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УДК 517.9

ЗАДАЧА ОПТИМИЗАЦИИ ДЛЯ ОДНОГО КЛАССА  
ДИФФЕРЕНЦИАЛЬНО -РАЗНОСТНЫХ СИСТЕМ  

С ЗАПАЗДЫВАНИЕМ

М. П. ДЫМКОВ1)

1)Белорусский государственный экономический университет,  
пр. Партизанский, 26, 220070, г. Минск, Беларусь

В работе исследуется линейная дифференциально-разностная система с запаздывающим аргументом. Такие 
системы имеют различные сферы применения, в том числе и повторяющиеся процессы с обучением. Для опре-
деления условий оптимальности управления в задаче приведения траектории системы в состояние покоя за ми-
нимальное время использовалась теорема об отделимости выпуклых множеств. Аналитические выражения для 
оптимального управления выведены для специального случая интегральных ограничений на управление. В целях 
демонстрации полученных результатов приведен иллюстративный пример с детальным вычислением основных 
элементов оптимального управления. 

Ключевые слова: дифференциально-разностные системы; запаздывающий аргумент; задача оптимального 
быстродействия.



7

Дифференциальные уравнения и оптимальное управление 
Differential Equations and Optimal Control 

OPTIMISATION PROBLEM FOR SOME CLASS  
OF HYBRID DIFFERENTIAL-DIFFERENCE SYSTEMS WITH DELAY

M. P. DYMKOV a

aBelarus State Economic University, 26 Partyzanski Avenue, Minsk 220070, Belarus

In the paper, the linear differential-difference dynamic systems with delayed arguments are considered. Such systems 
have a lot of application areas, in particular, processes with repetitive and learning structure. We apply the method of the 
separation hyperplane theorem for convex sets to establish optimality conditions for the control function to drive the trajec-
tory to zero equilibrium state in the fastest possible way. For the special case of the integral control constraints, the proposed 
method is detailed to establish an analytical form of the optimal control function. The illustrative example is given to 
demonstrate the obtained results with the step-by-step calculation of the basic elements of the optimal control.

Keywords: differential-difference system; delayed argument; time optimal control problem.

Introduction
The time delayed dynamic is frequently encountered in modern control system theory [1]. Differential-dif-

ference processes with delayed arguments (hybrid continuous-discrete) are a class of systems of both theo-
retic and applications interest [2]. Application areas include a lot of physical [3] and industrial processes [4], 
especially, with repetitive and learning structure [5] and others. Moreover, it is already known that [6] links 
between some types of linear repetitive processes and delay systems, which can, where appropriate, be used 
to great effect in the control related analysis of these processes. This paper is based on the work [7] and gives 
some new results on optimisation theory for delayed differential-difference linear processes. There are only 
a few research works in the literature devoted to optimisation theory (see, for example [8], and references 
therein). In this paper, we have adopted the method [9] based on the separation theorem for the convex sets to 
establish optimality conditions for the time optimal control problem. Then, we applied the classic approach 
from calculus of variations theory to study the structure of the optimal control for the sub-class of the delayed 
hybrid differential-algebraic processes. Furthermore, the proposed method is detailed for the special case of 
the integral control constraints where the applicable form of the optimal control function to drive the process 
dynamics to zero equilibrium state in the fastest possible way is established. It has been conjectured that such 
a setting is appropriate for development of the numerical methods for optimal control problems and related 
studies on for which very little work has been reported to date. The illustrative example, given in the paper, 
demonstrates the main stages and the step-by-step calculation to realise the analytical solution based on the 
obtained results to design the time optimal control function. This fact is interesting from theoretical and, as 
well, practical viewpoints. Some areas for short to medium term further research are also briefly discussed.

Notation. R n denotes the n – dimensional Euclidean space, gT and AT mean transposed vector and matrix, 
respectively, In is the n × n identity matrix. Matrices, if not explicitly stated, are assumed to have compatible 
dimensions.

Optimisation problem for delayed differential-difference system
In the paper, we consider the linear system described by the pair of time delay differential and difference 

equations 
 x t Ax t A x t h B y t B y t h Bu t( ) = ( ) + -( ) + ( ) + -( ) + ( )- -1 0 1 ,  (1)

 y t Cx t C x t h D y t h Du t t( ) = ( ) + -( ) + -( ) + ( ) ∈[ ]- -1 1 0, , α  (2)
with initial conditions 
 x t f t t h x x y t g t t h( ) = ( ) ∈ -[ ) ( ) = ( ) = ( ) ∈ -[ ], , , , , ,0 0 00  (3)

and x ∈ R n, y ∈ R m, u ∈ R r, where α, h are given real numbers such that h < α, f t g t( ) ( ),  are given continuous 
functions, A, A–1, B, B0, B–1, C, C–1, D, D–1 are given matrixes of the appropriate dimensions. The class U ⋅( ) 
of the admissible control vectors u t t( ) ∈[ ], , ,0 α  is the set of the all piecewise continuous functions such that 
u t t( ) ∈ ∈[ ]Ω, , ,0 α  where Ω is a compact convex set in R r. The pair of the functions x t y t( ) ( )( ),  is termed 
the solution of the system (1) – (3) for the given control vector u t( ), if they satisfy the differential equation (1) 
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almost everywhere on the interval 0 0 1 2, , , , , ,α[ ] ≠ = …t kh k  and the difference equation (2) for all t ∈[ ]0, .α  
(Here the right-hand derivative is assumed at the moment t = 0.) Under the assumptions made here, it can be 
shown that the solution x t( ) is absolutely continuous and also that y t( ) is piecewise continuous on the interval 
0, .α[ ]

Consider the following time optimal control problem for the process (1) – (3). For the given initial data 
x t f t( ) = ( ), t h∈ -[ ), ,0  x x0 0( ) = , y t g t( ) = ( ), t h∈ -[ ], ,0  it is required to find the minimal time T, T ∈[ ]0, ,α  
and the control function u t( ), t T∈[ ]0, , such that the corresponding solution of the system (1) – (3) satisfies 
the following condition:
 x t t T h T( ) ≡ ∈ -[ ]0, , .  (4)

We assume, in addition, that the set of the admissible controls U ⋅( ) is non-empty. We say that the control 
function u U⋅( ) ∈ ⋅( ) is T-admissible control for the system (1) – (3) if the corresponding trajectory satisfies the con-
dition (4). The solution of the system (1) – (3) can be constructed (see, for example, [6; 7] and references therein) 
using the step-by-step, or recurrent, procedure for each sub-interval of the form ih i h i q, , , , , ,+( ) ) = …1 0 1 α  

where q
hα
α= 




 denotes the integer part of the fraction α

h
. For this purpose, function F t, τ( ) is introduced as 

a solution of the following differential equation 

 
∂ ( )

∂
= - + -( )( ) ( ) ≡ ∀ > -( ) =

=

+

∑F t
F t j h H F t t F t tj

j

qt,
, , , , , ,

τ
τ

τ τ τ1 0 0

1

1

IIn .  (5)

It can be shown that the following formula for the solutions of the system (1) – (3) is true: 

 x t s t f g x S t u d t
t

( ) = ( ) + ( ) ( ) ∈[ ]∫, , , , , , ,0

0

0τ τ τ α  (6)

where 

s t f g x F t x F t q h P f Q gt q qt t
, , , , ,0 0 1 10 1( ) = ( ) + + +( )( ) ( ) + ( ) + +τ τ τ dd

F t j h H f d S t F t j

h

j
hj

qt

τ

τ τ τ τ τ

-

-=

+

∫

∫∑

+

+ + -( )( ) ( ) ( ) = + -

0

0

1

1

1 1, , , , (( )( )
=

+

∑ h Vj
j

qt

1

1

,

and 

y t CF t x CF t H f d CF t h P f Q g
h

( ) = ( ) + ( ) ( ) + +( ) ( ) + ( )
-
∫, , ,0 0 1

0

1 1τ τ τ τ τ τ   +

+ ( ) ( ) + -( ) + -( ) + ( )

-

- -

∫

∫

d

CF t V u d C f t h D g t h Du t

h
t

τ

τ τ τ

0

1

0

1 1, , ∀∀ ∈[ )t h0, ,

y t CF t x M F t j h x M F t lh jh Hj
j

q

l

t

( ) = ( ) + - +( )( ) + - +( )+
=

-

∑, , ,0 1 00 1 0

0

1

τ jj
hj

q l

l

q

l t q

f d

M F t lh q l h P

tt

t

+
-=

-

=

-

+

( ) +

+ - + + -( )( )

∫∑∑ 1

0

00

1

11

τ τ

τ, -- + -
-=

-

( ) + ( )  +

+ ( ) ( ) + -

∫∑ l q l
hl

q

q

f Q g d

R t u d W f t

t

t

t

τ τ τ

τ τ τ

1

0

0

1, qq h G u t jh K g t q h t ht

t

j q t
j

q

t

t

( ) + -( ) + -( ) ∀ ≥∫ ∑ -
=0

1

0

, ,

where 
H B D B D C D C j q H A B Cj

j j
t= +( ) +( ) = … + = +-

-
- -

-
- -0 1

1

1 1

2

1 1 1 03 1, , , , ,

H A B C D C B C V B D B D D j qj
j j

t2 1 0 1 1 1 0 1

1

1 1

2
2= + +( ) + = +( ) = …- - - - -

-
- -

-
, , , , ++ 1,

V B B D Q B D B D P B D B D C P Ai
i

i
i

1 0 0 1 1 1

1

0 1 1 1

2

1 1= + = +( ) = +( ) =- - -
-

- - -
-

-, , , -- -+1 0 1B C ,
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R t M F t lh jh V q t
hl j

j

q l

l

q

t

tt

, , , ,τ τ( ) = - +( ) = 



+

=

-

=

-

∑∑ 1

00

1

M D C D C M C G D D K D C W D jj
j

j
j

i
i

i
i

+ - - - - - - -
+= +( ) = = = = =1 1 1 1 0 1 1 1 1

1
0, , , , , ,, , , .1 … qt

Let C hn -[ ], ,0  h > 0, denote the vector space of the continuous n vector function f h Rn: , .-[ ] →0  Put 

Z x R x s T h f g x f g x C Cn
h h

n= ∈ = ( ){ }- ( ) ∈ × ×-[ ) -[ ], , , , ,
, ,0 0 0 0

for all 

and
  = ∈ = ⋅( ){ }s Z x s T usuch that for there is -admissible control . T-admissible control  = ∈ = ⋅( ){ }s Z x s T usuch that for there is -admissible control . (7)

In fact, the set  is the reachability set [7; 10] for the system (1) – (3) with the additional condition. We as-
sume that  is not empty, which is true if the system is controllable. In other words, we suppose that there 
exists at least one collection of the initial data 

x t f t t h x x y t g t t h( ) = ( ) ∈ -[ ) ( ) = ( ) = ( ) ∈ -[ ], , , , , , ,0 0 00

for which there exists the T-admissible control function. Additionally, we will assume next that r = n and the 
matrices B, B0, D such that there exist B –1 and E DB B+ 

- -
1

0

1

 (this can be guaranteed, for example, by the 
appropriate spectrum assumptions for these matrices). Note that in this case the T-admissible control functions 
on the last interval T h T-[ ],  is represented in the feedback form. Indeed, from (1) we have 

u t B A x t h B y t B y t h( ) = - -( ) + ( ) + -( ) 
-

- -
1

1 0 1
.

Substituting this into (2) yields 
 u t Nx t h My t h t T h T( ) = -( ) + -( ) ∈ -[ ], , ,  (8)
where 
 N I DB B C DB A M I DB B D DB= +  -  = +  -- -

-
-

-
- -

- -
1

0

1

1

1

1

1

0

1

1 1

2
,  .  (9)

Thus, the considered problem is to determine the optimal control on the interval 0, .T h-[ ]
We denote by UT ⋅( ) the set of the all T-admissible control functions for the system (1) – (3) corresponding 

to the set  in (7). By analogy with [9; 10] it can be shown that  is the convex set.
Theorem 1. For the given initial data f t t h x x g t t h( ) ∈ -[ ) ( ) = ( ) ∈ -[ ], , , , ,, ,0 0 00   the T-admissible cont-

rol function for the system (1) – (3) exists if, and only if, the following inequality is fulfilled:

 max inf g  
g

T

u U

T
T h

g s T h f g x S T h u d
T= ⋅( ) ∈ ⋅( )

-

-( ) + -( ) ( )∫
1

0

0

, , , , τ τ τ











≤ 0.  (10)

P r o o f. Necessity. Let T  be the moment such that u t( ), t T∈[ ]0, , is a T-admissible control function for the 
system (1) – (3). This means that the corresponding trajectory at the moment t = T – h satisfies the condition
x T h-( ) = 0. Therefore,

 s T h f g x S T h u d
T h

-( ) + -( ) ( ) =
-

∫, , , , .0

0

0τ τ τ  (11)

Multiplying both sides of the last equality (11) by the vector g ∈ R n yields 

g s T h f g x g S T h u dT T
T h

-( ) + -( ) ( ) =
-

∫, , , , .0

0

0τ τ τ

Therefore,

 g s T h f g x g S T h u dT

u U

T
T h

T

-( ) + -( ) ( ) ≤
∈ ⋅( )

-

∫, , , , .0

0

0inf τ τ τ  (12)

Obviously, from (12) it follows (10).



10

Журнал Белорусского государственного университета. Математика. Информатика. 2021;1:6–17
Journal of the Belarusian State University. Mathematics and Informatics. 2021;1:6–17 

Sufficiency. Let the inequality (10) hold for the given initial data f g x, , .0( )  On contrary, assume that for 
this data there is no T-admissible control u ⋅( ), which solves the problem. This means that the corresponding 
vector s s T h f g x∗ ∗= -( ), , , 0  does not belong to the set , i. e. s T h f g x∗ -( ) ∉, , , .0   Since  is a convex 

set, there exists a supporting hyperplane with the non-trivial normal vector g * ∈ R n, g∗ = 1  such that the fol-
lowing inequality
 g s g s sT T∗ ∗ ∗> ∀ ∈, ,  (13)

holds. Since s ∈ , there exists a T-admissible control function u t t T h( ) ∈ -[ ], , ,0  such that the corresponding 
trajectory at moment t = T – h satisfies the condition x T h-( ) = 0:

s S T h u d
T h

+ -( ) ( ) =
-

∫ , .τ τ τ
0

0

Then s S T h u d
T h

= - -( ) ( )
-

∫ , τ τ τ
0

 and from (13) follows 

g s g S T h u dT T
T h

∗ ∗ ∗
-

+ -( ) ( ) >∫ , .τ τ τ
0

0

Since s is an arbitrary vector from the set , the last inequality is true for all u UT⋅( ) ∈ ⋅( ). Therefore,

g s T h f g x g S T h u dT
u U

T
T h

T

∗ ∗
∈ ⋅( )

∗
-

-( ) + -( ) ( ) >∫, , , , ,0

0

0inf τ τ τ

which contradicts (10). The theorem is proved.
Next, denote 

 Λ T g T h f g x g S T h u ds
g

T

u U

T
T h

T
( ) = -( ) + -( ) ( )

= ∈ ⋅( )

-

∫max inf
1

0

0

, , , , τ τ τ











.  (14)

It can be shown that Λ T( ) is a non-decreasing lower semicontinuous function, and hence we have the result 
bellow.

Theorem 2. Given initial data f t t h x x g t t h( ) ∈ -[ ) ( ) = ( ) ∈ -[ ], , , , ,, ,0 0 00  the moment T  0 is optimal if, 
and only if, T  0 is a minimal root of the equation 
 Λ T( ) = 0.  (15)

P r o o f. Necessity. Let T  0 and u0 ⋅( ) be the optimal solution for the optimisation problem. Then theorem 1 
gives Λ T 0 0( ) ≤ .  At the first, suppose that Λ T 0 0( ) < . Since Λ T( ) is a non-decreasing and continuous function 

than ∃T^, ^T T< 0
, such that Λ ΛT T0

0( ) ≤ ( ) ≤^
.Λ ΛT T0

0( ) ≤ ( ) ≤^
.  Then in accordance with theorem 1, the optimisation problem 

is solvable with ^T T< 0  which is impossible. Thus, T  0 is the root of the equation (15). The minimality of T  0 
can be shown analogously.

Sufficiency. Let the moment T  0 be the minimal root of Λ T( ) = 0 for the control function u t0( ), t T h∈ - 0
0

, . 
Suppose this control function is not optimal for the given initial data. Hence, there is the ^T -admissible control 
function ̂u t( ), t T h∈ - 0, ,

^t T h∈ - 0, ,
^  where ^T T< 0

. Then theorem 1 yields Λ ^T( ) ≤ 0.Λ ^T( ) ≤ 0. However, noting non-decreasing 

function Λ T( ), we have Λ Λ^T T( ) ≥ ( ) =0
0,Λ Λ^T T( ) ≥ ( ) =0
0, which contradicts the minimality of the root T  0, which completes 

the proof. 
Finally, the optimal time T  0 is given by the equality (15) and the optimal control function u t0( )  is deter-

mined as 

 min , , ,
u U

T
T h

T
T h

T

g S T h u d g S T h u d
∈ ⋅( )

- -

-( ) ( ) = -( ) ( )∫ ∫0 0τ τ τ τ τ τ
0

0

0

 (16)

where g0 is the vector which maximises the expression (14).
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Time optimal control with integral constraints
The obtained general optimality conditions can be presented in a more applicable form for some special 

sets of admissible controls. Particularly in this section, the time optimal control problem for the system (1) – (3) 
with the integral control constraints of the form 

 U u u u dT
T

⋅( ) ⋅( ) ( ) ( ) ≤











∫ : τ τ τ
0

1  (17)

is considered. 
In accordance with theorem 2, formulas (6) and (16) the problem is to minimise the functional 

 g F T h j h V u dT
j

j

qT h T h

- + -( )( ) ( )
=

- -

∑∫ , τ τ τ1

10

 (18)

subject to the following integral constraint 

 u u dT
T

τ τ τ( ) ( ) ≤∫
0

1.  (19)

Using (6) and (9) allows rewriting (19) as 

 

u u d Nx h My h Nx h My h dT
T h

T

T h

T

τ τ τ τ τ τ τ τ( ) ( ) + -( ) + -( )( ) -( ) + -( )( )
-

-
∫
0

∫∫

∫

=

= + ( ) + ( )  ( ) + ( ) + ( )  ( )
- -

Y u I u d u dT T
T h

T
T h

τ τ τ τ y τ ϕ τ τ τG
0 0

∫∫

∫∫

+

+ ( ) ( ) + ( )  ( ) ≤
--

u u dT
T hT h

τ τ θ τ θ θ τ
00

1Ψ Φ, , ,

 

(20)

where

Y Nx h My h Nx h My h dtT

T h

T

= -( ) + -( )  -( ) + -( ) 
-
∫ τ τ τ τ ,

y τ θ τ θ θ θ θ θ τ( ) = ( ) ( ) + ( )  + ( ) + ( )  ( ){ }S N Ns Mr s N r M MRT T T T T T
, , dd

T h

T h

θ
-

-

∫
2

,

ϕ τ

τ τ τ

τ τ( ) =

( ) + ( )( ) ∈ - -( ]
+( ) + +( )

s N r M MG T h T h

s h N r h M

T T T T

T T T T

0 2, , ,

(( ) ∈ - -( ]
………………………………………………………………………

+ -( )

MG T h T h

s qT
T

1 3 2

1

, , ,τ

τ hh N r q h M MG hT T
T

T
qT( ) + + -( )( )( ) ∈[ ]










 -τ τ1 01, , ,

Φ θ τ τ θ θ τ θ τ, , , , , ,( ) = ( ) ( ) + ( ) ( ) ( ){ }  +
-

S t N NS t MR t R t M MR t dT T T T

T 22h

T h-

∫ ,

G τ

τ

( ) =

+ + … + ∈ --
-

- -( )G M MG G M MG e G M MG e T h TT T T ph T T
g

q ph
T

T
0 0 0 1 0 1

1
2, , --( ]

+ + … + ∈ --
-

- -( )

h

G M MG G M MG e G M MG e T hT T T ph T T
g

q ph
T

T

,

, ,1 1 1 2 1 2

2
3τ TT h

G M MGg
T T

gT T

-( ]
……………………………………………………………………………………………

+- -

2

2 2

,

GG M MG e h h

G M MG h
g
T T

g
ph

g
T T

g

T T

T T

- -
-

- -

∈( ]
∈[ ]










2 1

1 1

2

0

, , ,

, , ,

τ

τ
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Ψ τ

θ τ θ τ τ

θ τ( ) =

( ) + ( )  ∈ - -( ]
+( ) +

S N R M MG T h T h

S h N R

T T T T

T T

, , , , ,

,

0 2

TT Th M MG T h T hθ τ τ+( )  ∈ - -( ]
…………………………………………………………………

, , , ,1 3 2

………………

+ -( )( ) + + -( )( )  ∈[-S q h N R q h M MG hT
T

T T
T

T
qTθ τ θ τ τ1 1 01, , , , ]]










 .

Here e– kph denotes the shift operator such that e u u khkph-( )( ) = -( )τ τ . Then, using the Lagrange multiplier 
method for (18), (19) leads to the functional 

 

Π u g S T h u d Y u I u dT
T h

T
m

T
T h

( ) = -( ) ( ) + + ( ) + ( )  ( )
- -

∫ ∫, τ τ τ λ τ τ τ τ
0 0

G





+

+ ( ) + ( )  ( ) + ( ) ( ) + ( ) 
-

∫ y τ ϕ τ τ τ τ τ θ τ θ θT
T h

Tu d u u
0

Ψ Φ, , (( )






--

∫∫ d
T hT h

τ
00

,

 

(21)

which is subject of minimisation with respect to unknowns λ and u t( ). Then the first variation δΠ for Π u( ), 
given by (21) can be represented as 

 

δ
δ α

α
τ τ τ

λ τ τ

α

Π
Π

u
u v

v S Th gd

u I

T h

T T

( ) =
+( )

∂
= ( ) ( ) +

+ ( ) + ( )

=

-

∫
0 0

,

G dd v du K u dT
T h T

τ τ τy τ ϕ τ τ θ τ θ θ+   +











( )( ) + ( ) ( ) ( ) ( )

-

∫ ,

00

TT h-

∫ ,

 

(22)

where 
K T Tθ τ τ θ τ θ τ θ τ θ, , , , , .( ) = ( ) + ( )( ) + ( ) + ( )( )Ψ Φ Ψ Φ

The Lagrange multiplier method yields that the optimal solutions satisfy to the equality δΠ u( ) = 0  for all 
functions v τ( ). Hence, from (22) it follows 

 S T h g I u K u dT
m

T h

-( ) + + ( )  ( ) + ( ) + ( ) + ( ) ( )



-

∫, ,τ λ τ τ y τ ϕ τ θ τ θ θ2

0

G








= 0.  (23)

The solution of (23) can be represented as 

 u t u t u t u t L t gg ( ) = ( ) + ( ) ( ) = ( )1 2 2

1
, .where

λ
 (24)

Here the vector u t1( ) and the n r×( )-matrix L t( ) satisfy the following integral equations

K t u d u t I t t t L t S T h t
T h

θ θ θ y ϕ, , ,( ) ( ) + ( ) + ( )( ) + ( ) + ( ) = ( ) + -
-

∫ 1 1

0

2 0 2G (( ) + ( ) ( ) =
-

∫ K t L d
T h

θ θ θ, .

0

0  

To show this it is sufficient to substitute (24) into (23), which gives

S T h g u t
L t g

I u KT
m

T h

-( ) + ( ) + ( )





+ ( )  + ( ) ( )
-

∫, ,τ λ
λ

τ τ θ τ2 1

0

G uu
L g

d

S T h LT

1 θ
θ
λ

θ

y τ ϕ τ τ τ

( ) + ( )
















+

+ ( ) + ( ) = -( ) + ( ) +, KK L d g

u I u

T h

m
T

θ τ θ θ

λ τ τ y τ ϕ τ τ

,( ) ( )








 +

+ ( ) + ( )( ) + ( ) + ( ) + (

-

∫
0

12 G )) ( ) ( )












=
-

∫ K u
T h

θ τ θ, .1

0

0
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The unknown multiplier λ can be determined by the fact that the required control function satisfies the 

condition u u dT
T

τ τ τ( ) ( ) =∫
0

1. Hence, using (20) yields 

Y u L g I u L g
T

m+ ( ) + ( )





+ ( )( ) ( ) + ( )

















1 1

1 1τ
λ

τ τ τ
λ

τG dd

u L g d

u

T h

T
T h

τ

y τ ϕ τ τ
λ

τ τ

τ
λ

0

1

0

1

1

1

-

-

∫

∫

+

+ ( ) + ( )( ) ( ) + ( )





+

+ ( ) + LL g u L g d d
TT h

τ θ τ θ τ τ
λ

τ θ τ( )





( ) + ( )( ) ( ) + ( )





=
-

∫ Ψ Φ, , 1

0

1
1

00

T h-

∫ .

This leads to the following equation for λ: a b c1
2
1

0
2λ λ

+ + = , where the required coefficients are 

 a g L L gd g L K L d dT T
T h

T T
T hT h

= ( ) ( ) + ( ) ( ) ( )
- --

∫ ∫∫τ τ τ τ θ τ θ θ τ
0 00

, ,  (25)

b u L gd L gd g L KT
T h T h

T T= ( ) ( ) + ( ) + ( )  ( ) + ( )
- -

∫ ∫1

0 0

τ τ τ y τ ϕ τ τ τ τ θ τ,(( ) ( )
--

∫∫ u d d
T hT h

1

00

θ τ θ,

 

c Y u I u d u dT
T h T h

= - + ( ) + ( )( ) ( ) + ( ) + ( )( ) ( ) +
- -

∫ ∫1 21 1

0

1

0

τ τ τ τ y τ ϕ τ τ τG

++ ( ) ( ) + ( )  ( )
--

∫∫ u u d dT
T hT h

1 1

00

τ θ τ θ τ θ τ θΦ Ψ, , .

 

(26)

Thus, the required λ is the positive root of this equation, and the optimal control for the given T is defined 
by the formula (24). Substituting the obtained control function u tg ( ) of (24) into (14) and noting theorem 2 we 
have shown that the optimal control function for the considered integral constraints (17) and the given above 
assumptions can be presented by the following theorem.

Theorem 3. Optimal time T  0 for the optimisation problem (1) – (3) with integral constraints (17) is the 
minimal root of the equality 

 max
g

T T
g

T h

g s T h f g x g S T h u d
=

-

-( ) + -( ) ( )











=∫

1
0

0

0, , , , τ τ τ  (27)

and the corresponding optimal control is given as 

 u t
u t t T h

Nx t h My t h t T h T

g
0

0

0 0 0 0

0 0

( ) =
( ) ∈ - )

-( ) + -( ) ∈ - 

 , , ,

, , ,




 (28)

where u tg ( ) is given by (24), the vector g0 realises maximum in (27) and the matrices M, N are defined by 
formulas (8) and (9).

It should be noted that the proposed method can be applied for solution of constrained optimisation prob-
lems with different types of the cost functional. The following example demonstrates the possibility of such 
application.

Example. The given illustrative example shows the practical steps to realise the analytical calculations 
based on the obtained results to solve the optimisation problem with an energy cost functional. In order to 
demonstrate the main stages of these calculations we consider the following equation with control input 

 x t x t u t t( ) = - -





+ ( ) ∈





π π
2

0
3

2
, , ,  (29)

and the initial data 
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 x t t x( ) ≡ ∈ -



 ( ) =0

2
0 0 1, , , .

π  (30)

The considered example is a particular case of the system (1) – (3), where 

A B h T U R r- = = = = = =1

1
1 1

2

3

2
1, , , , ,

π π

and other coefficients are trivial.
Consider the following problem: minimise the cost functional 

 J u J u u t dt
u

( ) → ( ) = ( )∫min,

/

2

0

3 2π

 (31)

over the solutions of (29), (30) subject to the constraints of the form 

 u u d x t tT
T

τ τ τ π π( ) ( ) ≤ ( ) ≡ ∈ 



∫

0

1 0
3

2
, , , .  (32)

Let M J u0 0= ( ) be the optimal cost value for the problem (29), (30). Consider the following time optimal 
problem: minimise 
 T → min (33)
over the solutions of the control system 

 x t x t u t t T( ) = - -





+ ( ) ∈[ ]π
2

0, , ,  (34)

with the initial conditions (30) and the constraints of the form

 u t dt M x t t T T
T
2

0

0
0

2
( ) ≤ ( ) ≡ ∈ -



∫ , , , .

π  (35)

It is easy to show that the optimal solution for the problem (33) – (35) is T 0 3

2
= π. Thus, the optimisation 

problems (29) – (32) and (33) – (35) are equivalent. Hence, the proposed method can be used for solution of the 
given problem (29) – (32). 

Step 1: representation of equation solution.
In our case, the function F t, τ( ) from the formula (5) satisfies the equation 

 
∂ ( )

∂
= +



 ( ) ≡ > ( ) =

F t
F t F t t F t t

,
, , , , , , .

τ
τ

τ π τ τ
2

0 1  (36)

It is easy to check that the function 

 F t e ti t
,

,

, ,

,τ τ
τ

τ

( ) = ≤
>







- -( )
if

if0 0
 (37)

is the solution of the equation (36), where i in (37) means imaginary unit (i 2 = –1). Thus, the solution of the 

system (29) with the initial data (30) for t ∈ 





0
3

2
,

π  is given as 

 x t F t x F t u d e e u d e
t

it i t
t

i( ) = ( ) ( ) + ( ) ( ) = + ( ) =∫ ∫- - -( ) -
, ,0 0

0 0

τ τ τ τ ττ tt i
t

e u d1

0

+ ( )








∫ τ τ τ .  (38)

The problem statement says that we exploit the real valued functions. Using the known formula for eiϕ the 
corresponding real part of x t( ) in (38) can be extracted when it is necessary. 

Step 2: structure of the optimal control.
In order to determine the optimal control function, we need to calculate the functions Φ τ θ, ,( )  K τ θ,( ) and 

other constants γ, a, b, c which are required in (28). Note that in our case H1 = 0, H2 = 1, Hj = 0, V1 = 1, Vj = 0, 

Mj = 0, ϕ τ( ) = 0, y τ

π

π
τt e x e dt iei t it i( ) = ( ) = -- -( ) -∫ 0

2/

.  Since the problem is given in real valued terms, we are 

needed to pick the real parts in the obtained functions Re sin ,y τ τ( ) =  Im cos .y τ τ( ) = -  Further, 
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K F t F t dt

i

τ θ τ θ

θ τ θ τ τ θ π τ θ

π

π

, , ,

cos sin sin sin , , ,

/

( ) = ( ) ( ) =

- ≥ ≤ ≤

∫2
2

2

33

2

2

3

2

0 0
2

π

τ θ τ θ τ θ π τ θ π

τ θ π

,

cos sin sin sin , , , ,

, , .

i - > ≤ ≤

≤ ≤















Thus, the real part of the function K is K τ θ θ τ, sin sin( ) = -  for π τ θ π
2

3

2
≤ ≤, .  It is easy to see that 

K Kτ θ θ τ, , .( ) = ( )  According to the formula (28), the optimal control function for t ∈ 





0
3

2
,

π  is represented 
as follows 
 u t v t w t w t L t gg( ) = ( ) + ( ) ( ) = ( ), .where

1

λ
 (39)

Step 3: solution of integral equations.

The scalar function v t t( ) ∈ 





, , ,0
3

2

π  from (39) satisfies the following integral equation 

 2 2 0

0

v K v dτ y τ τ θ θ θ
π

( ) + ( ) + ( ) ( ) =∫ , .  (40)

If τ π∈ 





0
2
,  then K τ θ,( ) ≡ 0 and hence from (40) it follows that v τ y τ τ( ) = - ( ) = -sin , τ π∈ 





0
2
, . If 

τ π π∈ 



2

3

2
,  then for the unknown function v τ( ) we have the following integral equation 

 sin sin sin .τ θ θ θ τ τ
π

v d v( ) - ( ) =∫
0

 (41)

Denote sin .θ θ θ
π

v d W( )∫
0

  Multiplying (41) by sin τ and integrating the obtained relation with respect to τ 

over the interval 0, ,π[ ]  we have

sin sin sin sin .
2

0 0 0

2

0

τ τ θ θ θ τ τ τ τ τ
π π π π

d v d v d d∫ ∫ ∫ ∫( ) - ( ) =

Noting that sin2
0

2
τ τ ππ

d∫ =  and sinτ τ τ
π

v d W( ) =∫
0

 we have the following algebraic equation with respect to 

the unknown value W: W π π
2
1

2
-





=  and hence W =
-
π

π 2
. Then from (41) we have v Wτ τ τ

π
τ( ) = - =

-
sin sin sin

2

2

v Wτ τ τ
π

τ( ) = - =
-

sin sin sin
2

2
 and v τ

τ τ π

π
τ τ π π

( ) =
- ∈ 





-
∈ 














sin , , ,

sin , , .

0
2

2

2 2

3

2

The function L τ( ) of (39) satisfies to the following integral equation: 

2 0

0

L K t L d Sτ θ θ θ π τ
π

( ) + ( ) ( ) + ( ) =∫ , , .

In our case S π τ
τ τ π

τ π
,

cos , ,

, .
( ) =

- ≤
>



0

 

Analogously to v τ( ) it can be shown that the required function is L τ
τ τ π

τ π π( ) =
∈[ ]

∈ 













cos , , ,

, , .

0

0
3

2
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Hence, the optimal control function is given as u t v t L t gg ( ) = ( ) + ( )1

λ
. Here, the parameter λ is determined as 

the positive solution of the following algebraic equation a b c1
2
1

0
2λ λ

+ + = ,  where 

- = -( ) ( ) = = = - + ( ) + ( )(
-

∫ ∫a S T h L d d c
T h
1

2

1

2

1

4
1

0

2

0

, cos ,τ τ τ τ τ π γ y τ ϕ τ
π

)) ( ) =

= - + +
-

= +

-

∫

∫ ∫

v d

d d

T h

τ τ

γ τ τ τ τ
π

τ τ γ
π

π

π
0

0

2

2

1 2
2

2
sin sin sin sin

/

/

ππ - =1

2
0, .b

Here, γ τ τ τ τ= -( ) + -( )  -( ) + -( ) 
-
∫ Ns h x Mr h Ns h x Mr h dt

T

T h

T

, , ,0 0  where the coefficients M, N are 

given by (9). Since r τ( ) = 0,  s t x e e dt iit it
, ,

/

0

2

( ) = =-∫
π

π

 γ = i then the required in (25), (26) parameters are c = -π 1

2
,  

b = 0, a = - π
4
. Hence, the required positive root is λ π

π
∗ =

-2 2
. Thus, the optimal control function is given as 

u t

t g t t

t g t tg ( ) =

+ ∈ 





-
+ ∈ 



∗

∗

sin cos , , ,

sin cos , ,

λ
π

π
π λ

π π

0
2

2 2




-
+ ∈ 

















 π

π
π π

2
0

3

2
sin , , .

,

t t

Step 4: minimal root of the equality (27). 
According to (28), the unknown g is determined as the maximising element in the equality max , ,

g
g T

=
( ) =

1
0L  

where L g T gs T h x gF T h u dg

T h

, , , .( ) = -( ) + -( ) ( )
-

∫0

0

τ τ τ  In our case, we have max cos , .
g gg gF u d

≠
+ ( ) ( )












=∫

0
0

0π π τ τ τ
π

max cos , .
g gg gF u d

≠
+ ( ) ( )












=∫

0
0

0π π τ τ τ
π

 After simplifying, we have

max cos sin cos cos sin
*

/

g
g g g d g

≠
- + -( ) +





+ -( )
-∫

0
0

2

2
τ τ

λ
τ τ τ π

π

π

ττ
λ

τ τ

π
π

π

π

+

















=

= - +
-( )








∫

≠

g d

g
g

*

/

cos

max

2

0

3

2 2 2
 - 
















= - + - -

-










=
g g g

g

2

1

2

2
1

2 2 6

2 4

π
λ π

π
π*

max


= 0.

The maximising element for this equality is g0 6 2

2 4 2
= -

- +
π

π
π

π
. Finally, the optimal control is given as 

u t

t t t

tg
0

6 2

2 4

2 2

2
0
2

2

6 2( ) =

+ -
-

-
+

∈ 





-
+ -

sin cos , , ,

sin

π
π

π
π

π

π
π

π
22 4

2 2

2 2

2

3

2

π
π

π
π π

π
π

π π

-
-

+
∈ 





-
∈ 













cos , , ,

sin , , .

t t

t t
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Conclusion
This work covers only the first attempts to investigate the optimisation problems for the considered hybrid 

processes, and hence a rich material to be the subject for further work. In particular, our interest is the optimal 
control problem where the state variables at the final interval α α, +[ ]h  are equal to the pre-assigned functions 
x t t( ) = ( )ϕ , y t t( ) = ( )y , t h∈ +[ ]α α,  (see, also, [11]). Also, it is worth mentioning here that the approach 
of the supporting control functions setting described in [12] can be used for the design of the numerical algo-
rithms with good conditioning properties. These problems are subject of ongoing work and will be reported in 
due course.
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