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МОНОТОННАЯ  РАЗНОСТНАЯ  СХЕМА  
ПОВЫШЕННОГО  ПОРЯДКА  ТОЧНОСТИ  

ДЛЯ  ДВУМЕРНЫХ  УРАВНЕНИЙ  КОНВЕКЦИИ – ДИФФУЗИИ

В. К. ПОЛЕВИКОВ1)

1)Белорусский государственный университет, пр. Независимости, 4, 220030, г. Минск, Беларусь

Для двумерного стационарного уравнения конвекции – диффузии общего вида построена, теоретически обос-
нована и испытана на тестовой задаче устойчивая конечно-разностная схема, определенная на минимальном шаб-
лоне равномерной сетки, удовлетворяющая принципу максимума и обладающая четвертым порядком аппрок-
симации. Монотонность схемы контролируется двумя параметрами регуляризации, введенными в разностный 
оператор. Схема ориентирована на решение прикладных задач конвекции – диффузии в условиях развитого по-
граничного слоя, включая гравитационную и термомагнитную конвекцию, диффузию частиц в магнитной жид-
кости. Схема апробирована на известной задаче высокоинтенсивной гравитационной конвекции в горизонталь-
ном канале квадратного сечения при однородном нагреве сбоку. Проведено детальное сравнение с монотонной 
схемой Самарского второго порядка аппроксимации на последовательности квадратных сеток с числом разбие-
ний от 10 до 1000 на каждой стороне квадрата во всем диапазоне чисел Рэлея, соответствующих режиму лами-
нарной конвекции. Показано значительное преимущество схемы четвертого порядка в скорости сходимости при 
уменьшении шага сетки.

Ключевые слова: гравитационная конвекция; термомагнитная конвекция; диффузия частиц; уравнение кон-
векции – диффузии; разностная схема повышенного порядка аппроксимации; принцип максимума; параметры 
регуляризации.
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A  MONOTONE  FINITE-DIFFERENCE  
HIGH  ORDER  ACCURACY  SCHEME  

FOR  THE  2D  CONVECTION – DIFFUSION  EQUATIONS

V. K. POLEVIKOV  a

aBelarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus

A stable finite-difference scheme is constructed on a minimum stencil of a uniform mesh for a two-dimensional 
steady-state convection – diffusion equation of a general form; the scheme is theoretically studied and tested. It satisfies 
the maximum principle and has the fourth order of approximation. The scheme monotonicity is controlled by two regula-
rization parameters introduced into the difference operator. The scheme is focused on solving applied convection – diffu-
sion problems with a developed boundary layer, including gravitational convection, thermomagnetic convection, and dif-
fusion of particles in a magnetic fluid. The scheme is tested on the well-known problem of a high-intensive gravitational 
convection in a horizontal channel of a square cross-section with a uniform heating from the side. A detailed comparison 
is performed with the monotone Samarskii scheme of the second order approximation on the sequences of square meshes 
with the number of partitions from 10 to 1000 on each side of the square domain and over the entire range of the Rayleigh 
numbers, corresponding to the laminar convection mode. A significant advantage of the fourth order scheme in the con-
vergence rate is shown for the decreasing mesh step. 

Keywords: gravitational convection; thermomagnetic convection; diffusion of particles; convection – diffusion equa-
tion; finite-difference high order approximation scheme; maximum principle; parameters of regularization.
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Introduction
A solution of the applied convective heat transfer problems requires a transition to the region of high values 

of the Rayleigh numbers, which is characterized by a formation of boundary layers with large velocity and 
temperature gradients and small-scale convective motions. Similarly, the concentration of solid suspended 
particles in colloidal systems is redistributed because of their diffusion under the action of mass forces. For 
example, the ferromagnetic particles in a magnetic fluid diffuse in the direction of the magnetic-field gradient, 
creating zones near the boundary with large gradients of the particle concentration [1; 2]. This imposes strong 
requirements on stabilization and approximation properties of a difference scheme. The problem is particularly 
crucial in a three-dimensional case. An increase of the approximation order of the difference scheme is one of 
the way to solve the problem, although it is very difficult to fulfill contradictory requirements of stability and 
accuracy. 

A standard way to increase an approximation order of a difference scheme consists in a replacement of the 
high order derivatives in the main part of the approximation error by the lower order derivatives, which are 
suitable for a difference approximation on a minimum stencil, with the help of the original differential equation 
under assumption of sufficiently smooth functions of the equation. The stable schemes of fourth order approxi-

mation were constructed in this way in [3] for the two-dimensional Poisson equation with steps 
1
5

51

2

≤ ≤
h
h  

on a uniform mesh. In principle, it is not difficult to get the fourth order scheme for the convection – diffusion 
equation with variable coefficients, but a serious problem is ensuring the scheme monotonicity, i. e. fulfilling 
conditions of the maximum principle. The practice of numerical solution of convection and diffusion problems 
has shown that the property of monotonicity is an important factor of a scheme applicability in conditions of 
a developed boundary layer. 

A lot of current publications in computational mathematics are devoted to the development of numerical 
methods for convection – diffusion problems including two-dimensional ones (see, e. g., [4 –7]). To solve them, 
effective finite-difference and finite-element algorithms of the first or second order of accuracy are developed.

In this work, a monotone finite-difference scheme of the fourth order of approximation is constructed 
for the two-dimensional steady-state convection – diffusion equations in magnetic and non-magnetic fluids. 
The scheme is defined on a minimum nine-point stencil of a uniform mesh. Its monotonicity is provided by 
two regularization parameters introduced into the difference operator. The scheme is tested on the well-known 
problem of natural convection. 
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Equations of gravitational and thermomagnetic convection
One has to deal with the problem of controlling convective heat exchange in closed cavities in design 

of many technological devices (e. g., cooling systems for high-voltage electric cables, power transformers, 
electric generators and electric motors, nuclear reactors, etc.). There are two mechanisms for convection in 
a non-isothermal magnetic fluid located in gravitational and non-uniform magnetic fields: gravitational and 
magnetic one. The first mechanism is due to the dependence of density on temperature, the second one is 
due to the dependence of magnetization on temperature. The presence of the magnetic mechanism opens up 
real possibilities in controlling the structure and the intensity of convective process by applied magnetic field. 
This is especially important under zero-gravity conditions, when the gravitational mechanism is absent. 

The most common and investigated model of a thermomagnetic convection is a model for homogeneous, 
non-conducting and incompressible magnetic fluid without heat sources in the temperature equation and with 
the linear state equations [8–12]. The system of the steady-state convective equations for this model under the 
Boussinesq approximation for the density and the non-inductive approximation for the magnetic field takes 
the form 
 v v v g⋅ ∇( ) = ∇ + −∇ + + ∇( )n r r m2

0
0

1 p M H ,  (1)

  ∇ ⋅ v = 0, v ⋅ ∇T = a∇2T; (2)

r r b= − −( )  = ( ) − −( ) +
∂ ( )

∂
−( )0 0 0 0 0

0 0
01 T T M M T H K T T

M T H
H

H H, ,
,

,

r r b r
r

0 0
0

0 0 01= ( ) = −
∂ ( )

∂
= −

∂ ( )
∂

T
T
T

K
M T H

T
, ,

,
,

where v is the velocity vector of the convective motion; T is the absolute temperature of the fluid; p is the pres-
sure; H is the given value of the magnetic-field intensity; r is the fluid density; g is the gravitational accelera-
tion vector; M M T H= ( ),  is the magnetization of the fluid for the uniform distribution of magnetic particles; 
m0 = 4p ⋅ 10–7 H/m is the magnetic constant; T0 and H0 are the characteristic values of the temperature and the 
field intensity in the fluid bulk; n, a and b are the coefficients of the kinematic viscosity, the thermal conduc-
tivity and the volumetric thermal expansion of the fluid; K is the pyromagnetic coefficient. The last two terms 
in equation (1) define the gravitational and magnetic mechanisms of convection, respectively.

The idea of the non-inductive approximation consists in neglecting the influence of the fluid on the external 
magnetic field. The validity of the non-inductive approximation is shown in [8 –11] for a wide class of thermo-
magnetic convection problems. 

A Cartesian coordinate system x1, x2, x3 with the coordinate orts i, j, k is introduced. We set in equa-
tions (1), (2) that v v= ( )u u1 2 0, , , u u1 1 1 2= ( )x x, , u u2 2 1 2= ( )x x, , T T x x= ( )1 2, , r r= ( )x x1 2, , H H x x= ( )1 2, , 
g g= ( )g g1 2 0, ,  assuming that the convective problem is two-dimensional. Let us define a stream function 
y x x1 2,( ) and a vorticity w x x1 2,( ) associated with the velocity components by relations

 u y u y w
∂u
∂

∂u
∂1

2
2

1

2

1

1

2

= ∂
∂

= − ∂
∂

= −
x x x x

, , .  (3)

The continuity equation ∇ ⋅ v = 0 is automatically satisfied in these variables. We obtain the vector equation 
for the vorticity by applying the rotor operator to motion equation (1) and taking into account (3):

∇ × × ( )  = ∇ × ∇ × ( )  + ∇ × ( ) +






∇ × ∇v k k gw n w b
m
rT
K

T H0

0
.

Thus, equations (1), (2) in 2D case are transformed into a system of three scalar equations for the tempera-
ture T, the stream function y and the vorticity w:
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Let Ox2-axis be the vertical axis in the Cartesian coordinate system x1, x2, in which case g1 = 0, g2 = – g. Let 
T0 and T1 = T0 + DT define the given minimum and maximum values of the temperature on the walls. We intro-
duce dimensionless variables by choosing the characteristic size of the computational domain l as the length 
scale, the kinematic viscosity n as the scale for the stream function, the relation nl 2 as the scale for the vorticity, 
the relation nl as the scale for the velocity, the temperature difference DT as the scale for the temperature, and 
the value gl as the scale for the magnetic field intensity where g is a characteristic value of the field gradient. 
For convenience, we denote the dimensionless variables in the same way as the dimensional ones, and write 
system (4) in new variables (see [12]):
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D D

 (5)

where Pr is the Prandtl number; Gr is the Grashof number and Grm is the magnetic Grashof number. Equa-
tions (5) at Grm = 0 describe the process of natural (gravitational) convection.

Equation of particle diffusion in magnetic fluid
The magnetic fluid is a stable colloidal suspension of ferromagnetic nanoparticles in a nonmagnetic carrier 

liquid. A particle size is of the order of 10 nm = 10–8 m and they are in a Brownian motion in the carrier liquid. 
Due to the magnetic properties of particles, not only the Brownian motion but also the diffusion of particles un-
der the action of a non-uniform magnetic field (magnetophoresis) occurs in the magnetic fluid. The particles are 
distributed in the fluid bulk as a result of the competition between these two mechanisms. 

The steady-state diffusion equation for magnetic particles in a magnetic fluid in the presence of a convec-
tive motion takes the form [1; 2; 13]:
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where C is the volume particle concentration in the colloid; D is the diffusion coefficient;  x( ) is the Langevin 
function; m is the magnetic moment of a particle; k = 1.380 656 8 ⋅ 10–23 J/K is the Boltzmann constant; T is the 
particle temperature. 

The magnetization M is a function of the field intensity and the particles concentration, i. e. M M H C= ( ), , 
for isothermal magnetic fluids. Under the condition M H C H, ,( )  the Maxwell equations are of the form 
∇ × H = 0, ∇ ⋅ H = 0. In 2D case of Cartesian coordinates, it follows that 
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where H1, H2 are the components of the intensity vector H.
From the point of view of stability of the difference scheme, it is important to show that the coefficient q in 

equation (6) takes only positive values. We prove this taking into account (7). Consider first
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if HH ≠ 0.

Hence 

 ∇ = ∇ > ∇ ≠2 21 0 0x
x

x xif .  (9)

Taking into account (9), we obtain

q d
d

= ∇⋅ = ∇⋅ ( )∇( ) = ∇ ( ) ⋅ ∇ + ( )∇ = ( )( ) ∇ ≥a x x x x x x
x

x x
x

x   2 21 0.

Thus, we get that q ≥ 0 in concentration equation (6). Moreover, we have q ≡ 0 if and only if ∇H ≡ 0, i. е. 
when the magnetic field is uniform or absent.

Difference scheme of high order accuracy 
Let us consider a two-dimensional steady-state convection – diffusion equation

 a
u

a

k u q x u f x x x x G, , , ,( )

=

− ( ) = − ( ) = ( ) ∈∑
1

2

1 2  (10)
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( ) > 0,, ,q x( ) ≥ 0  u u x= ( ), is the unknown 

function satisfying equation (10); k, q, u1, u2, and  f are the given functions; x1, x2  are the space coordinates. 
All functions are assumed to be sufficiently smooth. The first term in the differential operator a

uk u,( )  is the 
diffusion term, the second one is the convective term. Note that each of equations (4) – (6) can be written in 
form (10).

Scheme construction. We construct the finite-difference scheme for equation (10) which has the fourth or-
der of approximation on the minimal nine-point stencil of a uniform mesh and satisfies the maximum principle. 
Note, that for q ≡ 0 the high order scheme is presented in [12].

We approximate the differential operators a
u ak, , , ,( ) = 1 2  by monotone difference operators Λa

a b,( ) of the form
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Here h1 and h2 are steps of a uniform mesh relative to variables x1 and x2, respectively. The standard non- 

index notations are used for the left and right difference derivatives and for the function values at the peripheral 
points of the stencil:

u u u
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where x x x= ( )1 2,  is the central node of the stencil.
The finite-difference operators Λa

a b u,( )  approximate the corresponding differential operators L uk
a

u,( )  with the 
second order. We note that operators (11) are analogous to the operators of the well-known monotone scheme 
of the second order described in the book of А. А. Samarskii [3], but we define the scheme coefficients aa, ba 
and æa in a different way.

Under assumptions (12) for the coefficients aa, the following asymptotic expansions at the center node of 
the mesh stencil are valid:
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Taking into account (13) we get the following relation 
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Following the conventional methodology of increasing the approximation order on the minimal stencil, 
we modify the operator Eu, by expressing L u L u qu fk k

1 2
, , ,u u( ) ( )= − + −  L u L u qu fk k

2 1
, ,u u( ) ( )= − + −  from equa-

tion (10) and substituting them into a term with the derivatives of the order 3– 4. We exclude in this way the 
derivatives of a high order, which are not suitable for difference approximation on the minimum stencil. 
In addition we introduce in the operator Eu some regularization parameters s s0 0 0= ( ) ≥x  and s s1 1= ( )x  by 
adding a term, which is identically zero on the solution of equation (10) u u x= ( ).

Due to these changes we get
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The introduced regularization parameters allow regulating the basic properties of the difference scheme 
providing the maximum-principle conditions and keeping the fourth order of approximation. 
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By simple manipulations, the operator Eu is reduced to the final form
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Thus, we get for the main part of the approximation error 
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where
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We choose the regularization parameter s1 in expression (15) from the conditions ka ≥ 1 and q ≥ 0 for 
s0 ≥ 0. A feasible value of the parameter s1 is determined from these inequalities: 
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Taking into account representation (15) for the main part of the approximation error, the scheme of high 
approximation order can be written in the following form 
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where y y x= ( ) is the solution of the difference problem; x x x= ( )1 2,  is the internal mesh node,
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Obviously, scheme (18) is defined on the minimum nine-point stencil.
Approximation order. Let us consider the approximation error for scheme (18):
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where u u x= ( ) is the solution of differential equation (10). Taking into account (12), (14) and (19), we have
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(20)

It follows that scheme (18) has the fourth order approximation for s0 1= ( )O . A concrete value of the para-
meter s0 is determined from the monotonicity conditions of the difference scheme. 

Stability and convergence. We investigate the stability of scheme (18) using the maximum principle [3]. 
For this purpose, scheme (18) is rewritten in the canonical form of the maximum principle:
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The coefficients Aa and Ba correspond to left, right, lower and upper peripheral nodes of the stencil relative 
to the central node. Their signs depend on the choice of the regularization parameter s0. The angular coeffi-
cients A12, B12, D12 и D21 are positive for any mesh steps regardless of the regularization parameters.

From the requirement that the coefficients Aa and Ba for a = 1, 2 are non-negative, we get the sufficient 
condition under which scheme (18) satisfies the maximum principle:
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Analysis of the coefficients A Ba a
∗ ∗,  shows that they can be positive on coarse meshes. In this case we have 

s0
2= ( )−O h  and n s= ( ) + ( ) = ( )0

4 4 2O h O h O h  according to (20), (22). The use of formula (22) may seem 
unreasonable due to the threat of a decrease in the order of approximation. However, it follows from formu-

las (21) that A B
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the condition
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51
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,  (23)

all coefficients A Ba a
∗ ∗,  should become negative for sufficiently small steps h1, h2, thereby providing s0 = 0 and 

therefore the approximation error n = ( )O h4 . For instance, for the test problem in the following section all 

coefficients A Ba a
∗ ∗,  become negative on meshes with the step h ≤ 1

53
 at the Grashof number Gr = 106 and on 

meshes with the step h ≤ 1
135

 at the Grashof number Gr = 107.

Thus, scheme (18) with coefficients (16), (17), (19), (22) subject to constraint (23) satisfies the maximum 
principle and has the fourth order of approximation. This means that scheme (18), supplemented by difference 
boundary conditions with the same approximation and stabilization properties, converges with the rate of 
O h4( ) as h → 0, i. e. is of fourth order of accuracy.

It should be noted that condition (23) relates the mesh steps but does not limit their values. It agrees with the 
convergence condition of the high order accuracy scheme for the two-dimensional Poisson equation [3] which 
corresponds to k ≡ 1, q ≡ 0, u1 ≡ 0, u2 ≡ 0.

Scheme testing
Scheme (18) has been tested on the well-known problem of a natural convection in a horizontal channel of 

a square cross-section with a uniform heating of the right vertical wall [12; 14; 15]. The problem geometry and 
the boundary conditions for the temperature are shown in fig. 1.
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The dimensionless mathematical model of the test problem is defined by equations (5) with respect to the 
temperature T x x1 2, ,( )  the stream function y x x1 2,( )  and the vorticity w x x1 2,( )  at Grm = 0 with the boundary 
temperature conditions: T x T x T x T x x0 0 1 1 0 12 2 1 1 1, , , , , , .( ) = ( ) = ( ) = ( ) =

The test computations were carried out for the Prandtl number Pr = 1 and the Grashof number in the range 
Gr ≤ 5 ⋅ 107 corresponding to the laminar mode of convection. A square mesh was used with a step h = h1 = h2 

and the number of partitions 10 1 1000≤ = ≤N
h

 on each side of the square domain. Note that the numerical 
solution for N = 1000 requires to solve a system with more than 3 million of nonlinear difference equations. 
An approximate condition of the fourth order was applied for the vorticity on the boundary [12; 16]. The rea-
lization of the difference scheme was carried out by a relaxation method described in [12; 17].

Figures 2 and 3 illustrate the temperature distribution (left) and the flow pattern (right) obtained with 

scheme (18) on the square mesh with the step h = 1
500

 for the Grashof numbers Gr = 106 and Gr = 5 ⋅ 107. 

The last of them is close to the critical value at which a turbulization of a laminar flow begins. The resulting 
thermoconvective structures are characterized by a formed boundary layer, in which the dominant velocity and 
temperature gradients are concentrated. Due to this, an extensive stagnation zone is formed in the central part 

of the domain with a constant vertical gradient of the temperature ∇ = ∂
∂

=T T
x2

0 656. .

Figure 4 and table below show the dependences of the maximum values of the stream function and vorticity on 
the number of the mesh partition, which are obtained by applying fourth order scheme (18) and the second order 
monotone Samarskii scheme [3] to the test problem. The upper numbers in the cells of table correspond to the 
second order scheme, the lower numbers – to the fourth order scheme. The comparison of the simulations results 
shows that the fourth order scheme has significant advantages in the rate of convergence as N → ∞. For exam-
ple, the solution, obtained by the fourth order scheme for N = 100, is not inferior in accuracy to the solution, 

Fig. 1. Illustration of the test problem statement

Fig. 2. The convection structure for Gr = 106: a – isotherms; b – streamlines
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obtained by the second order scheme for N = 300. It means a nine-fold decrease in size of the system of nonlinear 
difference equations as well as decrease in the number of iterations to solve this system with the same accuracy. 
However, the gain in time, expected due to the nine-fold decrease in the number of nodes as well as due to higher 
convergence rate of iteration process for larger mesh steps, is somewhat compensated by the time difference for 
the one iteration, which is a 4 –5 times higher for scheme (18) than for the scheme of the second order.

Maximum values of the stream function (ymax ) and vorticity w max  
depending on the mesh step (h) for Gr = 107

h
1
20

1
50

1
100

1
200

1
300

1
400

1
500

1
1000

ymax
63.505

–
42.241
39.840

39.874
38.946

39.072
38.734

38.879
38.701

38.800
38.689

38.760
38.685

38.704
38.683

w max
86 445.7

–
108 591.1
97 033.3

97 442.5
93 580.4

94 287.3
93 132.4

93 624.6
93 065.3

93 377.2
93 044.7

93 257.3
93 036.5

93 088.9
93 028.7

Fig. 3. The convection structure for Gr = 5 ⋅ 107: a – isotherms; b – streamlines

Fig. 4. The dependence of the maximum values of vorticity w max  (lines 1, 2) and  

stream function ymax (lines 3, 4) on the mesh number N
h

=
1  for Gr = 106 (a) and Gr = 107 (b):  

1, 3 – the monotone second-order scheme (Samarskii); 2, 4 – fourth order scheme (18)
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The test computations show that the constructed scheme of the higher approximation order becomes ef-
fective at the Rayleigh numbers Ra = GrPr corresponding to the developed laminar convection. Although the 
high order scheme significantly complicates a computational algorithm, it could have significant advantages 
over monotone schemes of the first and the second order [3; 12; 14; 18] for the Rayleigh numbers close to the 
beginning of a convective flow turbulization because it allows to get numerical solutions with a high accuracy 
on relatively coarse meshes. 

Conclusion
The finite-difference scheme of high order accuracy for the two-dimensional steady-state convection – 

diffusion equation is constructed. The scheme defined on the minimal stencil of a uniform mesh, has the 
fourth order of approximation and satisfies the maximum principle for any mesh steps satisfied the condition 

1
5

51

2

< <
h
h

.  The scheme is focused on solving a wide range of applied problems of convection – diffusion 

such as the gravitational convection, a thermomagnetic convection and a diffusion of particles in magnetic 
fluids. The high approximation and stabilization properties, compared with other methods, provide a higher 
accuracy with less calculation cost. It is especially important for modeling of convection and diffusion proces-
ses in developed boundary layers with the large gradients of velocity, temperature and particle concentration. 
The proposed scheme is tested on the well-known problem of the high-intensity gravitational convection in 
the horizontal channel of a square cross-section with the uniform heating from the side. A detailed comparison 
with the monotone Samarskii scheme of the second order [3] is performed on the sequences of square meshes 
with the number of partitions from 10 to 1000 on each side of the square domain in the whole range of the Ray-
leigh numbers Ra ≤ 5 ⋅ 107, corresponding to the laminar convection mode. A significant advantage of the fourth 
order scheme in the convergence rate is shown for the decreasing mesh step.
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