Геотермическое поле зоны перехода между Анатолийской плитой и Восточно-Европейской платформой

  • Сиамак Мансури Фар Белорусский государственный университет, пр. Независимости, 4, 220030, г. Минск, Беларусь https://orcid.org/0000-0003-1653-5926

Аннотация

В восточной части Средиземного моря выделяют обширную провинцию низкого теплового потока, простирающуюся во всем бассейне моря восточнее Крита (Левантинское море), включая Кипр и северный Египет. Геология территории восточной Анатолии сложна из-за недавней тектонической и вулканической актив ности. Этот регион включает главные тектонические блоки Понтийских гор, Анатолийско-Тавридский пояс и сутурную зону Битлиса, Северо- и Восточно-Анатолийский разломы. Во многих частях Анатолии встречаются офио литы и молодые вулканические породы. Черное море окружено Альпийско-Гималайским складчатым поясом (Крым, Большой Кавказ, Понтийские горы, Родопо-Странджский массив, восточное Среднегорье, Северная Доб руджа) и древними тектоническими блоками различного происхождения и возраста, такими как Восточно-Европейский кратон, Мизийская платформа, Стамбульская зона и Аджаро-Триалетская складчатая система. В Черном море преобладает низкий теп ловой поток. Наименьшие значения (менее 30 мВт/м2 ) зарегистрированы в центральных частях западного и восточного бассейнов Черного моря с максимальной мощностью осадочных отложений. Геотермические исследования на территории Украины ведутся в течение 45 лет. Многие особенности теплового поля остаются неизученными. Это относится, в частности, к Украинскому щиту и южной части региона Карпат. В целом территория альпийской складчатости в пределах Турции, Мраморного и Эгейского морей, Кавказа характеризуется высоким тепловым потоком. Аномалия его наибольших значений (более 100 –150 мВт/м2 ) отмечается на западе Турции, где преобладают тектонические условия растяжения и ведется использование подземного пара для выработки электроэнергии. Построены карта и три профиля теплового потока, пересекающих изучаемый регион.

Биография автора

Сиамак Мансури Фар , Белорусский государственный университет, пр. Независимости, 4, 220030, г. Минск, Беларусь

аспирант кафедры региональной геологии факультета географии и геоинформатики. Научный руководитель – доктор геолого-минералогических наук, доцент В. И. Зуй

Литература

  1. Göncüoglu MC, Marroni M, Sayit K, Tekin UK, Ottria G, Pandolfi L, Ellero A. The Ayli Dağ ophiolite sequence (CentralNor thern Turkey): a fragment of Middle Jurassic oceanic lithosphere within the Intra-Pontide suture zone. Ofioliti. 2012;37(2):77–92.
  2. Okay AI, Tüysüz O. Tethyan sutures of northern Turkey. In: Durand B, Jolivet L, Horváth M, Séranne F, editors. The Mediterranean basin: tertiary extension within the Alpine orogen. London: Geological Society; 1999. p. 475–515. (Geological Society, London, Special Publications; volume 156).
  3. Sengör AMC, Yilmaz Y. Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics. 1981;75:181–241.
  4. Okay AI, Şahintürk Ö. Geology of the Eastern Pontides. In: Robinson AG, editor. Regional and petroleum geology of the Black Sea and surrounding regions. [S. l.]: Tulsa; 1997. p. 291–311. (AAPG Memoir; 68). DOI: 10.1306/M68612C15.
  5. Gӧrür N, Monod O, Okay AI, Sengӧr AMC, Tüysüz O, Yiğitbas E, et al. Palaeogeographic and tectonic position of the Carboniferous rocks of the western Pontides (Turkey) in frame of the Variscan belt. Bulletin de la Société Géologique de France. 1997; 168(2):197–205.
  6. Yilmaz Y, Serdar HS, Genc C, Yigitbas E, Gürer ӦF, Elmas A, et al. The geology and evolution of the Tokat Massif, south central Pontides, Turkey. International Geology Review. 1997;39(4):365–382. DOI: 10.1080/00206819709465278.
  7. Koçyigit A. An example of an accretionary forearc basin from northern Central Anatolia and its implications for the history of subduction of Neo-Tethys in Turkey. Geological Society of America Bulletin. 1991;103(1):22–36. DOI: 10.1130/0016-7606(1991)103< 0022:AEOAAF>2.3.CO;2.
  8. Görür N, Tüysüz O, Sengӧr AMC. Tectonic evolution of the central Anatolian basins. International Geology Review. 1998; 40(9):831– 850.
  9. Aldanmaza E, Pearcea JA, Thirlwallb MF, Mitchell JG. Petrogenetic evolution of late Cenozoic, post-collision volcanism in western Anatolia, Turkey. Journal of Volcanology and Geothermal Research. 2000;102:67–95.
  10. Keskin M. Magma generation by slab steepening and breakoff beneath a subduction-accretion complex: an alternative model for collision-related volcanism in Eastern Anatolia, Turkey. Geophysical Research Letters. 2003;30(24):8046. DOI: 10.1029/2003GL018019.
  11. Boztuğ D, Otlu N, Tatar S. Geological and petrological remarks revealing the differential tectonic uplift in the exhumation history of the collision-related central Anatolian intrusives, Turkey. In: Chatzipetros AA, Pavlides SB, editors. Proceedings of 5th International Symposium on Eastern Mediterranean Geology; 2004 April 14 –20; Thessaloniki, Greece. [S. l.]: International Symposium on Eastern Mediterranean Geology; 2004. p. 45– 48.
  12. Altunkaynak S., Dilek Y. Timing and nature of postcollisional volcanism in western Anatolia and geodynamic implications. In: Dilek Y, Pavlides S. Postcollisional Tectonics and Magmatism in the Mediterranean Region and Asia. [S. l.]: Geological Society of America; 2006. (Special Paper of the Geological Society of America; volume 409). DOI: 10.1130/2006.2409(17).
  13. Okay AI. Tectonic units and sutures in the Pontides, northern Turkey. In: Şengör AMC, editor. Tectonic Evolution of the Tethyan Region. Dordrecht: Kluwer Academic Publications; 1989. p. 109 –116. (NATO ASI series; volume 259). DOI: https://doi.org/ 10.1007/978-94-009-2253-2_6.
  14. Okay AI, Satir M. Coeval plutonism and metamorphism in a latest Oligocene metamorphic core complex in northwest Turkey. Geological Magazine. 2000;137(5):495–516. DOI: 10.1017/S0016756800004532.
  15. Altherr R, Schliestedt M, Okrusch M, Seidel E, Kreuzer H, Harre W. Geochronolgy of high pressure rocks on Sifnos (Cyclades, Greece). Contributions to Mineralogy and Petrology. 1979;70(3):245–255. DOI: 10.1007/BF00375354.
  16. Avigad D, Garfunkel Z. Low-angle faults above and below a blueschist belt – Tinos Island, Cyclades, Greece. Terra Nova. 1989;1(2):182–187. DOI: 10.1111/j.1365-3121.1989.tb00350.x.
  17. Avigad D, Garfunkel Z. Uplift and exhumation of high-pressure metamorphic terrains: the example of the Cycladic blueschist belt (Aegaen Sea). Tectonophysics. 1991;188(3– 4):357–372. DOI: 10.1016/0040-1951(91)90464-4.
  18. Oberhänsli R, Partzsch JH, Candan O, Ҫetinkaplan M. First occurrence of Fe-Mg-carpolite documenting a high-pressure metamorphism of the Lycian Nappes, SW Turkey. International Journal of Earth Sciences. 2001;89(4):867–873. DOI: 10.1007/s005310000103.
  19. Okay AI. Stratigraphic and metamorphic inversions in the central Menderes Massif: a new structural model. International Journal of Earth Sciences. 2001;89(4):709 –727. DOI: 10.1007/s005310000098.
  20. Dilek Y, Whitney DL. Counterclockwise P-T-t trajectory from the metamorphic sole of a Neo-Tethyan ophiolite (Turkey). Tectonophysics. 1997;280(3– 4):295–310. DOI: 10.1016/S0040-1951(97)00038-3.
  21. Şengör AMC, Satir M & Akkörk R. Timing of tectonic events in the Menderes Massif, western Turkey. Implications for tectonic evolution and evidence for Pan-African basement in Turkey. Tectonics. 1984;3(7):693–707. DOI: 10.1029/TC003i007p00693.
  22. Whitney DL, Dilek Y. Core complex development in Central Anatolia, Turkey. Geology. 1997;25(11):1023–1026. DOI: 10.1130/ 0091-7613(1997)025<1023:CCDICA>2.3.CO;2.
  23. Okay AI, Tansel I, Tüysüz O. Obduction, subduction, and collision as reflected in the Upper Cretaceous – Lower Eocene sedimentary record of western Turkey. Geological Magazine. 2001;138(2):117–142.
  24. Bozkurt E. Extensional vs contractional origin for the Southern Menderes Shear Zone, southwest Turkey. Tectonic and metamorphic implications. Geological Magazine. 2007;144:191–210.
  25. Kutas RI, Kobolev VP, Tsvyashchenko VA. Heat flow and geothermal model of the Black Sea depression. Tectonophysics. 1998;291(1– 4):91–100. DOI: 10.1016/S0040-1951(98)00033-X.
  26. Malovitsky YP, Neprochnov YP, editors. Struktura zapadnoi chasti Chernomorskogo basseina [Structure of the western part of the Black Sea Basin]. Moscow: Nauka; 1972. [244 p.]. Russian.
  27. Finetti I, Bricchi G, Del Ben A, Pipan M, Xuan Z. Geophysical study of the Black Sea area. Bolletino di Geofisica Teorica ed Applicata. 1988;30:197–324.
  28. Okay AI, Sengӧr AMC, Gӧrür N. Kinematic history of the opening of the Black Sea and its effect on the surrounding regions. Geology. 1994;22(3):267–270. DOI: 10.1130/0091-7613(1994)022<0267:KHOTOO>2.3.CO;2.
  29. Ustaӧmer T, Robertson AHF. Tectonic sedimentary evolution of the North Tethyan margin in the central Pontides of Northern Turkey. In: Robinson AG, editor. Regional and petroleum geology of the Black Sea and surrounding regions. [S. l.]: Tulsa; 1997. p. 255–290. (AAPG Memoir; 68).
  30. Tüysüz O. Geology of the cretaceous sedimentary basins of the Western Pontides. Geology. 1999;34(1–2):75–93. DOI: 10.1002/ (SICI)1099-1034(199901/06)34:1/2<75::AID-GJ815>3.0.CO;2-S.
  31. Hippolyte JC, Müller C, Kaymakci N, Sangu E. Dating of the Black Sea Basin: new nannoplankton ages from its inverted margin in the Central Pontides (Turkey). In: Sosson M, Kaymakci N, Stephenson RA, Bergerat F, Starostenko V, editors. Sedimentary basin tectonics from the Black Sea and Caucasus to the Arabian Platform. [S. l.]: Geological Society of London; 2010. p. 113–136. (Geological Society, London, Special Publications; volume 340). DOI: http://dx.doi.org/10.1144/SP340.7.
  32. Kutas RI. [Analysis of thermo-mechanic models of the Black Sea sedimentary evolution]. Geofizicheskii zhurnal. 2003;25(2): 36 – 47. Russian.
  33. Khriachtchevskaia O, Stovba S, Stephenson R. Cretaceous – neogene tectonic evolution of the northern margin of the Black Sea from seismic reflection data and tectonic subsidence analysis. In: Sosson M, Kaymakci N, Stephenson RA, Bergerat F, Starostenko V, editors. Sedimentary basin tectonics from the Black Sea and Caucasus to the Arabian Platform. [S. l.]: Geological Society of London; 2010. p. 137–157. (Geological Society, London, Special Publications; volume 340). DOI: 10.1144/SP340.8.
  34. Stephenson RA, Schellart WP. The Black Sea back-arc: insight to its origin from geodynamical models of modern analogues. In: Sosson M, Kaymakci N, Stephenson RA, Bergerat F, Starostenko V, editors. Sedimentary basin tectonics from the Black Sea and Caucasus to the Arabian Platform. [S. l.]: Geological Society of London; 2010. p. 11–21. (Geological Society, London, Special Publications; volume 340). DOI: 10.1144/SP340.2.
  35. Neprochnov YP, Kosminskaya IP, Malovitsky YP. Structure of the crust and upper mantle of the Black and Caspian Seas. Tectonophysics. 1970;10:517–538.
  36. Afanasenkov AP, Nikishin AM, Obukhov AV. Vostochno-Chernomorskii bassein: geologicheskoe stroenie i uglevodorodnyi potentsial [The eastern Black Sea Basin: geological structure and hydrocarbon potential]. Moscow: Nauchnyi mir; 2007. 172 p. Russian.
  37. Starostenko V, Buryanov V, Makarenko I, Rusakov O, Stephenson R, Nikishin A, et al. Topography of the crust-mantle boundary beneath the Black Sea Basin. Tectonophysics. 2004;381(1– 4):211–233.
  38. Jones MT, Chairman F, GEBCO Sub-Committee on Digital Bathymetry, editors. User Guide to the GEBCO Digital Atlas and its data sets [Internet; cited 2019 June 14]. [S. l.]: Natural Environment Research Council; 1997. 179 p. Available from: https://www. bodc.ac.uk/projects/data_management/international/gebco/gebco_digital_atlas/gda_development/documents/manual.pdf.
  39. Smith WHF, Sandwell DT. Measured and estimated seafloor topography (version 4.2). World Data Centre-A for Marine Geology and Geophysics Research Publication. 1997a. RP-1.
  40. Smith WHF, Sandwell DT. Global sea floor topography from satellite altimetry and ship depth soundings. Science. 1997; 277(5334):1957–1962. DOI: 10.1126/science.277.5334.1956.
  41. Lubimova EA, Nikitina VN, Tomara GA. Termal’nye polya vnutrennikh i okrainnykh morei SSSR [Thermal fields of inner and marginal seas of the USSR]. Moscow: Nauka; 1976. 214 p. Russian.
  42. Morgan P. Cyprus heat flow with comments on the thermal regime of the Eastern Mediterranean. In: Čermák V, Rybach L, editors. Terrestrial Heat Flow in Europe. Berlin: Springer; 1979. p. 144 –151. DOI: 10.1007/978-3-642-95357-6_13.
  43. Morgan P. Porosity determinations and the thermal conductivity of rock fragments with application to heat flow on Cyprus. Earth and Planetary Science Letters. 1975;26:253–262.
  44. Erickson AJ. The measurement and interpretation of heat flow in the Mediterranean and Black Sea [PhD thesis]. Cambridge: Massachusetts Institute of Technology; 1970.
  45. Ryan WBF. The floor of the Mediterranean Sea [PhD thesis]. New York: Columbia University; 1969. 196 p.
  46. Hurtig E, Haenel R, Zui V, et al. Geothermal Atlas of Europe. Gotha: International Association for Seismology and Physics of the Earth’s Interior. 1991. 156 p. 36 maps.
  47. Langseth MG. Techniques of measuring heat flow through the ocean floor. In: Lee WHK, editor. Terrestrial Heat Flow in Europe. Washington: American Geophysical Union; 1965. p. 55–77.
  48. Von Herzen RP, Maxwell AE. The measurement of thermal conductivity of deep-sea sediments by a needle-probe method. Journal of Geophysical Research. 1959;64:1557–1563.
  49. Pfister M, Rybach L, Simsek S. Geothermal reconnaissance of the Marmara Sea region (NW Turkey). Surface heat flow density in an area of active continental extension. Tectonophysics. 1998;291(1– 4):77–89. DOI: 10.1016/S0040-1951(98)00032-8.
  50. Kazantsev SA. [Development and utilization of equipment-methodical complex: for geothermal investigations] [Internet; cited 2016 May 5]. Available from: http://dlib.rsl.ry/loader/view/01000092000?get=pdf. Russian.
  51. Kondiurin AB, Sochelnikov VV. [Geothermal flow in western part of the Black Sea]. Okeanologiya. 1983;23:622– 627. Russian.
  52. Kutas RI. Geothermal conditions of the Black Sea Basin and its surroundings. Geofizicheskii zhurnal. 2010;32(6):135 –138. Russian.
  53. Dolton GL. Pannonian Basin Province, Central Europe (Province 4808) – Petroleum geology, total petroleum systems, and petroleum resource assessment. Bulletin 2204-B. Reston, Virginia: U. S. Geological Survey; 2006. 47 p.
  54. Erickson AJ, von Herzen RE. Downhole temperature measurements and heat flow data in the Black Sea – DSDP leg 42B. DSDP Initial Reports. 1978;42(part 2):1085–1103. DOI: 10.2973/dsdp.proc.42-2.152.1978.
  55. Golmshtok AJ, Zolotarev VG. [Deep-seated heat flow of the Black Sea Basin]. Doklady Akademii nauk SSSR. 1980;254: 956 – 959. Russian.
  56. Kobzar VM. [Heat flow and block structure of the lithosphere of the Black Sea depression]. Geofizicheskii zhurnal. 1987;8: 90 – 94. Russian.
  57. Kutas RI, Gordienko VV. Teplovoe pole Ukrainy [Thermal field of Ukraine]. Kiev: Naukova dumka; 1971. 140 p. Russian.
  58. Gordienko VV, Gordienko IV, Zavgorodnyaya OV, Usenko OV. Teplovoe pole territorii Ukrainy [Thermal field of the territory of Ukraine]. Kiev: Znanniya; 2002. 170 p. Russian.
  59. McClusky S, Balassanian S, Barka A, Demir C, Ergintav S, Georgiev I, et al. Global Positioning System constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. Journal of Geophysical Research. 2000;105(B3):5695–5719.
  60. McClusky S, Reilinger R, Mahmoud S, Ben Sari D, Tealeb A. GPS constraints on Africa (Nubia) and Arabia plate motions. Geophysical Journal International. 2003;155:126 –138. DOI: 10.1046/j.1365-246X.2003.02023.x.
  61. Mertoglu O, Simsek S, Basarir N. Geothermal Country Update Report of Turkey (2010 –2015). In: Proceedings World Geothermal Congress; 2015 April 19 –25; Melbourne, Australia. No. 01046.
  62. Simsek S. Main Geothermal fields of Western Anatolia, Jeotermal Çalışmalar artiyor. Istanbul: Yer Mühendisliği Blt; 2014.
  63. Yilmazer S. Bati Anadolu’nun Olası Jeotermal Potansiyelinin Belirlenmesi, Türkiye 11. Enerji Kongresi. Izmir: Tepekule Kongre Merkezi; 2009.
  64. TJD. Geothermal Energy Development Report. Ankara: Turkish Geothermal Association (TJD); 2013.
Опубликован
2019-11-25
Ключевые слова: Средиземное море, Кипр, Турция, Черное море, Украина, Геотермическое поле, тепловой поток, альпийский орогенез, Большой Кавказ
Как цитировать
Фар , С. М. (2019). Геотермическое поле зоны перехода между Анатолийской плитой и Восточно-Европейской платформой. Журнал Белорусского государственного университета. География. Геология, 2, 133-148. https://doi.org/10.33581/2521-6740-2019-2-133-148