 0 0
g (0.00000) | (0.00001) | (0.00001) | (0.65632) | (0.49623) | (0.503261) | (0.89357) | (0.88332)
0.111272 0.036272 0.036452 0.135367 0.336281 0.336473 0.095427 0.372461
o (0.00000) | (0.443167) | (0.441858) | (0.00000) | (0.00000) | (0.00000) | (0.00000) | (0.00000)
B 0.893273 0.898471 0.898449 0.848617 0.672472 0.673169 0.848558 0.838175
(0.00000) | (0.00000) | (0.00000) | (0.00000) | (0.00000) | (0.00000) | (0.00000) | (0.00000)
Gamma 0.484 044 0.55424 0.55742 -0.02356 | —0.08316 | —0.08377 | —0.051262 | —0.083261
(0.00000) | (0.00000) | (0.00000) | (0.026716) | (0.049136) | (0.042325) [(0.0362823)| (0.06542)
Delta B B B B _ B 243216 0.7123353
(0.00000) | (0.00000)
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Ending table 5

ARMA (1, 1) -

ARMA (1, 1) - EGARCH (1, 1 ARMA (1, 1) - GIR-GARCH (1, 1

Coefficient (1, 1) ~EGARCH (L, (1, )~ GIR-GARCH (1, 1) APARCH (1, 1)

Normal t Skew ¢ Normal t Skew ¢ Normal t
Skew B _ 1.002189 _ B 1.002189 B _
(0.00000) (0.00000)

Shape _ 2.37367 2.373975 B 3.193371 3.209371 _ 2.10316
P (0.00000) | (0.00000) (0.00000) | (0.00000) (0.00000)

LLF 11557 12 405 12 405 11 904 12413 12 414 10 997 12 447

AIC -8.2004 -8.8166 -8.8163 -8.5234 -8.818 -8.8176 -8.5167 -8.9014

BIC -8.1626 -9.8035 -8.8031 -8.5129 -8.8093 -8.8053 -8.50316 -8.89361

The GARCH models with the innovations of Student’s and skewed Student’s ¢-distributions have a better
fit in general than the models with normal distribution innovations since they have the highest log-likelihood
function (LLF) and smallest AIC and BIC. Secondly, the values of the AIC, BIC and LLF for all the models
with Student’s and skewed Student’s #-distributions innovations are not significantly different. This implies
that the models with Student’s ¢ and skewed Student’s z-distributions innovations would result in the same
conclusions.

The figures in table 4 shows that model ARMA (1, 1) — APARCH (1, 1) is well specified. The ACF
of the square standardized residuals compares well with the ACF of the square returns. This shows that
ARMA (1, 1) - APARCH (1, 1) Student #~model sufficiently explains the heteroscedasticity effect in the
returns, thus we can conclude that the model fit the EUR/USD returns well. The Ljung — Box test of the
standardized residuals at different lags confirms that standardized residuals have no correlation.

Results of modelling EUR/USD conditional volatility

Modeling and forecasting the volatility of exchange rate returns has become an important field of empirical
research in finance. This is because volatility is considered as an important concept in many economic and
financial applications like asset pricing, risk management and portfolio allocation [7]. This paper attempts
to explore the comparative performance of different econometric volatility forecasting models in the terms
of their ability to estimate VaR in the EUR/USD exchange rates. Five different models were considered in
this study. The volatility of the EUR/USD returns have been modeled by using a univariate GARCH models
including both symmetric and asymmetric models. That captures most common stylized facts about exchange
returns such as volatility clustering and leverage effect. These models are GARCH (1, 1), GARCH-M (1, 1),
exponential GARCH (1, 1), GJR GARCH (1, 1) and APARCH (1, 1) following three residual distributions
namely: normal, Student’s z-distribution and Skewed Student’s ¢-distribution. The first two models are used
for capturing the symmetry effect whereas the second group of models is for capturing the asymmetric effect.
The study used the EUR/USD exchange rates data from the European Central Bank (ECB) for the period 1 Ja-
nuary 2010 to 30 December 2016. Based on the empirical results presented, the following can be concluded.

There is strong evidence that the above-mentioned models could characterize daily returns. The EUR/USD
data showed a significant departure from normality and existence of conditional heteroscedasticity in the re-
siduals series. Descriptive statistics for the EUR/USD exchange rates show presence of negative skewness
and excess kurtosis. The results of the conducted ARCH-LM test point out significant presence of ARCH
effect in the residuals as well as volatility clustering effect. Standardized residuals and standardized residuals
squared were white noise. The empirical results have indicated that the most adequate GARCH models for
estimating and forecasting VaR in the EUR/USD exchange rates are the asymmetric APARCH, GJR-GARCH
and EGARCH model with Student’s ¢-distribution. These models have a better fit of the exchange returns,
since they have the largest log-likelihood function and smallest AIC and BIC. The findings have important
implications regarding VaR estimation in volatile times, market timing, portfolio selection etc. that have to be
addressed by investors and other risk managers operating in emerging markets. However, the limitation of the
study is that the empirical research focused only on the EUR/USD exchange rate and therefore the findings
cannot be generalized to other exchange rates in the market. In the future research a wider sample of exchange
rates should be used to compare the performance of the most commonly used foreign currencies in the market
(also in relation to BYN currency) and the inclusion of other asymmetric GARCH-type models, testing and
comparing their predictive performance.
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