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OPTIMISATION PROBLEM FOR SOME CLASS
OF HYBRID DIFFERENTIAL-DIFFERENCE SYSTEMS WITH DELAY

M. P. DYMKOV?

*Belarus State Economic University, 26 Partyzanski Avenue, Minsk 220070, Belarus

In the paper, the linear differential-difference dynamic systems with delayed arguments are considered. Such systems
have a lot of application areas, in particular, processes with repetitive and learning structure. We apply the method of the
separation hyperplane theorem for convex sets to establish optimality conditions for the control function to drive the trajec-
tory to zero equilibrium state in the fastest possible way. For the special case of the integral control constraints, the proposed
method is detailed to establish an analytical form of the optimal control function. The illustrative example is given to
demonstrate the obtained results with the step-by-step calculation of the basic elements of the optimal control.

Keywords: differential-difference system; delayed argument; time optimal control problem.

Introduction

The time delayed dynamic is frequently encountered in modern control system theory [1]. Differential-dif-
ference processes with delayed arguments (hybrid continuous-discrete) are a class of systems of both theo-
retic and applications interest [2]. Application areas include a lot of physical [3] and industrial processes [4],
especially, with repetitive and learning structure [5] and others. Moreover, it is already known that [6] links
between some types of linear repetitive processes and delay systems, which can, where appropriate, be used
to great effect in the control related analysis of these processes. This paper is based on the work [7] and gives
some new results on optimisation theory for delayed differential-difference linear processes. There are only
a few research works in the literature devoted to optimisation theory (see, for example [8], and references
therein). In this paper, we have adopted the method [9] based on the separation theorem for the convex sets to
establish optimality conditions for the time optimal control problem. Then, we applied the classic approach
from calculus of variations theory to study the structure of the optimal control for the sub-class of the delayed
hybrid differential-algebraic processes. Furthermore, the proposed method is detailed for the special case of
the integral control constraints where the applicable form of the optimal control function to drive the process
dynamics to zero equilibrium state in the fastest possible way is established. It has been conjectured that such
a setting is appropriate for development of the numerical methods for optimal control problems and related
studies on for which very little work has been reported to date. The illustrative example, given in the paper,
demonstrates the main stages and the step-by-step calculation to realise the analytical solution based on the
obtained results to design the time optimal control function. This fact is interesting from theoretical and, as
well, practical viewpoints. Some areas for short to medium term further research are also briefly discussed.

Notation. R" denotes the n — dimensional Euclidean space, g’ and 4" mean transposed vector and matrix,
respectively, 7, is the n X n identity matrix. Matrices, if not explicitly stated, are assumed to have compatible
dimensions.

Optimisation problem for delayed differential-difference system

In the paper, we consider the linear system described by the pair of time delay differential and difference
equations

x(¢)=Ax(t) + A_;x(t = h) + Byy(¢) + B_,y(t — h) + Bu(t), (1)
y(1)=Cx(t)+ C_x(t = h)+ D_y(t = h) + Du(z), t € [0, o] ()

with initial conditions
x(t)=f (1), te[-h, 0), x(0)=x,, y(t) =g (1), te[~h, 0] 3)

andx e R",y e R", u € R", where a, h are given real numbers such that 2 < o, f (t), g(t) are given continuous
functions, 4, 4 ,, B, By, B_,, C, C_;, D, D_, are given matrixes of the appropriate dimensions. The class U ()
of the admissible control vectors u(t), te [0, 0(], is the set of the all piecewise continuous functions such that
u(t)e Q, t€[0, o], where Q is a compact convex set in R". The pair of the functions (x(t), y(t)) is termed
the solution of the system (1)—(3) for the given control vector u(t), if they satisty the differential equation (1)
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almost everywhere on the interval [0, o], 7 # kh, k =0, 1, 2, ... and the difference equation (2) forall 7 € [0, o).
(Here the right-hand derivative is assumed at the moment ¢ = 0.) Under the assumptions made here, it can be
shown that the solution x(¢) is absolutely continuous and also that y(7) is piecewise continuous on the interval
0, of.

[ Cc])nsider the following time optimal control problem for the process (1)—(3). For the given initial data
x(t) =f(t), te [—h, 0), x(O) =X, y(t) = g(t), te [—h, 0], it is required to find the minimal time 7, T € [0, OC],
and the control function u(¢), ¢ € [0, T], such that the corresponding solution of the system (1)—(3) satisfies
the following condition:

x(t)=0,te[T-h,T] (4)

We assume, in addition, that the set of the admissible controls U () is non-empty. We say that the control
function u(-) € U (+) is T-admissible control for the system (1)—(3) if the corresponding trajectory satisfies the con-
dition (4). The solution of the system (1)—(3) can be constructed (see, for example, [6; 7] and references therein)
using the step-by-step, or recurrent, procedure for each sub-interval of the form [ih, (z' + l)h), i=0,1,..., g,

where g, = [%} denotes the integer part of the fraction %. For this purpose, function F (l, ’C) is introduced as

a solution of the following differential equation

q,+1
%:— > F(t,t+(j-1)h)H;, F(t,1)=0,V1>1, F(t,t-0)=1,. )
T i1

It can be shown that the following formula for the solutions of the system (1)—(3) is true:
t
x(t)=s(t, /. g. %) + [ (e, 1)u(t)dr, 1€ [0, ], (6)

0
where

0
S(t, 1. g xo)zF(t, O)XO + JF(Z, T+ (q, +1)h)[qu+1f(1:) + qu+1g(r)]d’c+
—h
,+1 0 ,+1
. [ F(t.x+ (j-1)h)H, f(t)dr, Stt:z F(t,t+(j-1)n)7,
“h :

i=1

~.

and

y(t)=CF(t,0)x, + f CF(t, 1) H, f(1)dt + jo CF(t, 1+ h)[ P f(t)+ Qg(t)]dt +

—h —h
" fCF(t, OVu(t)d + C_of(t—h) + D_yg (i~ h) + Du(t), Vi €[0, ),
0

q, —1 -1gq, 0

$(0)= CF (1, 0)x,+ 3, My F (1= (j+ 1)k 0)x, + zjj Flt=thc+ j)H, ,, /(x)de +

Jj=0 = —h

q 0
2 [MF(t=th v+ (g, +1= D)) P, oy S(1)+ O, 11 18(x) |de +
=0 —p

t

9t
+ [R(e.X)u(x)dr+ W, f(t1-qh)+ Y Gu(r-jh)+ K, g(t-qh). Vt=h,
=0
where " '

Hy=(BD) " + B, D/ )(Cy+ DC), j=3, .0y g+ 1, Hy = A+ ByC,
Hy= A +By(Cy+ D C)+B.C, V;=(B,D "+ BD/[*|D, j=2,..., q,+1,

V=B +ByD,0;=(BD+B,)D", B=(ByD+B,D;?)C.,, R=A_+B,C.,,
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q,—1q, -1
: 4
R(t,t)= Y > MF(t—lht+ jh)V ., qt=|:z:|’

1=0 j=0

M,

Jj+1 =

D/\(C,+D.C),M,=C, G,=D/\D,K,=D',C_,, W,=D!}", j=0,1,..., q,
Let C" [—h, 0], h > 0, denote the vector space of the continuous # vector function f: [—h, 0] — R". Put

Zz{xeR”

x=s(T—h, 1, g, xo) for all (f, g, xo)e C[—h,O) X C[—h,o] XR"}

and
R ={s € Z|such that for x =s there is 7-admissible control u(-)}. (7)

In fact, the set R is the reachability set [7; 10] for the system (1)—(3) with the additional condition. We as-
sume that R is not empty, which is true if the system is controllable. In other words, we suppose that there
exists at least one collection of the initial data

x(t):f(t), te [—h, O), x(O):xo, y(t):g(t), te [—h, O],
for which there exists the T-admissible control function. Additionally, we will assume next that » = n and the
-1
matrices B, B, D such that there exist B! and [E + DB_IBo] (this can be guaranteed, for example, by the

appropriate spectrum assumptions for these matrices). Note that in this case the 7-admissible control functions
on the last interval [T -hT ] is represented in the feedback form. Indeed, from (1) we have

u(t)= -B! [A_lx(t —h)+ Byy(1)+ B_y(t - h)]
Substituting this into (2) yields
u(t)=Nx(t—h)+My(t—h),1€[T —h, T, (8)
where
N=[1+DB"B, ]_1 [C.,-DB4, ], M=]1+DB"B, ]_1 [D.,-DB ] 9)

Thus, the considered problem is to determine the optimal control on the interval [0, T — A].

We denote by UT(~) the set of the all 7-admissible control functions for the system (1)—(3) corresponding
to the set R in (7). By analogy with [9; 10] it can be shown that R is the convex set.

Theorem 1. For the given initial data f(t) te [—h, 0), x(O) =Xy, g(t), te [—h, 0], the T-admissible cont-
rol function for the system (1)—(3) exists if, and only if, thefollowing inequality is fulfilled:

max{g s(T=h, f, g, %)+ i j g S(T=h,u(t )dr}so. (10)
gl[=1 )
Proof. Necessity. Let T be the moment such that u(t), te [0, T ], is a T-admissible control function for the

system (1)—(3). This means that the corresponding trajectory at the moment ¢ = 7' — / satisfies the condition
x(T — h)=0. Therefore,

T—-h

s(T=h. f. g %)+ | S(T—h t)u(t)dr=0. (11)

0

Multiplying both sides of the last equality (11) by the vector g € R" yields

gTS(T— h, f, g, xo) + J gTS(T— h, T)u(T)d’CZO.
0
Therefore,
T—h

gTs(T—h, f g, x0)+ ir(ljf() j gTS(T—h, T)u(1)dt <0. (12)
uelr() o

Obviously, from (12) it follows (10).
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Sufficiency. Let the inequality (10) hold for the given initial data ( 1, g, xo). On contrary, assume that for
this data there is no 7-admissible control u(), which solves the problem. This means that the corresponding
vector s*= s*(T -h, f, g, xo) does not belong to the set R, i. e. s*(T -h, f, g, xo) ¢ R. Since R is a convex

set, there exists a supporting hyperplane with the non-trivial normal vector g*€ R”, gXH =1 such that the fol-

lowing inequality

gTs">g7s, VseR, (13)

holds. Since s € R, there exists a T-admissible control function u (t), te [0, T - h], such that the corresponding
trajectory at moment ¢ = 7 — / satisfies the condition x(7 — h)=0:

s+ I (T—h, t)u(t)dt=0.
T—h

Then s =- J S(T— h, t)u(’c)d’c and from (13) follows

0
T—-h

gTs" + I g TS(T - h, t)u(t)dt>0.

Since s is an arbitrary vector from the set R, the last inequality is true for all u () elU, () Therefore,

T—h
ST (T—h, f, g, %) + inf j g TS(T - h, t)u(t)dt >0,
which contradicts (10). The theorem is proved.
Next, denote
A(T) maxl{g S(T h, f, g, xo + Hlllf J g's T—h, ’C)u(’c)d’t} (14)
g ue T

It can be shown that A(T ) is a non-decreasing lower semicontinuous function, and hence we have the result
bellow.
Theorem 2. Given initial data f(t) te [—h, O), x(0)= X, g(t), te [—h, 0], the moment T" is optimal if,
and only if, T® is a minimal root of the equation
A(T)=0. (15)
Proof. Necessity. Let T° and uo(-) be the optimal solution for the optimisation problem. Then theorem 1

gives A(T 0) < 0. At the first, suppose that A(T 0) < 0. Since A(T) is a non-decreasing and continuous function

than 37, T < T°, such that A(T 0) < A(]A" ) < 0. Then in accordance with theorem 1, the optimisation problem

is solvable with 7' < T° which is impossible. Thus, T"° is the root of the equation (15). The minimality of 7"°
can be shown analogously.

Sufficiency. Let the moment 7° be the minimal root of A(T ) = 0 for the control function uo(t), te [0, y h],
Suppose this control function is not optimal for the given initial data. Hence, there is the T-admissible control
function (¢, t € [0, T- h], where 7 < T°. Then theorem 1 yields A(f" ) < 0. However, noting non-decreasing
function A(T ), we have A(f" ) > A(T O) =0, which contradicts the minimality of the root T’ 0, which completes
the proof.

Finally, the optimal time T 0is given by the equality (15) and the optimal control function uo(t) is deter-
mined as

T—h
mm J gOTS T—h, ’E) ( )dtz J gOTS(T—h, ’c)uo(’c)d’c, (16)

ueUr()

where g’ is the vector which maximises the expression (14).

10
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Time optimal control with integral constraints

The obtained general optimality conditions can be presented in a more applicable form for some special
sets of admissible controls. Particularly in this section, the time optimal control problem for the system (1)—(3)
with the integral control constraints of the form

U()2 {u(.) : jT u' (t)u(t)dr 31} (17)

is considered.
In accordance with theorem 2, formulas (6) and (16) the problem is to minimise the functional

T-h qr_y
| &Y F(T-h.t+(j-1)h)Vu(t)dv (18)
0 Jj=1
subject to the following integral constraint
T
[u" (t)u(r)dr<1. (19)
0
Using (6) and (9) allows rewriting (19) as
T-h T
j u'(t)u(t)dt + J. (Nx(t—h)+My(t- h))T(Nx(t —h)+My(t—h))dt=
0 T—h
T-h - T-h -
=v+ [ d([1+6(0)] u(m)dr+ [ [w(x)+o(r)] u(t)dr +
0 0
T-hT-h
+ [ ] «"(9)[¥(r.0)+ (7. 0)Ju(6)dT <1, (20)
0 0
where
T
Y= [ [Ne(t—h)+My(t—h)] [ Nx(t—h)+My(t~h)]dr,
T-h
T—-h
w(r)= | {s7(6,1)N"[Ns(6)+Mr(6)] + [s"(B)N" + +(8) M" |MR(8, 7)}db,
T-2h
(s"(x)NT+ #T(x)MT \ MGy, T & (T = 2, T - h],
o(1)= (s"(x+ BN+ +"(x+ H)MT \MG,, T & (T - 3h, T = 2A],
(s"(x+ (g7 = )A)NT+ " (x + (g, = )R)M")MG, _,, T <[0, A],
T—-h
@6, 1)= [ {S"(t.1)NT[NS(z, 0)+MR(r, 8)] + R (1, t)M"MR(z, 6)}dr,
T-2h
GiM"MG,y + GM'MG,e™ + ...+ GiM'MG, _ e ™" v (T ~2h,T - h),
GIM™MG, + GM™MG,e™ + ...+ GTM™MG, _,e™\" " 1 (T ~3h, T - 2h),
Gy, 2M'MG, _, + Gy ,M'MG, e, te(h,2h],
Gy M'™MG, _,,t€]0, hl,

11
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[S7(6, T)N"+ RT(6, 1) M" | MGy, Te (T =2k, T~ ],

(1) [S7(0+h, t)NT+ R7(0+ h, T)M" |MG,, T & (T 3h, T - 2h],

[S7(0+ (g7 = 1) t)NT+R7(0+ (g - l)h T)MT]MGq L, 1el0, 4]
Here e 7" denotes the shift operator such that (efkp hu)(’c) =u (’c - kh). Then, using the Lagrange multiplier
method for (18), (19) leads to the functional
T—h

I 2" S(T-h, t)u(t )d1+k{Y+ | (D[ 1, + G(1)] u(t)dr +

T-h T-hT-h

+ _[ [w(t)+o(t T)dT + _[ J. u" (1) ¥(t, 0) + @(1, 9)]14(9)0’17}, (21)

0 0

which is subject of minimisation with respect to unknowns A and u(t) Then the first variation 8IT for H(u),
given by (21) can be represented as

T—h

M) _ 1 2) s (7h, 1) gde +

8MT(u)= o

a=0

T—-h

+ k{ur(‘c)[1+g(‘c)]Td‘c+[\|l(T)+(p(‘c)]T+ [ u(v)k (e, T)u(e)de} v(t)dr, (22)

0

where

K(6,7)=(¥(r, 8) + ©(r, 0)) + (¥(1, 0) + (1, ).

The Lagrange multiplier method yields that the optimal solutions satisfy to the equality 8I1(u)=0 for all
functions v(t). Hence, from (22) it follows

S'(T—h,t)g + k{z[lm +G(t) Ju(t)+ w(t) + (1) + j K (8, r)u(e)de} =0. (23)
The solution of (23) can be represented as
(1) = (1) + (1), where (1) = %L(t) g (24)

Here the vector ul(t) and the (n X r)—matrix L(t) satisfy the following integral equations

T-h T-h

| (8. 1)u,(8)d0 + 2u, (1) (1 + G(1)) + w(r) + @(£)=0,2L(¢) + S(T = h, 1) + | K(8,7)L(8)d®=0.

0

To show this it is sufficient to substitute (24) into (23), which gives

sT(T_h,T)gm{z[ul() J[[ +G(n ]+Tjhu )K(e,r)(ul(e)+L(i)gjde}+

0

+w<r>+<p<r>=[sT<T—h,r>+L<r>+ J
+ 7{21{1(1)(1,,, + Q(T)) + (1) +o(T) + h

12
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The unknown multiplier A can be determined by the fact that the required control function satisfies the
T

condition JuT(T)u(T)dT =1. Hence, using (20) yields
0

v+ T({_h“ul(r) L ng 1+ Q(T))[ul(‘c) L) gﬂd‘c +

000000 ) (0o

0

T-hT—-h T
s [ul(‘c) L) g} (¥(6, 1) + 0 (6, ‘c)){ul(‘c) L) g)dedt _1
0 0
This leads to the following equation for A: a}% + 2b% + ¢ =0, where the required coefficients are
T—h T-hT-h
a= | g'L(x) L(tv)gdr+ [ [ &'L'(x)K (6, 7)L(6)d6dr, (25)
0 0 0
T-h T—h T—hT-h
b= f ul (t)L(t)gdt + _[ [w(t)+¢(t)]L(t)gdT+ j _[ g"L' (1)K (0, T)u,(8)drde,
0 0 0 0
T-h T-h
c=Y-1+ [ u/()(1+G()m(v)dr+2 [ (w(r)+o(r))u(t)dr +
0 0
T—hT—-h
+ | ] ul()[@(6, 1)+ ¥(6. T)]u (6)drab. (26)
0 0

Thus, the required A is the positive root of this equation, and the optimal control for the given T is defined
by the formula (24). Substituting the obtained control function u, (t) of (24) into (14) and noting theorem 2 we

have shown that the optimal control function for the considered integral constraints (17) and the given above
assumptions can be presented by the following theorem.

Theorem 3. Optimal time Tofor the optimisation problem (1)—(3) with integral constraints (17) is the
minimal root of the equality

T—h
maxl{gTs(T— h, f, g, x0)+ J gTS(T— h, I)ug(t)dt}zo (27)
sll= 0

and the corresponding optimal control is given as

up(t), te [0, T° - h),
u(1)=1 " . (28)
Nx(t=h)+My°(t=h), te[T—h, T°],

where ug(t) is given by (24), the vector g° realises maximum in (27) and the matrices M, N are defined by
formulas (8) and (9).

It should be noted that the proposed method can be applied for solution of constrained optimisation prob-
lems with different types of the cost functional. The following example demonstrates the possibility of such
application.

Example. The given illustrative example shows the practical steps to realise the analytical calculations
based on the obtained results to solve the optimisation problem with an energy cost functional. In order to
demonstrate the main stages of these calculations we consider the following equation with control input

)‘c(t)z—x(t—g) u(t), 16[0, 37"} 29)
and the 1nitial data

13
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x(1)=0, te[—g, 0), x(0)=1. (30)
The considered example is a particular case of the system (1)—(3), where
A,=1, B=1, h="L, =" U=R r=1
2 2

and other coefficients are trivial.
Consider the following problem: minimise the cost functional
3n/2

J(u) = min, J(u)= [ u’(r)dr G1)
0
over the solutions of (29), (30) subject to the constraints of the form

T

[u" (Dyu(r)dr <1, x(r)=0, 1€ [n, 37“} (32)
0

Let M°=J (uo) be the optimal cost value for the problem (29), (30). Consider the following time optimal

problem: minimise
T — min (33)
over the solutions of the control system

i(t)= —x(t— gj +u(t), te0,T), (34)
with the initial conditions (30) and the constraints of the form

T
[ur(e)dr <m®, x(1)=0, 1€ [T— g T}. (35)
0

It is easy to show that the optimal solution for the problem (33)—(35) is T° = %n. Thus, the optimisation

problems (29)—(32) and (33)—(35) are equivalent. Hence, the proposed method can be used for solution of the
given problem (29)—(32).

Step 1: representation of equation solution.

In our case, the function F (7, T) from the formula (5) satisfies the equation

JoF (1, T
g:F(z,1:+£j, F(t,1)=0,1>1 F(1,1)=1. (36)
ot 2
It is easy to check that the function
—i(t—1) <
F(t,’c)z e ,if T <1, 37)
0,if t>0,

is the solution of the equation (36), where i in (37) means imaginary unit (i 2 =_1). Thus, the solution of the

. L 3m|. .
system (29) with the initial data (30) for te [O, 711 is given as

t t t
x(t) = F(t, O)x(O) + JF(t, ’c)u(‘c)d’c e+ J.efi(t ~y (T)d‘c =e " (1 + Je”u(’c)d’c} (38)
0 0 0
The problem statement says that we exploit the real valued functions. Using the known formula for ¢’ the
corresponding real part of x(t) in (38) can be extracted when it is necessary.
Step 2: structure of the optimal control.
In order to determine the optimal control function, we need to calculate the functions ®(t, 8), K (7, 6) and

other constants v, a, b, ¢ which are required in (28). Note that in our case H, =0, H, =1, H = 0, =1, V= 0,
T

M; =0, (p(’C) =0, \p(l) = J e - T)x(O)e_”a’t = —ie’. Since the problem is given in real valued terms, we are
/2
needed to pick the real parts in the obtained functions Rey (t)=sint, Imy(t)= —cost. Further,
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icosGsinT—sinOsin‘c,‘CZO,gﬁ‘r,es%,
( . . . . T 3n
K(t, 9)=2J F(t,7)F(s,0)dt ={icostsin® —sintTsin®, T>60, = < 1,0 < —,
/2 2 2
0,0<7,0<Z,
2

. . . . b4 3n .
Thus, the real part of the function K is K (T, 9):—smesm’c for ) <1,6< ER It is easy to see that

K (r, 6) =K (6, 1:). According to the formula (28), the optimal control function for ¢ € [O, 37“} is represented
as follows

ug(t) = v(t) + w(t), where w(t) = %L(t) g. (39)
Step 3: solution of integral equations.

The scalar function v(t), te [0, 3;}, from (39) satisfies the following integral equation

20(t) + 29(1) + [ K (z. 0)v(6)d0 =0, (40)

Ifte {0, g} then K(t,0)=0 and hence from (40) it follows that v(t)=-y(t)=—sint, T€ {0, g} If

Te [E, 775} then for the unknown function v(”c) we have the following integral equation
T
sint[sin6v(6)d6 — v(t) =sint. (41)
- 0
Denote '[sin 9v(9)d9 = W. Multiplying (41) by sintT and integrating the obtained relation with respect to T
0
over the interval [0, Tc], we have
T i T T
[sin’td [sin6v(6)d® - [ sintv(t)dt=[sin’tdr.
0 0 0 0

T T
Noting that jsinz tdt :g and j sin’tv(’c)dt =W we have the following algebraic equation with respect to
0 0

the unknown value W: W(g — 1) = g and hence W =

. T
5 —sinT, T€ [O, 5),
= sint and v(T)=

) 2. [n 371
sint, Te€|—, — |.
n_

T % Then from (41) we have v(”c) =WsinT —sintT =
Tc p—

The function L(T) of (39) satisfies to the following integral equation:
2L(t)+ [K(1,0)L(0)d6 + S(m, T)=0.
0

—CcosT, TS T,
In our case S(m, )= 0
, T> .
cost, 1€ [0, ],

Analogously to v(7) it can be shown that the required function is L(t)= 0 [ 375}
,Telm —|.
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. . 1 . .
Hence, the optimal control function is given as u, (¢) = v(¢) + —L(t) g. Here, the parameter A is determined as

A
.. . . . . 1 1
the positive solution of the following algebraic equation a— + 2b— + ¢ =0, where
A
17 1 s
—a=> J (T—h,7)L(t)d :—J.cos rdr—zn c=y-1+ j (1) + o(t))v(t)dr =
i 2 n-1
=y-1+ J sint2sintdT + J sint sintdt=y+ ——, b=0.
0 /2 m-2 2
4 T
Here, v = J [Ns(’c —h, xo) +Mr (’C - h):l I:Ns (T —h, xo) +Mr(’c - h):l dt, where the coefficients M, N are
T—h
T
o -1
given by (9). Since r(’c) =0, s (t, xo) = J e "e"dt = i, y=i then the required in (25), (26) parameters are ¢ = TCT,
/2
b=0,a= —g. Hence, the required positive root is X" = 2 L > Thus, the optimal control function is given as
Tc —

sint + %cost, te 0,E ,
A 2

u (t)z LU sinf + %cost, te E, T |,
g -2 A 2

T sint+ 0, re {n, 3—“}
-2 2

Step 4: minimal root of the equality 27).

According to (28), the unknown g is determined as the maximising element in the equality ﬁaxﬁ( g, )
g

2

T—h
where  L(g, T)=gs(T —h, x,) + J gF (T —h, T)u,(t)dt. In our case, we have max{gcosm+

0 g#0
T

+ JgF(n, ’c)ug (1:) dr} = 0. After simplifying, we have
0

/2

3 T 2( T ] 2,2 2m-6
=maxig|l-——+——|-g _ |t =max{-g> 1+ = —¢g

g#0 2 2(7‘c 2) 2A lel=1 n 27t 4

o . o 6-2 / . . L
The maximising element for this equality is g°= 5 Z T > Finally, the optimal control is given as
n—-4\n+

. 6-21t |2m—2 i
sint + cost, te|0,—|,
2n—4\ w+2 2

n/2 T
glgg{—g+ (')[ g(—cosr)(sin’t+%cos‘t)dt+ Jg(—cost)(nf2sin’t+%cosr}dr}z
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Conclusion

This work covers only the first attempts to investigate the optimisation problems for the considered hybrid
processes, and hence a rich material to be the subject for further work. In particular, our interest is the optimal

control problem where the state variables at the final interval [0(, o+ h] are equal to the pre-assigned functions
x(t) = (p(t), y(t) = w(t), te [(x, o+ h] (see, also, [11]). Also, it is worth mentioning here that the approach
of the supporting control functions setting described in [12] can be used for the design of the numerical algo-
rithms with good conditioning properties. These problems are subject of ongoing work and will be reported in
due course.
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