О НЕКОТОРЫХ СВОЙСТВАХ РЕШЕТКИ ТОТАЛЬНО
σ-ЛОКАЛЬНЫХ ФОРМАЦИЙ КОНЕЧНЫХ ГРУПП

И. Н. САФОНОВА 1), В. Г. САФОНОВ 1)

1) Белорусский государственный университет, пр. Независимости, 4, 220030, г. Минск, Беларусь

Все рассматриваемые в статье группы являются конечными. Пусть $\sigma = \{\sigma_i | i \in I\}$ — некоторое разбиение множества всех простых чисел \mathbb{P}. Если n — целое число, G — группа и \mathfrak{F} — класс групп, то $\sigma(n) = \{\sigma_i | \pi(n) \neq \emptyset\}$,

$\sigma(G) = \sigma(|G|)$ и $\sigma(\mathfrak{F}) = \cup_{G \in \mathfrak{F}} \sigma(G)$. Функция $f : \sigma \rightarrow \{формации групп\}$ называется формационной σ-функцией. Для всякой формационной σ-функции f класс $LF_\sigma(f)$ определяется следующим образом:

$$LF_\sigma(f) = \{G | G = 1 \text{ или } G \neq 1 \text{ и } G/O_{\sigma_i} \in f(\sigma_i) \text{ для всех } \sigma_i \in \sigma(G)\}.$$

Если для некоторой формационной σ-функции f имеет место $\mathfrak{F} = LF_\sigma(f)$, то класс \mathfrak{F} называют σ-локальным, а формационную σ-функцию f — σ-локальным определением \mathfrak{F}. Всякую формацию считают 0-кратно σ-локальной.

АВТОРЫ:

Инна Николаевна Сафонова – кандидат физико-математических наук, доцент; заместитель декана по научной работе факультета прикладной математики и информатики.

Василий Григорьевич Сафонов — доктор физико-математических наук, профессор; проректор по научной работе, профессор кафедры высшей алгебры и защиты информации механико-математического факультета.

FOR CITATION:

https://doi.org/10.33581/2520-6508-2020-3-6-16
ON SOME PROPERTIES OF THE LATTICE OF TOTALLY σ-LOCAL FORMATIONS OF FINITE GROUPS

I. N. SAFONOVA, V. G. SAFONOVA

*Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus

Throughout this paper, all groups are finite. Let $\sigma = \{\sigma_i | i \in I\}$ be some partition of the set of all primes \mathbb{P}. If n is an integer, G is a group, and F is a class of groups, then $\sigma(n) = \{\sigma_i | \pi(n)$ $\neq \emptyset\}$, $\sigma(G) = \sigma(\{G\})$, and $\sigma(F) = \bigcup_{G \in F} \sigma(G)$. A function f of the form $f: \sigma \rightarrow \{\{\text{formations of groups}\}$ is called a formation σ-function. For any formation σ-function f, the class $LF_n(f)$ is defined as follows:

$$LF_n(f) = \{G \in 1$ or $G \neq 1$ and $G/O_{\sigma_n}(G) \in f(\sigma_i)$ for all $\sigma_i \in \sigma(G)\}$$

If for some formation σ-function f, we have $F = LF_n(f)$, then the class F is called σ-local and f is called a σ-local definition of F. Every formation is called σ-multiply σ-local. For $n \geq 0$, a formation F is called n-multiply σ-local provided either $F = \{1\}$ is the class of all identity groups or $F = LF_n(f)$, where $f(\sigma_i)$ is $(n-1)$-multiply σ-local for all $\sigma_i \in \sigma(F)$. A formation is called totally σ-local if it is n-multiply σ-local for all non-negative integer n. The aim of this paper is to study properties of the lattice of totally σ-local formations. In particular, we prove that the lattice of all totally σ-local formations is algebraic and distributive.

Keywords: finite group; formation σ-function; formation of finite groups; totally σ-local formation; lattice of formations.

Introduction

All groups under consideration are finite. The notations and definitions we use are borrowed from [1–3]. The basic properties and various applications of σ-local formations can be found in the articles [4–10].

A. Skiba presented [4] the concept of generalised locality or σ-locality of formations as a tool for studying the σ-properties of groups, i.e. properties depending on some partition σ of the set of all primes. In [4], using σ-local formations, A. Skiba studied (weakly) S^0_n-closed and (weakly) M^σ_n-closed classes of finite groups. Some general properties of σ-local formations as well as their applications for studying Σ^σ_n-closed classes of meta-σ-nilpotent groups [5] and (weakly) Γ^σ_n-closed classes of finite groups [6], were obtained. Ch. Zhang and A. Skiba. Applications of the theory of σ-local formations were obtained by A. Skiba [7] for a lattice characterization of σ-soluble $PSO\Gamma$-groups, and also for constructing new sublattices of the lattice of all subgroups of the group generated by formation Fitting sets [10].

In [8; 9] Ch. Zhang, V. Safonov and A. Skiba described some general properties and examples of n-multiply σ-local formations and also consider one application of such formations in the theory of finite factorisable groups. In particular, in their paper [9] it was proved that the lattice of all n-multiply σ-local formations of finite groups is algebraic and modular.

A. Tsarev [11] proved that every law of the lattice of all formations is fulfilled in the lattice of all n-multiply σ-local formations of finite groups and that the lattice of all n-multiply σ-local formations of finite groups is modular but is not distributive for any non-negative integer n.

At the same time, the question on the algebraiciteness, modularity or distributivity of the lattice of all totally σ-local formations was an open problem. Note that the question on the distributivity or modularity of the lattice of all totally σ-local formations of finite groups was discussed by A. Tsarev in [11, question 3.2].
In this paper we will prove that the set \(l^0 \) of all totally \(\sigma \)-local formations of finite groups is a complete algebraic and distributive lattice. In the work, we study also some general properties of totally \(\sigma \)-local formations of finite groups.

We also note that the concept of generalised locality of formations was developed in papers [12; 13], where the main properties and some examples of Baer-\(\sigma \)-local formations were considered.

Definitions and notations

The basic definitions, notations and general properties of \(\sigma \)-local formations were discussed in the papers [4–10]. Recall some of the basic concepts of the theory of \(\sigma \)-local formations.

Let \(\sigma = \{ \sigma_i \mid i \in I \} \) be some partition of the set of all primes \(\mathbb{P} \). If \(n \) is an integer, \(G \) is a group, and \(\mathfrak{S} \) is a class of groups, then \(\sigma(n) = \{ \sigma_i \mid \sigma_i \cap n \neq \emptyset \} \), \(\sigma(G) = \sigma(\{G\}) \), and \(\sigma(\mathfrak{S}) = \bigcup_{G \in \mathfrak{S}} \sigma(G) \).

A group \(G \) is called [14]: \(\sigma \)-primary if \(G \) is a \(\sigma_i \)-group for some \(i \); \(\sigma \)-nilpotent if every chief factor \(H/K \) of \(G \) is \(\sigma \)-central in \(G \), that is, the semidirect product \((H/K) \rtimes (G/C_G(H/K)) \) is \(\sigma \)-primary; \(\sigma \)-soluble if \(G = 1 \) or \(G \neq 1 \) and every chief factor of \(G \) is \(\sigma \)-primary.

We write \(\mathfrak{S}_n \) to denote the class of all \(\sigma \)-soluble groups and \(\mathfrak{N}_n \) to denote the class of all \(\sigma \)-nilpotent groups.

A class of groups \(\mathfrak{S} \) is called a formation if: (1) \(G/N \in \mathfrak{S} \) whenever \(G \in \mathfrak{S} \), and (2) \(G/N \cap R \in \mathfrak{S} \) whenever \(G/N \in \mathfrak{S} \) and \(G/R \in \mathfrak{S} \).

Any function \(f \) of the form \(f : \sigma \rightarrow \{ \text{formations of groups} \} \) is called a formation \(\sigma \)-function. For any formation \(\sigma \)-function \(f \) the class \(LF_{\sigma}(f) \) is defined as follows:

\[
LF_{\sigma}(f) = \left\{ G \mid G \text{ is a group} \right\} = \left\{ G,N \mid G/N \in \mathfrak{S} \right\}.
\]

If for some formation \(\sigma \)-function \(f \) we have \(\mathfrak{S} = LF_{\sigma}(f) \), then the class \(\mathfrak{S} \) is called \(\sigma \)-local and \(f \) is called \(\sigma \)-local definition of \(\mathfrak{S} \). We write \(F_{\sigma}(G) \) instead of \(O_{\sigma,\alpha}(G) = \sigma_{\sigma,\alpha}(G) \).

Every formation is called 0-multiply \(\sigma \)-local. For \(n > 0 \), the formation \(\mathfrak{S} \) is called \(n \)-multiply \(\sigma \)-local provided either \(\mathfrak{S} = \{1\} \) is the class of all identity groups or \(\mathfrak{S} = LF_{\sigma}(f) \), where \(f(\sigma) = (n-1) \)-multiply \(\sigma \)-local for all \(\sigma \in \mathfrak{S} \). A formation is called totally \(\sigma \)-local if it is \(n \)-multiply \(\sigma \)-local for all non-negative integer \(n \).

The symbol \(l^0 \) denotes the set of all totally \(\sigma \)-local formations. Formations from \(l^0 \) are called \(l^0 \)-formations.

For any collection of groups \(\mathfrak{X} \), \(l^0 \)-form \(x \) denotes the totally \(\sigma \)-local formation generated by \(\mathfrak{X} \), i.e. \(l^0 \)-form \(x \) is the intersection of all totally \(\sigma \)-local formations containing the collection of groups \(\mathfrak{X} \). If \(\mathfrak{X} = \{ G \} \) for some group \(G \), then \(\mathfrak{S} = l^0 \)-form \(G \) is called a one-generated totally \(\sigma \)-local formation. For any two classes of groups \(\mathfrak{M} \) and \(\mathfrak{J} \) we put \(\mathfrak{M} \triangledown \mathfrak{J} = l^0 \)-form \((\mathfrak{M} \cup \mathfrak{J}) \).

If \(f \) is a formation \(\sigma \)-function, then the symbol \(\text{Supp}(f) \) denotes the support of \(f \), that is, the set of all \(\sigma_i \) such that \(f(\sigma_i) \neq \emptyset \). A formation \(\sigma \)-function \(f \) is called \(l^0 \)-valued if \(f(\sigma_i) \) is a totally \(\sigma \)-local formation for every \(\sigma_i \in \text{Supp}(f) \); integrated if \(f(\sigma_i) \subseteq LF_{\sigma}(f) \) for all \(i \).

If \(m \) and \(h \) are \(l^0 \)-valued formation \(\sigma \)-functions, then \(m \triangledown h \) is a formation \(\sigma \)-function such that \(m \triangledown h(\sigma_i) = m(\sigma_i) \triangledown h(\sigma_i) \) for all \(i \); we use also \(m \cap h \) to denote the formation \(\sigma \)-function such that \(m \cap h(\sigma_i) = m(\sigma_i) \cap h(\sigma_i) \) for all \(i \).

Every sequence \(\sigma_1, \sigma_2, \ldots, \sigma_n \) from \(\sigma \) is called a \(\sigma \)-sequence. For any \(\sigma \)-sequence \(\sigma_1, \sigma_2, \ldots, \sigma_n \), and for any collection of groups \(\mathfrak{X} \), the class of groups \(\mathfrak{X}(\sigma_1, \sigma_2, \ldots, \sigma_n) \) is defined recursively in the following way:

(1) \(\mathfrak{X}(\sigma_i) = \left\{ G/F_{\alpha_i}(G) \mid G \in \mathfrak{X} \right\} \); (2) \(\mathfrak{X}(\sigma_1, \sigma_2, \ldots, \sigma_{n-1}) = \left\{ G/F_{\alpha_1}(G) \mid G \in \mathfrak{X}(\sigma_1, \sigma_2, \ldots, \sigma_{n-1}) \right\} \).

For any \(l^0 \)-formation \(\mathfrak{S} \), we set \(\mathfrak{S}_{l^0}(\sigma_i) = \mathfrak{S}_{l^0} \)-form \((\mathfrak{S}(\sigma_i)) \), if \(\sigma_i \in \sigma(\mathfrak{S}) \), and \(\mathfrak{S}_{l^0}(\sigma_i) = \emptyset \), if \(\sigma_i \not\in \sigma(\mathfrak{S}) \).

If \(\mathfrak{S} \in l^0 \), then the symbol \(\mathfrak{S}_{l^0} \) denotes the smallest \(l^0 \)-valued formation of \(\mathfrak{S} \), i.e. \(\mathfrak{S}_{l^0} = \bigcap_{\sigma \in \mathfrak{S}} \mathfrak{S}_\sigma \), where \(\{ f_j \mid j \in J \} \) is the set of all \(l^0 \)-valued definitions of \(\mathfrak{S} \).

We say that a \(\sigma \)-sequence \(\sigma_1, \sigma_2, \ldots, \sigma_n \) is suitable for \(\mathfrak{S} \) (or \(\mathfrak{S} \)-suitable), if \(\sigma_i \in \sigma(\mathfrak{S}) \) and for any \(j \in \{2, \ldots, n\} \) we have \(\sigma_j \in \sigma(\mathfrak{S}(\sigma_1, \sigma_2, \ldots, \sigma_{j-1})) \).
Let $\alpha_1, \alpha_2, \ldots, \alpha_n$ be an \mathfrak{F}-suitable σ-sequence. Then the l^σ_∞-valued σ-function $\mathfrak{F}^\sigma_\infty \alpha_1 \ldots \alpha_n$ is defined recursively as follows: (1) $\mathfrak{F}^\sigma_\infty \alpha_1 = (\mathfrak{F}^\sigma_\infty (\alpha_1))^\sigma$; (2) $\mathfrak{F}^\sigma_\infty \alpha_1 \ldots \alpha_n = (\mathfrak{F}^\sigma_\infty \alpha_1 \ldots \alpha_{n-1} (\alpha_n))^\sigma$.

For any group G and a non-empty formation \mathfrak{F} by $G^\mathfrak{F}$ denote the \mathfrak{F}-residual of G, i.e. the intersection of all subgroups N of G such that $G/N \in \mathfrak{F}$. If \mathfrak{F} and \mathfrak{G} are formations, then $\mathfrak{F} \mathfrak{G} = \{G \mid G^\mathfrak{G} \in \mathfrak{F}\}$ is called the Gaschütz product of formations \mathfrak{F} and \mathfrak{G}.

Auxiliary results

We need some well-known results, which we present in the form of the following lemmas.

Lemma 1 [9]. If the class of groups \mathfrak{F}_j is an n-multiply σ-local formation for all $j \in J$, then the class $\cap_{j \in J} \mathfrak{F}_j$ is also n-multiply σ-local formation.

Recall that if f is a formation σ-function, then the symbol $\text{Supp}(f)$ denotes the support of f, that is, the set of all σ_i such that $f(\sigma_i) \neq \emptyset$.

Lemma 2 [5; 9]. Let f and h be formation σ-functions and let $\Pi = \text{Supp}(f)$. Suppose that $\mathfrak{F} = LF(\sigma)(f) = LF(\sigma)(h)$.

1. $\Pi = \sigma(\mathfrak{F})$.
2. $\mathfrak{F} = \left(\cap_{\sigma_i \in \Pi} \mathfrak{G}_{\sigma_i} f(\sigma_i) \right) \cap \mathfrak{G}_\Pi$. Hence \mathfrak{F} is a saturated formation.
3. If every group in \mathfrak{F} is σ-soluble, then $\mathfrak{F} = \left(\cap_{\sigma_i \in \Pi} \mathfrak{G}_{\sigma_i} f(\sigma_i) \right) \cap \mathfrak{G}_\Pi$.
4. If $\sigma_i \in \Pi$, then $\mathfrak{G}_{\sigma_i} (f(\sigma_i) \cap \mathfrak{F}) = \mathfrak{G}_{\sigma_i} (h(h) \cap \mathfrak{F}) \subseteq \mathfrak{F}$.
5. $\mathfrak{F} = LF(\sigma)(F)$, where F is the unique formation σ-function such that $F(\sigma_i) = \mathfrak{G}_{\sigma_i} F(\sigma_i) \subseteq \mathfrak{F}$ for all $\sigma_i \in \Pi$ and $F(\sigma_i) = \emptyset$ for all $\sigma_i \in \Pi'$. Moreover, $F(\sigma_i) = \mathfrak{G}_{\sigma_i} (f(\sigma_i) \cap \mathfrak{F})$ for all i.

Lemma 3 [9]. If \mathfrak{F} is a non-empty formation and $f(\sigma_i) = \mathfrak{F}$ for all i, then $LF(\sigma)(f) = \mathfrak{G}_{\sigma_i} \mathfrak{F}$.

Lemma 4 [9]. If $\mathfrak{F} = \cap_{j \in J} \mathfrak{F}_j$ and $\mathfrak{G}_j = LF(\sigma)(f_j)$ for all $j \in J$, then $\mathfrak{F} = LF(\sigma)(f)$, where $f(\sigma_i) = \cap_{j \in J} f_j(\sigma_i)$ for all $\sigma_i \in \sigma(\mathfrak{F}) = \cap_{j \in J} \sigma(\mathfrak{F}_j)$ and $f(\sigma_i) = \emptyset$ for all $\sigma_i \in \sigma(\mathfrak{F})$. Moreover, if f_j is integrated for all $j \in J$, then f is also integrated.

Lemma 5 [2, p. 41]. Let A be a monolithic group and let $\text{Soc}(A)$ be a non-abelian group. Let \mathfrak{M} be some homomorph. If $A \leq l_n \mathfrak{M}$, then $A \leq \mathfrak{M}$.

Lemma 6 [2, p. 152]. Let G be a group such that $O_p(G) = 1$, let $N_1 \times \ldots \times N_k = \text{Soc}(G)$, where N_i is a minimal normal subgroup of G (k ≥ 2). Let M_i denote a maximal normal subgroup of G, which contains $N_i \times \ldots \times N_i \cap N_i \times \ldots \times N_i$ and does not contain N_i, $i \in \{1, \ldots, k\}$. Then
(a) the group G/M_i is a monolithic and $\text{Soc}(G/M_i) = N_i M_i / N_i$ for any $i \in \{1, \ldots, k\}$;
(b) $N_i M_i / N_i$ is G-isomorphic to N_i;
(c) $O_p(G/M_i) = 1$;
(d) $M_i \cap \ldots \cap M_k = 1$.

The main results

Let \mathfrak{X} be some collection of groups, $\sigma_i \in \sigma(\mathfrak{X})$, then the class of groups $\mathfrak{X}(\sigma_i)$ is defined as follows:

$$\mathfrak{X}(\sigma_i) = \left\{G \mid \mathfrak{F}_{\sigma_i}(G) \cap \mathfrak{G} \subseteq \mathfrak{F} \right\}$$

Lemma 7. Let $\mathfrak{F} = l^\sigma_\infty \text{form}(\mathfrak{X}) = LF(\sigma)(f)$ be the totally σ-local formation generated by \mathfrak{X}, where f is an $\mathfrak{F}_{\sigma_i}(f)$-valued definition of \mathfrak{F}, and let $\Pi = \sigma(\mathfrak{X})$. Let h be the formation σ-function such that $h(\sigma_i) = l^\sigma_\infty \text{form}(\mathfrak{X}(\sigma_i))$ for all $\sigma_i \in \Pi$ and $h(\sigma_i) = \emptyset$ for all $\sigma_i \in \Pi'$. Then

1. $\Pi = \sigma(\mathfrak{F})$;
2. h is an l^σ_∞-valued definition of \mathfrak{F};
3. $h(\sigma_i) \subseteq f(\sigma_i) \cap \mathfrak{F}$ and for all i.

Proof. Since $\mathfrak{X} \subseteq \mathfrak{F}$ we have $\Pi \subseteq \sigma(\mathfrak{F})$. In view of [9, remark 2.4 (ii)], the class of all Π-groups \mathfrak{G}_{Π} is a totally σ-local formation. Hence $\mathfrak{F} \subseteq \mathfrak{G}_{\Pi}$. Therefore, $\sigma(\mathfrak{F}) \subseteq \Pi$ and statement (1) holds.
Let $\mathfrak{H} = LF_\sigma(h)$. Then it is clear that $\mathfrak{X} \subseteq \mathfrak{H}$. On the other hand, since h is an l_ω^σ-valued, which implies that \mathfrak{H} is a totally σ-local formation. Therefore, $\mathfrak{X} \subseteq \mathfrak{H}$.

Since $\mathfrak{X}(\sigma_i) \subseteq f(\sigma_j)$ and the formation $f(\sigma_i)$ is totally σ-local we have $h(\sigma_i) \subseteq f(\sigma_j)$ for all $\sigma_i \in \sigma$. Therefore, $\mathfrak{H} \subseteq \mathfrak{X}$. Hence \mathfrak{H} and \mathfrak{X} so statements (2) and (3) hold. The lemma is proved.

Lemma 8. Let $\mathfrak{L}_j = LF_\sigma(f_j)$ be a totally σ-local formation, where f_j is the smallest l_ω^σ-valued definition of $\mathfrak{L}_j, j \in J$. Then $\nu^\alpha(\mathfrak{L}_j, f_j)$ is the smallest l_ω^σ-valued definition of $\mathfrak{L} = \mathfrak{L}_j, j \in J$.

Proof. Let \mathfrak{L} be the smallest l_ω^σ-valued definition of $\mathfrak{L}_j, f = \nu^\alpha(\mathfrak{L}_j, f_j)$, and $\Pi = \sigma(\cup_{j \in J} \mathfrak{L}_j) = \cup_{j \in J} \sigma(\mathfrak{L}_j)$. Then $\sigma(\mathfrak{L}) = \Pi$ by lemma 7 (1). Now we show that $l(\sigma_j) = f(\sigma_j)$ for all $\sigma_j \in \sigma$.

Let $\sigma_j \in \sigma(\mathfrak{L})$. Then for any $j \in J$ we have $f(\sigma_j) = \mathfrak{L}_j$. Hence $f(\sigma_j) = \mathfrak{L}$. Similary, in view of lemma 7, $l(\sigma_j) = \mathfrak{L}$. Therefore, $l(\sigma_j) = f(\sigma_j)$.

Now suppose that $\sigma_j \in \Pi$. Then there exists $j_i \in J$ such that $\sigma_j \in \sigma(\mathfrak{L}_{j_i})$. From lemma 7 it follows that $f_{j_i}(\sigma_j) \neq \emptyset$ and

$$l(\sigma_j) = l_{j_i}^\sigma \text{ form } (G/F_{j_i}(\sigma_i) \big| G \in \cup_{j \in J} \mathfrak{L}_j) = l_{j_i}^\sigma \text{ form } (\cup_{j \in J} l_{j_i}^\sigma \text{ form } (G/F_{\sigma_i}(\sigma_i) \big| G \in \mathfrak{L}_j) =$$

$$= l_{j_i}^\sigma \text{ form } (\cup_{j \in J} f_{\sigma_i}(\sigma_j) \big| j \in J) = (\nu^\alpha(\mathfrak{L}_j, f_j)) (\sigma_j) = f(\sigma_j).$$

Therefore, $l(\sigma_j) = f(\sigma_j)$ for all $\sigma_j \in \Pi$. Thus, $l = f$. The lemma is proved.

Lemma 9. Let $\mathfrak{H}_j = LF_\sigma(h_j)$, where h_j is integrated l_ω^σ-valued definition of $\mathfrak{H}_j, j = 1, 2$. Then $\mathfrak{H} = \mathfrak{H}_1 \cup^\sigma \mathfrak{H}_2 = LF_\sigma(h)$, where $h = h_1 \cup^\sigma h_2$ is integrated.

Proof. Let l_j be the smallest l_ω^σ-valued definition of \mathfrak{H}_j and let H_j be the canonical σ-local definition of $\mathfrak{H}_j, j = 1, 2$. In view of lemmas 2 (5) and 7 we have $l_j(\sigma) \subseteq h_j(\sigma) \subseteq H_j(\sigma)$ for all σ_j. Besides, lemmas 2 (5) and 7 imply also that

$$l(\sigma_j) = l_{\sigma_j}^\sigma \text{ form } (h_{\sigma_j} \cup \mathfrak{H}_2(\sigma_j)) \subseteq l_{\sigma_j}^\sigma \text{ form } (\mathfrak{H}_1(\sigma_j) \cup \mathfrak{H}_2(\sigma_j)) = l_{\sigma_j}^\sigma \text{ form } (l_{\sigma_j}^\sigma \sigma_j \cup l_{\sigma_j}^\sigma (\sigma_j)) \subseteq$$

$$\subseteq l_{\sigma_j}^\sigma \text{ form } (h(\sigma_j) \cup h(\sigma_j)) = h(\sigma_j) \subseteq \sigma(\mathfrak{H}_j) = H(\sigma_j).$$

Hence $l(\sigma_j) \subseteq h(\sigma_j) \subseteq H(\sigma_j)$ for all σ_j. Therefore, $\mathfrak{H} = LF_\sigma(h)$. The lemma is proved.

Lemma 10. Let \mathfrak{K} be a non-empty formation. Then the formation $\sigma(\mathfrak{K})$ is totally σ-local.

Proof. Let $\mathfrak{M} = \sigma(\mathfrak{K})$. By lemma 3 the formation $\mathfrak{H} = \sigma(\mathfrak{K})$ is σ-local and $\mathfrak{H} = LF_\sigma(h)$, where $h(\sigma_i) = \mathfrak{M}$ for all $\sigma_i \in \sigma$. Since the Gaschütz product of formations is associative,

$$\mathfrak{H} = \sigma(\mathfrak{K}) \subseteq \sigma(\sigma(\mathfrak{K})) = \sigma(\mathfrak{K}) = \mathfrak{K}.$$

Therefore \mathfrak{M} is a σ-local formation. On the other hand, $h(\sigma_i) = \mathfrak{M}$ for all $\sigma_i \in \sigma$. Hence $\mathfrak{M} = \sigma(\mathfrak{K}) = LF_\sigma(h)$ is 2-multiply σ-local. Therefore, the formation \mathfrak{M} is n-multiply σ-local for any positive integer n. Consequently \mathfrak{M} is totally σ-local. The lemma is proved.

Lemma 11. Let $\mathfrak{K} = LF_\sigma(f)$ and $G/O_{\sigma_i}(G) \in f(\sigma_i) \cap \mathfrak{K}$ for some $\sigma_i \in \sigma(G)$, then $G \in \mathfrak{K}$.

Proof. Since $G/O_{\sigma_i}(G) \in f(\sigma_i) \cap \mathfrak{K}$, we have $f(\sigma_i) \neq \emptyset$. But then $\sigma_i \in \sigma(\mathfrak{K})$ by lemma 2 (1). Moreover, $G/O_{\sigma_i}(G) \in f(\sigma_i) \cap \mathfrak{K}$ imply also that $G/O_{\sigma_i}(G) \subseteq O_{\sigma_i}(G) \in \sigma(\mathfrak{K})$. Hence $G \in \sigma(\mathfrak{K}) = f(\sigma_i) \cap \mathfrak{K}$. In view of lemma 2 (4) we have $G \in \sigma(\mathfrak{K}) = f(\sigma_i) \cap \mathfrak{K}$, where $\sigma(\mathfrak{K})$ is totally σ-local. The lemma is proved.

Lemma 12. Let $\mathfrak{L}_j = LF_\sigma(f_j)$, where f_j is an integrated l_ω^σ-valued definition of $\mathfrak{L}_j, j \in J$. If $\mathfrak{L} = \cap_{j \in J} \mathfrak{L}_j$ is a totally σ-local formation for all positive integer n. Then in view of lemma 1, $\cap_{j \in J} \mathfrak{L}_j$ is an n-multiply σ-local formation for all positive integer n. Therefore $\cap_{j \in J} \mathfrak{L}_j$ is totally σ-local. Besides, since $f = \cap_{j \in J} f_j$ and f_j is an l_ω^σ-valued definition of \mathfrak{L}_j, we see that f is an l_ω^σ-valued σ-function.
Let $\mathfrak{F} = LF_\sigma(f)$. Now we show that $\mathfrak{F} = \mathfrak{F}_1$. First assume that $G \in \mathfrak{F}$ and let $\sigma_i \in \sigma(G)$. Then $G/F_{\{\sigma_i\}}(G) \in F_j(\sigma_j)$, hence $G/F_{\{\sigma_i\}}(G) \in f_j(\sigma_j)$ for all $j \in J$. Therefore for all $\sigma_i \in \sigma(G)$ we obtain $G/F_{\{\sigma_i\}}(G) \in f_j(\sigma_j)$, but then $G \in \mathfrak{F}_j$ for all $j \in J$ and consequently, $G \in \cap_{j \in J} \mathfrak{F}_j = \mathfrak{F}$. Thus $\mathfrak{F} \subseteq \mathfrak{F}_1$.

Now suppose that $G \in \mathfrak{F} = \cap_{j \in J} \mathfrak{F}_j$ and let $\sigma_i \in \sigma(G)$. Then $G \in \mathfrak{F}_j$ for all $j \in J$. Therefore, $G/F_{\{\sigma_i\}}(G) \in f_j(\sigma_j)$ for all $j \in J$. Hence $G/F_{\{\sigma_i\}}(G) \in \cap_{j \in J} f_j(\sigma_j) = f(\sigma_j)$ for all $\sigma_i \in \sigma(G)$. Consequently, $G \in \mathfrak{F}_1$ and $\mathfrak{F} \subseteq \mathfrak{F}_1$.

Finally, since f_j is integrated for all $j \in J$, we have $f(\sigma) = \cap_{j \in J} f_j(\sigma) \subseteq f_j(\sigma_j) \subseteq \mathfrak{F}_j$ for all $\sigma_i \in \sigma$. Hence $f(\sigma) \subseteq \cap_{j \in J} \mathfrak{F}_j = \mathfrak{F}$ and f is an integrated l_{σ}-valued definition of \mathfrak{F}. The lemma is proved.

Algebraicity of the lattice of all totally σ-local formations

Theorem 1. The set l_{σ} of all totally σ-local formations is a complete algebraic lattice in which, for any set $\{\mathfrak{F}_j \mid j \in J\} \subseteq l_{\sigma}$, the intersection $\cap_{j \in J} \mathfrak{F}_j$ is the greatest lower bound and l_{σ} form $(\cup_{j \in J} \mathfrak{F}_j)$ is the smallest upper bound of $\{\mathfrak{F}_j \mid j \in J\}$ in l_{σ}.

Proof. It is clear that the set l_{σ} is partially ordered with respect to set inclusion. Since by [9, remark 2.4 (ii)], the formation of all groups \mathfrak{F} is totally σ-local we have \mathfrak{F} is the largest element in l_{σ}. It follows from lemma 12 that $\cap_{j \in J} \mathfrak{F}_j \in l_{\sigma}$. Therefore, $\cap_{j \in J} \mathfrak{F}_j$ is the greatest lower bound of $\{\mathfrak{F}_j \mid j \in J\}$ in l_{σ}, which implies that l_{σ} form $(\cup_{j \in J} \mathfrak{F}_j)$ is the smallest upper bound of $\{\mathfrak{F}_j \mid j \in J\}$ in l_{σ}.

Now we show that for every group A the one-generated totally σ-local formation l_{σ} form (A) is a compact element in l_{σ}. Let A be a counterexample minimal order and

$$\mathfrak{F} = l_{\sigma}$ form $(A) \subseteq l_{\sigma}$ form $(\cup_{j \in J} \mathfrak{F}_j)$, $$

where \mathfrak{F}_j is a totally σ-local formation, $j \in J$. If A is a σ-group for some i, then $\mathfrak{F} = \mathfrak{F}_{\sigma_i}$. Since $\mathfrak{F} \subseteq l_{\sigma}$ form $(\cup_{j \in J} \mathfrak{F}_j)$, we have $\sigma_i(\mathfrak{F}) \subseteq \sigma_i(\cup_{j \in J} \mathfrak{F}_j) = \cup_{j \in J} \sigma_i(\mathfrak{F}_j)$ by lemma 7. Therefore, there is j_i such that $\sigma_i \in \sigma_i(\mathfrak{F}_{j_i})$. But then $\mathfrak{F} = \sigma_i \subseteq \mathfrak{F}_{j_i}$, by lemma 2. This contradiction shows that A is not σ-primary.

Now we show that A is monolithic. Suppose that it is false and let N_1, N_2 be minimal normal subgroups of A, where $N_1 \neq N_2$. Let $L = l_{\sigma}$ form (A/N_1), $M = l_{\sigma}$ form (A/N_2). It is clear that $\mathfrak{F} = L \vee m \mathfrak{M}$. By inductive hypothesis for groups A/N_1 and A/N_2 our statement is true. Then since

$$L = l_{\sigma}$ form $(A/N_1) \subseteq \mathfrak{F} \subseteq l_{\sigma}$ form $(\cup_{j \in J} \mathfrak{F}_j)$, $$

$$M = l_{\sigma}$ form $(A/N_2) \subseteq \mathfrak{F} \subseteq l_{\sigma}$ form $(\cup_{j \in J} \mathfrak{F}_j)$,

there are j_1, \ldots, j_k and s_1, \ldots, s_n such that

$$L \subseteq l_{\sigma}$ form $(\mathfrak{F}_{j_1} \cup \ldots \cup \mathfrak{F}_{j_k})$$

and

$$M \subseteq l_{\sigma}$ form $(\mathfrak{F}_{s_1} \cup \ldots \cup \mathfrak{F}_{s_n})$$,

But then we have

$$\mathfrak{F} = L \vee m \mathfrak{M} \subseteq l_{\sigma}$ form $(\mathfrak{F}_{j_1} \cup \ldots \cup \mathfrak{F}_{j_k} \cup \mathfrak{F}_{s_1} \cup \ldots \cup \mathfrak{F}_{s_n})$$,

a contradiction. Hence A is a monolithic group.

Let $P = \text{Soc}(A)$. Assume that P is not a σ-primary group. Since $A \in l_{\sigma}$ form $(\cup_{j \in J} \mathfrak{F}_j)$ we have $A \in \sigma_{\mathfrak{F}_{\sigma_i}}(\cup_{j \in J} \mathfrak{F}_j)$ by lemma 10. But P is not a σ-primary group, therefore, $A \in \text{form}((\cup_{j \in J} \mathfrak{F}_j))$. Using lemma 5, we obtain $A \in \cup_{j \in J} \mathfrak{F}_j$. Hence there is $j_m \in J$ such that $A \in \mathfrak{F}_{j_m}$. This contradiction shows that P is a σ-group for some i. Therefore, $F_{\sigma_i}(A) = O_{\sigma_i}(A)$.

Let f_j, f, h are smallest l_{σ}-valued definitions of formations \mathfrak{F}_j, \mathfrak{F} and $\mathfrak{F} = l_{\sigma}$ form $(\cup_{j \in J} \mathfrak{F}_j)$, respectively. In view of lemma 8 we have $h = \vee m (f_j \mid j \in J)$. Since $O_{\sigma_i}(A) = F_{\sigma_i}(A)$ and $A \in \mathfrak{F}$, we have

$$A/O_{\sigma_i}(A) = A/F_{\sigma_i}(A) \subseteq h(\sigma_j) = \vee m (f_j(\sigma_j) \mid j \in J)$$.

Since $|A/O_{\sigma_i}(A)| < |A|$, by our inductive hypothesis there are $j_1, \ldots, j_r \in J$ such that
\[l^\sigma \text{ form } \left(A \setminus O_{\sigma}(A) \right) \subseteq \left(f_{j_1}(\sigma_1) \vee \ldots \vee f_{j_1}(\sigma_1) \right). \]

By lemma 8, \(l = f_{j_1} \vee \ldots \vee f_{j_1} \) is the smallest \(l_\sigma \)-valued definition of \(\mathcal{L} = \mathcal{F}_1 \vee \ldots \vee \mathcal{F}_j \). But then \(A \setminus O_{\sigma}(A) \in l(\sigma_1) \vee \ldots \vee f_{j_1}(\sigma_1) \). Since \(l \) is integrated, \(A \in \mathcal{L} \) by lemma 11.

Thus, \(l = l_\sigma \) form \(\mathcal{F}_j \subseteq \mathcal{L} = \mathcal{F}_1 \vee \ldots \vee \mathcal{F}_j \). This contradiction shows that every one-generated totally \(\sigma \)-local formation \(l_\sigma \) form \(A \) is a compact element in \(l_\sigma \).

It is clear that for any totally \(\sigma \)-local formation \(\mathcal{F} \) we have \(\mathcal{F} = l_\sigma \) form \(\left(\vee_{i \in T} \mathcal{F}_i \right) \), where \(\{ \mathcal{F}_i \} \subseteq T \) is the set of all one-generated totally \(\sigma \)-local formations contained in \(\mathcal{F} \). Hence the lattice \(l_\sigma \) is algebraic. The theorem is proved.

In the classical case, when \(\sigma = \sigma^1 = \{ \{2\}, \{3\}, \ldots \} \) we get from theorem 1 the following known results.

Corollary 1 [15]. The lattice \(l_\sigma \) of all totally local formations is algebraic.

Corollary 2 [2]. The lattice of all soluble totally local formations is algebraic.

Distributivity of the lattice of all totally \(\sigma \)-local formations.

Recall that if \(\mathcal{F} \) is a totally \(\sigma \)-local formation, then \(\mathcal{F}^\sigma \) denotes the smallest \(l_\sigma \)-valued definition of \(\mathcal{F} \). If \(\alpha_1, \alpha_2, \ldots, \alpha_n \) is an \(\mathcal{F} \)-suitable \(\sigma \)-sequence, then the \(l_\sigma \)-valued \(\sigma \)-function \(\mathcal{F}^\sigma \) is defined recursively as follows: (1) \(\mathcal{F}^\sigma = \mathcal{F} \); (2) \(\mathcal{F}^\sigma = \mathcal{F} \).

Let \(\mathcal{F}, \mathcal{M}, \) and \(\mathcal{X} \) be totally \(\sigma \)-local formations. Let \(\alpha_1, \ldots, \alpha_n \) be some suitable \(\sigma \)-sequence for \(\mathcal{F}, \mathcal{M}, \) and \(\mathcal{X} \). Then by \(\mathcal{L}^\sigma, \mathcal{F}^\sigma, \mathcal{L}^\sigma \alpha_1, \mathcal{L}^\sigma \alpha_1, \ldots, \mathcal{F}^\sigma \alpha_1 \ldots \alpha_n \) we denote formation \(\sigma \)-functions such that \(\mathcal{L}^\sigma = \mathcal{X} \vee \mathcal{L}^\sigma \), \(\mathcal{F}^\sigma = \mathcal{X} \vee \mathcal{M} \), \(\mathcal{L}^\sigma \alpha_1 = \mathcal{X} \vee \mathcal{L}^\sigma \alpha_1 \), and \(\mathcal{F}^\sigma \alpha_1 = \mathcal{X} \vee \mathcal{M} \alpha_1 \).

Lemma 13. Let \(\mathcal{L} = (\mathcal{X} \vee \mathcal{M}) \cap \mathcal{N} \), \(\mathcal{F} = (\mathcal{X} \vee \mathcal{M}) \cap \mathcal{N} \), where \(\mathcal{M}, \mathcal{X}, \) and \(\mathcal{N} \) are totally \(\sigma \)-local formations. Then

1. \(\sigma(\mathcal{L}) = \sigma(\mathcal{N}) \);
2. If \(\alpha_1, \ldots, \alpha_n \) is a suitable \(\sigma \)-sequence for \(\mathcal{X}, \mathcal{M}, \) and \(\mathcal{N} \), then the formation \(\sigma \)-functions

\[\mathcal{L}^\sigma, \mathcal{F}^\sigma, \mathcal{L}^\sigma \alpha_1, \mathcal{L}^\sigma \alpha_1, \ldots, \mathcal{L}^\sigma \alpha_1 \ldots \alpha_n \]

are integrated \(l_\sigma \)-valued definitions of the formations

\[\mathcal{L}, \mathcal{F}, \mathcal{L}^\sigma (\alpha_1), \mathcal{F}^\sigma (\alpha_1), \ldots, \mathcal{L}^\sigma (\alpha_1 \ldots \alpha_n), \mathcal{F}^\sigma (\alpha_1 \ldots \alpha_n) \], respectively.

Proof. Let \(\mathcal{F}_1 = \mathcal{X} \vee \mathcal{M}, \mathcal{L}_1 = \mathcal{X} \cap \mathcal{N}, \mathcal{L}_2 = \mathcal{M} \cap \mathcal{N}, \mathcal{h}_1 = \mathcal{X} \vee \mathcal{M} \), \(l_1 = \mathcal{X} \cap \mathcal{N} \), and \(l_2 = \mathcal{M} \cap \mathcal{N} \).

By lemmas 8 and 12, it follows that \(\mathcal{F}_1 = \mathcal{L}^\sigma (h_1), \mathcal{L}_1 = \mathcal{L}^\sigma (l_1), \mathcal{L}_2 = \mathcal{L}^\sigma (l_2) \), and \(\mathcal{h}_1, \mathcal{h}_2 \) are integrated \(l_\sigma \)-valued \(\sigma \)-functions.

1. Since the inclusion \(\mathcal{L} \subseteq \mathcal{F} \) is obvious, we obtain \(\sigma(\mathcal{L}) \subseteq \sigma(\mathcal{F}) \). Let \(\sigma_1 \in \sigma(\mathcal{F}) \backslash \sigma(\mathcal{N}) \). Since \(\sigma_1 \in \sigma(\mathcal{F}_1) \), we have \(h_1(\mathcal{F}_1) = \emptyset \) by lemma 7. If \(\sigma_1 \notin \sigma(\mathcal{X}) \cup \sigma(\mathcal{M}) \), then it follows from lemma 7 that \(\mathcal{X} \sigma_1 = \emptyset \) and \(\mathcal{M} \sigma_1 = \emptyset \), a contradiction. Hence \(\sigma_1 \in \sigma(\mathcal{X}) \cup \sigma(\mathcal{M}) \).

2. Since \(\mathcal{L} = \mathcal{L}_1 \vee \mathcal{L}_2 \) and \(\mathcal{F} = \mathcal{F}_1 \cap \mathcal{F}_2 \), it follows from lemmas 9 and 12, that

\[\mathcal{L}^\sigma = \mathcal{L}_1 \vee \mathcal{L}_2 = \mathcal{X} \vee \mathcal{M} \cap \mathcal{N}, \mathcal{F}^\sigma = \mathcal{X} \vee \mathcal{M} \cap \mathcal{N}, \mathcal{L}^\sigma \alpha_1 \ldots \alpha_n = \mathcal{X} \vee \mathcal{M} \alpha_1 \ldots \alpha_n \]

are integrated \(l_\sigma \)-valued definitions of the formations \(\mathcal{L} \) and \(\mathcal{F} \), respectively.
Let $\alpha_1, ..., \alpha_n$ be a suitable sequence for \mathcal{X}, \mathcal{M}, and \mathfrak{F}. Since by the definition $\mathcal{X}_n^\sigma \alpha_1 ... \alpha_j$, $\mathcal{M}_n^\sigma \alpha_1 ... \alpha_j$, $\mathfrak{F}_n^\sigma \alpha_1 ... \alpha_j$ are smallest t_n^σ-valued definitions of the formations

$$X_n^\sigma \alpha_1 ... \alpha_j \langle \alpha_j \rangle, M_n^\sigma \alpha_1 ... \alpha_j \langle \alpha_j \rangle,$$

respectively, it follows from lemmas 9 and 12 that

$$\mathfrak{F}_n^\sigma \alpha_1 ... \alpha_j \langle \alpha_j \rangle = (X_n^\sigma \alpha_1 ... \alpha_j \cap \mathfrak{F}_n^\sigma \alpha_1 ... \alpha_j \langle \alpha_j \rangle),$$

are integrated t_n^σ-valued definitions of the formations

$$\mathfrak{F}_n^\sigma \alpha_1 ... \alpha_j \langle \alpha_j \rangle$$

respectively. The lemma is proved.

Lemma 14. Let \mathcal{M}, \mathcal{X}, and \mathfrak{F} be totally σ-local formations. Let G be a monolithic group and $\text{Soc}(G)$ is not σ-primary. If $G \in \mathcal{F} \cap \left(X \cup \mathcal{F} \cup \mathcal{M} \cup \mathfrak{F}\right)$, then $G \in \left(X \cap \mathcal{F} \cup \mathcal{M} \cup \mathfrak{F}\right)$.

Proof. Let $G \in \mathcal{F} \cap \left(X \cup \mathcal{F} \cup \mathcal{M} \cup \mathfrak{F}\right)$. It follows from lemma 10 that \mathcal{G}_σ form $\mathcal{X} \cup \mathcal{M}$ is a totally σ-local formation. Therefore, t_n^σ form $\mathcal{X} \cup \mathcal{F} \cup \mathcal{M} \cup \mathfrak{F}$ form $\mathcal{X} \cup \mathcal{F} \cup \mathcal{M} \cup \mathfrak{F}$. Since G is a monolithic group and $\text{Soc}(G)$ is not a σ-primary group, we have $G \in \mathcal{X} \cup \mathcal{F} \cup \mathcal{M} \cup \mathfrak{F}$ and $\text{Soc}(G)$ is a non-abelian group. But then by lemma 5, it follows that $G \in \mathcal{X} \cup \mathcal{M}$. Since $G \in \mathcal{F}$, we obtain $G \in \left(X \cap \mathcal{F} \cup \left(M \cup \mathfrak{F}\right)\right)$. Hence,

$$G \in t_n^\sigma \left(\mathcal{X} \cap \mathcal{F} \cup \left(M \cup \mathfrak{F}\right)\right) = \left(X \cap \mathcal{F} \cup \left(M \cup \mathfrak{F}\right)\right) \cup \mathfrak{F}.$$

The lemma is proved.

Theorem 2. The lattice t_n^σ of all totally σ-local formations is distributive.

Proof. Suppose that this formation is false. Then there exist totally σ-local formations \mathcal{M}, \mathcal{X}, and \mathfrak{F} such that

$$\left(X \cap \mathfrak{F}\right) \cup \left(M \cup \mathfrak{F}\right) \neq \left(X \cup \mathcal{F} \cup \mathcal{M} \cup \mathfrak{F}\right) \cap \mathfrak{F}.$$

Let $L = \left(X \cap \mathcal{F} \cup \left(M \cup \mathfrak{F}\right)\right)$ and $H = \left(X \cup \mathcal{F} \cup \mathcal{M} \cup \mathfrak{F}\right)$. Since the inclusion $L \subseteq H$ is obvious, we obtain $H \nsubseteq L$. Let G be a group of minimal order in $H \setminus L$. In view that L is a σ-local formation, we see that G is a monolithic group with a unique minimal normal subgroup $P = G^\sigma$.

If P is not σ-primary, then $G \in L$ by lemma 14. This contradiction shows that P is a σ-group for some $\sigma \in \mathcal{S}(\mathfrak{F})$. It follows from lemma 13 that $\sigma \in \mathcal{S}(\mathcal{L})$, $L = LF_\sigma \left(M^\sigma\right)$, $H = LF_\sigma \left(M^\sigma\right)$, and L^σ, H^σ are integrated t_n^σ-valued formations such that

$$L^\sigma(\sigma_1) = \left(X^\sigma(\sigma_1) \cap \mathfrak{F}^\sigma(\sigma_1)\right), H^\sigma(\sigma_1) = \left(X^\sigma(\sigma_1) \cup \mathfrak{F}^\sigma(\sigma_1)\right).$$

Since L is a σ-local formation and $\sigma \in \mathcal{S}(\mathcal{L})$, we see that G is not a σ-group and $L^\sigma(\sigma_1) \neq \emptyset$. On the other hand, since P is a σ-group, $O_{\sigma_1}(G) = 1$ and $F_{\sigma_1}(G) = O_{\sigma_1}(G)$.

Since $L \subseteq H$ we have $L^\sigma(\sigma_1) \subseteq H^\sigma(\sigma_1)$ and since $G \in H \setminus L$, we claim that $L^\sigma(\sigma_1) \subset H^\sigma(\sigma_1)$. Indeed, by lemma 2, it follows that $G/F_{\sigma_1}(G) \in L^\sigma(\sigma_1)$. If $L^\sigma(\sigma_1) = H^\sigma(\sigma_1)$, then

$$G/O_{\sigma_1}(G) = G/F_{\sigma_1}(G) \in L^\sigma(\sigma_1) \subseteq H^\sigma(\sigma_1) = L^\sigma(\sigma_1)$$

and $G \in L$ by lemma 11. It is a contradiction. Therefore, $L^\sigma(\sigma_1) \subset H^\sigma(\sigma_1)$. Note also that the condition $L^\sigma(\sigma_1) \subset H^\sigma(\sigma_1)$ implies $X^\sigma(\sigma_1) \neq \emptyset$ and $M^\sigma(\sigma_1) \neq \emptyset$, since otherwise $L^\sigma(\sigma_1) = H^\sigma(\sigma_1)$. Hence $\sigma_1 \in \sigma(\mathcal{X}) \cap \sigma(\mathcal{M})$. Thus,

$$G_1 = G/F_{\sigma_1}(G) \in H^\sigma(\sigma_1) \setminus L^\sigma(\sigma_1), L^\sigma(\sigma_1) \neq \emptyset.$$

It follows from lemma 13 that

$$\sigma(L^\sigma(\sigma_1)) = \sigma(H^\sigma(\sigma_1)), L^\sigma(\sigma_1) = LF_\sigma \left(L^\sigma(\sigma_1)\right), H^\sigma(\sigma_1) = LF_\sigma \left(H^\sigma(\sigma_1)\right).$$
and \(L_\sigma G \), \(\tilde{L}_\sigma G \) are integrated \(L_\sigma G \)-valued definitions such that
\[
\tilde{L}_\sigma G = \left(X_\sigma G \cap \tilde{\tilde{\sigma}} G \right) \vee \left(M_\sigma G \cap \tilde{\tilde{\sigma}} G \right), \quad \tilde{L}_\sigma G = \left(X_\sigma G \vee M_\sigma G \cap \tilde{\tilde{\sigma}} G \right) \cap \tilde{\tilde{\sigma}} G.
\]

Since \(G_1 \not\subseteq \tilde{L}_\sigma G \), there exist \(\alpha_i \in \sigma G \) such that
\[
G_1 / F_{\{\alpha_i\}} \not\subseteq \tilde{L}_\sigma G \alpha_i.
\]

Note that since \(\alpha_i \in \sigma \left(\tilde{L}_\sigma G \alpha_i \right) \), we have \(\alpha_i \in \sigma \left(\tilde{L}_\sigma G \alpha_i \right) \) and \(\tilde{L}_\sigma G \alpha_i \neq \emptyset \). Obviously,
\[
\tilde{L}_\sigma G \alpha_i = \left(X_\sigma G \alpha_i \cap \tilde{\tilde{\sigma}} G \alpha_i \right) \vee \left(M_\sigma G \alpha_i \cap \tilde{\tilde{\sigma}} G \alpha_i \right) \subseteq \tilde{L}_\sigma G \alpha_i = \left(X_\sigma G \alpha_i \vee M_\sigma G \alpha_i \cap \tilde{\tilde{\sigma}} G \alpha_i \right).
\]

Besides, since \(G_1 / F_{\{\alpha_i\}} \not\subseteq \tilde{L}_\sigma G \alpha_i \), we have \(\tilde{L}_\sigma G \alpha_i \subset \tilde{L}_\sigma G \alpha_i \). Therefore, \(\tilde{L}_\sigma G \alpha_i \neq \emptyset \) and \(M_\sigma G \alpha_i \neq \emptyset \). Hence \(\alpha_i \in \sigma \left(X_\sigma G \alpha_i \right) \cap \sigma \left(M_\sigma G \alpha_i \right) \).

Suppose that \(F_{\{\alpha_i\}} (G_1) = 1 \) and let \(N \) be a minimal normal subgroup of \(G_1 \). Then \(N \) is not \(\sigma \)-primary. If \(G_1 \) is a monolithic group, then since
\[
G_1 \in \tilde{L}_\sigma G \alpha_i = \left(X_\sigma G \alpha_i \vee M_\sigma G \alpha_i \right) \cap \tilde{\tilde{\sigma}} G \alpha_i,
\]
by lemma 14, it follows that
\[
G_1 \in \left(X_\sigma G \alpha_i \cap \tilde{\tilde{\sigma}} G \alpha_i \right) \vee \left(M_\sigma G \alpha_i \cap \tilde{\tilde{\sigma}} G \alpha_i \right) = \tilde{L}_\sigma G \alpha_i.
\]
This contradiction shows that the group \(G_1 \) is not monolithic.

Let \(\text{Soc} (G_1) = N_1 \times \ldots \times N_k \), where \(N_j \) is a minimal normal subgroup of \(G_1 \) and let \(M_j \) denote a maximal normal subgroup of \(G_1 \) such that \(M_j \) contains \(N_1 \times \ldots \times N_{j-1} \times N_{j+1} \times \ldots \times N_k \) and does not contain \(N_j \), \(j = 1, 2, \ldots, k \). By lemma 6, it follows that \(G_1 / M_j \) is a monolithic group with a non-\(\sigma \)-primary minimal normal subgroup \(N_j / M_j \) and \(N_j / M_j \) is \(G_1 \)-isomorphic to \(N_j \). Set \(B_j = G_1 / M_j \), \(j = 1, 2, \ldots, k \). Since
\[
B_j \in \tilde{L}_\sigma G \alpha_i = \left(X_\sigma G \alpha_i \vee M_\sigma G \alpha_i \right) \cap \tilde{\tilde{\sigma}} G \alpha_i,
\]
we have \(B_j \in \tilde{L}_\sigma G \alpha_i \) by lemma 14. It follows from lemma 6 (d) that \(G_1 \) is a subdirect product of \(B_1, \ldots, B_k \). Hence \(G_1 \in \tilde{L}_\sigma G \alpha_i \). This contradiction shows that \(F_{\{\alpha_i\}} (G_1) \neq 1 \).

On the other hand \(F_{\{\alpha_i\}} (G_1) \neq G_1 \), since otherwise \(G_1 / F_{\{\alpha_i\}} (G_1) = 1 \in \tilde{L}_\sigma G \alpha_i \neq \emptyset \). Thus,
\[
G_1 / F_{\{\alpha_i\}} (G_1) \in \tilde{L}_\sigma G \alpha_i \setminus \tilde{L}_\sigma G \alpha_i, \quad \tilde{L}_\sigma G \alpha_i \neq \emptyset, \quad 1 \neq F_{\{\alpha_i\}} (G_1) \subseteq G_1.
\]

Let \(G_2 = G_1 / F_{\{\alpha_i\}} (G_1) \). It follows from lemma 13 that
\[
\sigma \left(\tilde{L}_\sigma G \alpha_i \right) = \sigma \left(\tilde{\tilde{\sigma}} G \alpha_i \right),
\]
\[
\tilde{L}_\sigma G \alpha_i = LF_\sigma \left(\tilde{\tilde{\sigma}} G \alpha_i \right), \quad \tilde{\tilde{\sigma}} G \alpha_i = LF_\sigma \left(\tilde{\tilde{\sigma}} G \alpha_i \right),
\]
and \(\tilde{L}_\sigma G \alpha_i, \tilde{\tilde{\sigma}} G \alpha_i \) are integrated \(L_\sigma G \)-valued definitions such that
\[
\tilde{L}_\sigma G \alpha_i = \left(X_\sigma G \alpha_i \cap \tilde{\tilde{\sigma}} G \alpha_i \right) \vee \left(M_\sigma G \alpha_i \cap \tilde{\tilde{\sigma}} G \alpha_i \right),
\]
\[
\tilde{\tilde{\sigma}} G \alpha_i = \left(X_\sigma G \alpha_i \vee M_\sigma G \alpha_i \cap \tilde{\tilde{\sigma}} G \alpha_i \right) \cap \tilde{\tilde{\sigma}} G \alpha_i.
\]
Since \(G_2 \neq \tilde{L}_\sigma G \alpha_i \), there exists \(\alpha_2 \in \sigma (G_2) \) such that
\[
G_2 / F_{\{\alpha_i\}} (G_2) \neq \tilde{L}_\sigma G \alpha_i \alpha_2.
\]
Hence,
\[G_2/F_{\{\alpha_2\}}(G_2) \in \tilde{S}_2^\sigma, \sigma_1(\alpha_2) \setminus \tilde{S}_2^\sigma, \sigma_1(\alpha_2). \]

Considering \(G_2 \) in the same way as the group \(G_1 \), we obtain
\[\alpha_2 \in \sigma(\tilde{X}^\sigma, \sigma, \alpha_1(\alpha_2)) \cap \sigma(\tilde{M}^\sigma, \sigma, \alpha_1(\alpha_2)), \]
\[G_2/F_{\{\alpha_2\}}(G_2) \in \tilde{S}_2^\sigma, \sigma_1(\alpha_2) \setminus \tilde{S}_2^\sigma, \sigma_1(\alpha_2), \]

\[\tilde{L}_2^\sigma, \sigma_1(\alpha_2) \neq \emptyset, \text{ and } 1 \neq F_{\{\alpha_2\}}(G_2) \subset G_2. \]

Put \(G_3 = G_2/F_{\{\alpha_2\}}(G_2) \). According to the same argument, we see that the group \(G_3 \) satisfies the analogous conditions: there exists
\[\alpha_3 \in \sigma(\tilde{X}^\sigma, \sigma, \alpha_1(\alpha_2)) \cap \sigma(\tilde{M}^\sigma, \sigma, \alpha_1(\alpha_2)) \]

such that
\[G_3/F_{\{\alpha_3\}}(G_3) \in \tilde{S}_3^\sigma, \sigma_2, \alpha_2(\alpha_3) \setminus \tilde{S}_3^\sigma, \sigma_2, \alpha_2(\alpha_3), \]

\[\tilde{L}_3^\sigma, \sigma_1, \alpha_2(\alpha_3) \neq \emptyset, \text{ and } 1 \neq F_{\{\alpha_3\}}(G_3) \subset G_3. \]

Continuing this line of reasoning, we construct the groups
\[G_4 = G_3/F_{\{\alpha_3\}}(G_3), \ldots, G_n = G_{n-1}/F_{\{\alpha_{n-1}\}}(G_{n-1}), \ldots \]

such that for any \(j \) the following conditions are satisfied:
\[\alpha_{j-1} \in \sigma(\tilde{X}^\sigma, \sigma, \alpha_1 \ldots \alpha_{j-3}(\alpha_{j-2})) \cap \sigma(\tilde{M}^\sigma, \sigma, \alpha_1 \ldots \alpha_{j-3}(\alpha_{j-2})), \]
\[G_j = G_{j-1}/F_{\{\alpha_{j-1}\}}(G_{j-1}) \in \tilde{S}_j^\sigma, \sigma_1, \alpha_1 \ldots \alpha_{j-2}(\alpha_{j-1}) \setminus \tilde{S}_j^\sigma, \sigma_1, \alpha_1 \ldots \alpha_{j-2}(\alpha_{j-1}), \]

\[\tilde{L}_j^\sigma, \sigma_1, \alpha_1 \ldots \alpha_{j-2}(\alpha_{j-1}) \neq \emptyset, \text{ and } 1 \neq F_{\{\alpha_{j-1}\}}(G_{j-1}) \subset G_{j-1}. \]

Since \(F_{\{\alpha_{j-1}\}}(G_{j-1}) \neq 1 \), we see that for the constructed sequence of the groups
\[G, G_1, G_2, G_3, \ldots, G_n, \ldots \]

it follows that
\[|G| > |G_1| > |G_2| > |G_3| > \ldots > |G_n| > \ldots. \]

Since the group \(G \) is finite, we obtain \(G_k = 1 \) for some number \(k \). But
\[G_k = G_{k-1}/F_{\{\alpha_{k-1}\}}(G_{k-1}). \]

This implies that \(F_{\{\alpha_{k-1}\}}(G_{k-1}) = G_{k-1}, \) a contradiction.

Thus, our assumption is not true and \(\mathcal{H} \subset \mathcal{L} \). Hence \(\mathcal{H} = \mathcal{L} \). The theorem is proved.

Note that theorem 2 gives an affirmative answer to question of A. Tzarev on distributivety of the lattice of all totally \(\sigma \)-local formations of finite groups [11, question 3.2].

Let \(\mathfrak{F} \) and \(\mathfrak{M} \) be totally \(\sigma \)-local formations such that \(\mathfrak{M} \subseteq \mathfrak{F} \), then \(\mathfrak{F}/\sigma \mathfrak{M} \) denotes the lattice of all totally \(\sigma \)-local formations between \(\mathfrak{M} \) and \(\mathfrak{F} \).

Corollary 3. Let \(\mathfrak{F} \) and \(\mathfrak{H} \) be totally \(\sigma \)-local formations. Then the lattice isomorphism holds
\[\mathfrak{F} \lor \mathfrak{H} = \mathfrak{F}/\sigma \mathfrak{H} \land \mathfrak{H}. \]

In the case when \(\sigma = \sigma_1 \), we get from theorem 2 the following known results.

Corollary 4 [16]. The lattice \(\ell_\omega \) of all totally local formations is distributive.

Corollary 5 [2, p. 169]. The lattice of all soluble totally local formations is distributive.

Corollary 6 [17]. The lattice \(\ell_\omega \) of all totally local formations is modular.

Recall that if \(\mathfrak{F} \) and \(\mathfrak{M} \) are totally local formations, \(\mathfrak{M} \subseteq \mathfrak{F} \), then by the symbol \(\mathfrak{F}/\omega \mathfrak{M} \) denotes the lattice of all totally local formations between \(\mathfrak{M} \) and \(\mathfrak{F} \).

Corollary 7 [17]. Let \(\mathfrak{F} \) and \(\mathfrak{M} \) be totally local formations. Then we have
\[\mathfrak{F} \lor_\omega \mathfrak{M} = \mathfrak{F}/_\omega \mathfrak{M} \cap \mathfrak{M}. \]