
76

Журнал Белорусского государственного университета. Математика. Информатика. 2020;3:73–79
Journal of the Belarusian State University. Mathematics and Informatics. 2020;3:73–79

Viterbi algorithm estimates two final states probabilities:
P N y Vt NN

; ,,
 =() =0

0

P N y Vt NN
; .,
 =() =1

1

Then the result specifying the time series class is calculated by the formula

	 Y P N y P N y= =() =() argmax ; , ; . 0 1 	 (1)

That is, more probable final state defines the chain class.

Dijkstra path probability calculation algorithm
Formula (1) produces the solution of the time series classification problem. Mathematically it is the path in

a directed acyclic graph or the most probable path on Markov chain.
Direct solution assumes enumeration of full set of all possible paths from an initial Markov chain’s state S

to all final states and estimation of the final state probability for each path. It is time consuming approach since
due to binary branching at each current chain node an algorithm complexity is exponential, it is exactly equal
to power of 2:

P N y O N
; .() = ()2

Even with progress in processor industry such algorithms are useless. Nevertheless, the optimal path in
a given acyclic graph may be found by modified Dijkstra algorithm [5] that has polynomial time complexity.

Modified Dijkstra algorithm applied to Markov chain is described in following paragraphs. Let an orien
ted graph G V E,() presents a Markov chain model. Possible states and edges specify next node transitions.
The directed graph under consideration has single initial node and two terminal nodes, that indicate final states
with the probabilities pointing to a decision of time series classification. An edge weight here means transition
probability T v v1 2() from an edge v1 to edge v2. The weight of initial node of Markov chain path is set to 1

2
,

an internal node v2 weight is defined as sum of products of entering node v1 weight E v1() multiplied by transi-
tional edge weight T v v1 2() (see PathProb (*) algorithm). The following algorithm specifies weight procedure
that calculates final nodes probabilities.

PathProb G v vs e, ,()
1) J ← → (){ }v P vs e s

2) Q ← { }vs
3) foreach v in G vs\
4) 	 do J v[] = 0
5) do while Q ≠ ∅
6) 	 u Pop q← ()
7) 	 foreach v in G u[]
8) 	 p u T u v E u← [] ⋅ () ⋅ ()J
9) 	 J Jv p v[] = []()Max ,

10) 	 if v ∉ Q
11) 	 do Q Q← ()Push

12) return J ve[]

Fig. 2. Extended Markov chain with two extra equiprobable states

