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The paper proposes an identification technique of objects on the Earth’s surface images based on combination of
machine learning methods. Different variants of multi-layer convolutional neural networks and support vector machines
are considered as original models. A hybrid convolutional neural network that combines features extracted by the neural
network and experts is proposed. Optimal values of hyperparameters of the models are calculated by grid search methods
using k-fold cross-validation. The possibility of improving the accuracy of identification based on the ensembles of these
models is shown. Effectiveness of the proposed technique is demonstrated by the example of images obtained by synthetic
aperture radar.
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Introduction

Remote sensing of the Earth is an observation of the Earth’s surface by ground, aviation and space ima-
ging means. Wavelengths received by the imaging equipment ranges from visible optical to radio waves.
A multi-channel equipment of the passive and active types is used, that registers an electromagnetic radiation.
Passive sensing methods use the natural reflected or secondary thermal radiation of Earth’s objects due to solar
activity. Active methods use stimulated emission of the objects, initiated by an artificial source. Remote sen-
sing data is characterised by a large degree of dependence on the transparency of the atmosphere.

Digital data are represented as a two-dimensional image for each spectral range in the form of a matrix
(two-dimensional array) of numbers / (i, J ) of the intensity of radiation received by a sensor from elements of
the Earth’s surface, which correspond to pixels of the image, where (i, j) are coordinates of the pixels. If the
image is obtained in several ranges of the electromagnetic spectrum, it is represented by a three-dimensional
matrix consisting of the numbers / (i, J» k), where k is the number of the spectral channel. Thus, the informa-
tion obtained during remote sensing is data with spatial relationships between the features 1(i, ;).

Artificial neural networks (NNs) are successfully applied for solving image processing problems including
object identification. Researches in the field of increasing the efficiency of identification based on NN theory
are carried out in the following two main directions.

1. Development of the unique most appropriate multi-layer hybrid NN model for object identification on
images which combining some popular NN models to solve the realistic identification process efficiently. This
model is constructed from at least two different types of NNs. The first part of the architecture is aimed to
image pre-processing and feature extraction, the second — directly to object detection. There are known diffe-
rent NN combinations for this goal: multi-layer perceptron, convolutional neural network (CNN), self-orga-
nising map, long short-term memory, NN realisation of principle component analysis, several support vector
machines (SVMs), recurrent NN, etc. [1-4].

2. Development of ensembles of neural networks (ENN). They are sets of NNs making decision by avera-
ging the results of individual NNs improving the identification quality [3; 5; 6].
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In recent years, deep NNs have been most successfully used for processing on images obtained by Earth
remote sensing [7]. Our work combines the above-mentioned approaches by using an ensemble of hybrid
CNNs and SVMs to solve an image identification problem: to discern the nature of image components (ob-
jects). The main contribution of the paper is to distinguish the objects of the known class from the objects of
alien classes (one-class classification). Effectiveness of the proposed technique is demonstrated on the task to
identify objects of two classes on images obtained by synthetic aperture radar.

Methods and algorithms

The architecture of CNNs was proposed by LeCun [8] and it is aimed at effective image recognition.
The NN architecture got its name because of convolution operations, where each image fragment is multiplied
by the convolution matrix (kernel) element by element, and the result is summed up and written to the same
position [9]. CNN is usually an alternation of convolutional layers, pooling layers, dense layers and an output
layer. Additionally, a dropout layers can be used.

The dense (fully connected) layer connects each neuron with all neurons at the previous level. Each con-
nection has its own weight. In the convolution layer (in contrast to the dense layer), a neuron is connected only
with a limited number of neurons of the previous level. The convolutional layer is similar to the use of the
convolution operation, which uses only a weight matrix of a small size (convolution kernel). The pooling layer
performs dimension reduction. This can be done in various ways, but the method of selecting the maximum
element is often used — the previous layer output is divided into cells, the maximum value is selected in each
cell that is transferred to the next layer. The dropout layer is a matrix of coefficients and can be used together
with all mentioned layers for a weight regularisation. The regularisation (dropout) consists in changing the
NN structure: each neuron turns off with a certain probability at a stage of a training using stochastic gradient
descent. The training is performed on a thinned NN, and a gradient step is made for the remaining weights.
The output layer performs a class of identified objects.

The accuracy of identifying objects can be improved using ENNs [10—12]. It is necessary to realise the
variability of NNs in the ensemble. The following approaches or their combinations can be applied for this
purpose:

» using different parts of the training set;

* random initialisation of NN weights;

« variation of NN architectures in the ensemble (adding hidden layers, adding or deleting neurons of the hidden
layer).

The output value of the ensemble is formed as a weighted sum of the outputs of the individual NNs. This
approach is illustrated in fig. 1. For the case with one output neuron, the result is calculated by the equation

y:zyiwia
i=1

where 7 is the number of the NNs; v, is the output of the i NN; w; is the weight of the i NN, which is calculated
by the formula
A,

_ i

=-, y
2.4,
Jj=1

where 4, is a chosen measure of error calculated for the i NN; n is the number of NNs.

SVM is one of the most popular supervised learning methods proposed by Vapnik [13]. It creates a hyper-
plane or a set of hyperplanes in a multi-dimensional space that can be used to solve problems of classification,
regression and other close problems. If the data is linearly inseparable, a non-linear kernel is applied, which al-
lows to map the source data to a space of higher dimension, where an optimal separating hyperplane can exist.

The method is recommended for processing a small set of features. Therefore, it can be chosen as the main
method for forming a model from manually selected features of objects in the image. Thus, CNNs that receive
input data directly in the form of images and SVMs that make decisions on selected features of objects can be
combined into an ensemble (fig. 2). This scheme can be modified by submitting additional features, formed
without using images, directly to the input of the SVM classifiers. CNN can be modified similarly. The net-
work can be divided into several branches for data processing (fig. 3).

One branch performs automatic feature extraction on the image using standard CNN layers, the weighting
coefficients of which are determined by gradient methods during training. The other branch may include a set
of predetermined processing procedures to form an additional set of features for each input image. Also, the
sets of external features can be submitted to the hybrid model. This model involves two stages of training.

W
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Fig. 3. Hybrid convolutional neural network

At the first stage, the first branch of the network is trained until sufficient accuracy is achieved, or before
stopping by early stopping methods. At the second stage, the weights of the convolutional layers of the network
are fixed and the training is carried out only for fully connected layers, where the features from convolutional
layers, the manual set of features and the external features come together.

The proposed technique based on an ensemble of models for identifying objects of remote sensing of the
Earth consists of the following steps.

Step 1: description of source data, the objects for identification and model quality measures (problem
statement).

Step 2: formation of a training set: data collection, preprocessing, marking of the output set.

Step 3: searching additional features to solve the problem.

Step 4: expansion of the training set with additional features.

Step 5: splitting the training set into training and test sets.

Step 6: determination of the model’s architecture based on the source data.

Step 7: determination of the hyperparameters range of the selected architecture.
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Step 8: determination of the optimal model hyperparameters by grid or random search [14] using the
k-fold cross-validation on the training set.
Step 9: forming an ensemble based on cross-validated models.
Step 10: if the model satisfies the quality measure on the test set, then the problem is solved, otherwise, it
is necessary to expand the data set and go to step 4.

Experiments

The experimental data are images obtained using synthetic aperture radar (SAR), which allows taking radar
images of the Earth’s surface and objects on it, regardless of meteorological conditions and the level of the
natural light of the area under observation. They include [15]:

* the images in two polarisation modes: horizontal — horizontal (HH), horizontal — vertical (HV); each image
contains one object: a ship or an iceberg (fig. 4);

e incidence angle;

* data set: 1604 images with the size 75 x 75.

Data set was divided into 80 % training part and 20 % test part, so we use 1283 samples for training ENN.

Additionally, experiments were carried out on an extended data set. A simple augmentation technique was
used for this: horizontal flip, vertical flip, 90-degree clockwise rotation, horizontal flip and vertical flip for the
rotated image. In this case, we have 7698 samples for training.
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Fig. 4. Sample images: a — ship; b — iceberg

Training part was used for cross validated grid search, and test part was used for evaluation.

The task is to identify objects of two classes: an iceberg or a ship, which is essentially a binary classification task.

Efficiency in the classification problem can be assessed using accuracy — this is a basic measure that shows
the proportion of correct model responses. For the binary classification problem, when the model derives the
class probabilities, the logarithmic loss (logloss) function is used:

L==7 3 {og(5) (1= oe(1 - 5,

i=

where . is a model response on the i object; y is a true class label on the i sample; / is the number of samples.
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The minimisation of L can be represented as the task of maximising accuracy by a penalty for incorrect
predictions. However, it should be noted that L is heavily penalised for the classifier’s confidence in the wrong
answer. Therefore, an error on one object can give a significant increase in the total error. Such samples are
often outliers, which must be filtered or treated separately.

Based on the analysis of the initial data, the following baseline CNN is proposed (network parameters were
chosen empirically):

*size of the input layer: 75 x 75 x 3;

* 2D convolutional layer 1 consists of 64 kernels with size 3 X 3, the activation function is rectified linear
unit (ReLU);

* pooling layer with 2D max pooling and pool size of 2 x 2;

* dropout with probability 0.3;

* 2D convolutional layer 2: 128 kernels with size 3 x 3, RELU;

* 2D max pooling 2 x 2;

* dropout with probability 0.3;

* 2D convolutional layer 3: 128 kernels with size 3 x 3, RELU;

* 2D max pooling 2 x 2;

* dropout with probability 0.3;

* 2D convolutional layer 4: 64 kernels with size 3 x 3, RELU;

* 2D max pooling 2 x 2;

* dropout with probability 0.3;

« fully connected layer of 1024 neurons, RELU;

* dropout with probability 0.5;

» fully connected layer of 512 neurons, RELU;

* dropout with probability 0.5;

* the output fully connected layer of two outputs with a softmax activation function.

The CNN accepts a pseudo image in which the first image channel is represented by the HH channel of
the original data, the second channel is represented by the HV image channel, and the third image channel is
represented by their composition in form of a normalised sum.

The CNN training is performed using the Adam stochastic gradient algorithm [16]. Cross-validation is per-
formed for £ = 5. Each model was trained for 60 epochs. The batch size is 32. Early stopping procedure [23]
was used with patience equal to 10. Starting learning rate parameter was 1e-4. It was reduced by factor equal
to 0.5 based on «reduce LR on Plateau» [24] algorithm with the patience equal to 7 (the patience means the
number of epochs with no improvement after which the learning rate begins to reduce). Finally, the ensemble
of five CNN models was formed.

In addition to the proposed ENN, single models and ensembles based on them were considered using the
following widely used architectures: VGG16 [17], ResNet50 [19], EfficientNet-B0 [20], Xception [18], Mo-
bileNet-v2 [22], DenseNet-121 [21]. To build the ensemble base model convolutional layers were taken from
each model and three fully connected layers were added.

During the experiments, architectures with a small number of weights were selected, since the input data
has a low dimension and a low detail. The ensembles of the best models from all trained models were also
analysed.

For feature extraction, all input images were binarised using manually selected threshold. After this ope-
ration there was a mask for target objects on each image that presented any pseudo image. Also 61 features
extracted from the pseudo images:

« 10 moments of the 1" and 2™ order calculated for both HH and HV images that describe an object shape;

* global statistics (mean, maximum, minimum, variance for both HH and HV images);

« differences in global statistics (3 features for both HH and HV images);

* global statistics in the masked area (mean, maximum, minimum, variance, a sum for HH and HV images);

* local statistics (maximum local standard deviation, 6 maximum values differences, variance for both HH
and HV images);

e incidence angle.

Using this set of features, the ensemble of SVM models with a non-linear Gaussian kernel is trained, for
which the optimal parameters C (SVM hyperparameter) and y (Gaussian kernel parameter) of the model were
determined by random search. Also, the weighted ensemble of CNN and SVM models is formed. Additionally,
a hybrid CNN model is formed (see fig. 3) that combines the features extracted by convolutional layers and the
set of 61 manual features.

The result of the evaluation of these models is presented in table 1. The result of the evaluation of model
ensembles on augmented data is presented in table 2.
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Table 1
Model evaluation
on Statoil/C-CORE Iceberg Classifier without augmentation
Model | Logloss Accuracy Parameters
Five-fold cross validated
EfficientNet-BO 0.482 82.118 5886 621
ResNet50 0.392 86.044 26 211 201
Xception 0.471 86.667 23 484 969
VGGl16 0.599 61.246 15765313
MobileNet-v2 0.695 50.156 4 095 041
Baseline CNN 0.321 86.791 888 897
DenseNet-121 0.336 87.601 8612417
Five-fold ensemble
EfficientNet-BO 0.306 87.539 29 433 105
ResNet50 0.267 87.850 131 056 005
Xception 0.286 90.031 117 424 845
VGGl6 0.567 79.439 78 826 565
MobileNet-v2 0.695 50.156 20475 205
Baseline CNN 0.279 86.916 4 444 485
DenseNet-121 0.240 89.408 43 062 085
Top-5 model ensemble 0.227 91.277 75533421
Top-10 model ensemble 0.226 90.966 160 489 110
Weighted ensemble by loss
EfficientNet-BO 0.293 87.227 29433 105
ResNet50 0.272 87.227 131 056 005
Xception 0.279 90.343 117 424 845
VGGl6 0.454 81.308 78 826 565
MobileNet-v2 0.695 50.156 20475 205
Baseline CNN 0.279 87.227 4 444 485
DenseNet-121 0.252 89.408 43 062 085
Top-5 model ensemble 0.228 91.900 75533421
Top-10 model ensemble 0.221 92.211 160 489 110
SVM ensemble 0.303 86.292 7241
Top-5 CNN + SVM ensemble 0.227 92.523 75 540 662
Hybrid CNN 0.248 90.654 905 025
Table 2
Model evaluation
on Statoil/C-CORE Iceberg Classifier on augmented data
Model Logloss Accuracy Parameters
Five-fold cross validated
EfficientNet-BO 0.434 85.234 5 886 621
ResNet50 0.332 87.664 26 211 201
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Ending table 2

Model Logloss | Accuracy Parameters
Xception 0.381 87.850 23 484 969
VGG16 0.672 54.330 15765 313
MobileNet-v2 0.542 75.514 4 095 041
Baseline CNN 0.302 86.854 888 897
DenseNet-121 0.326 87.539 8612417

Five-fold ensemble

EfficientNet-BO 0.279 89.408 29433 105
ResNet50 0.249 89.097 131 056 005
Xception 0.256 90.966 117 424 845
VGG16 0.661 50.156 78 826 565
MobileNet-v2 0.366 87.227 20475 205
Baseline CNN 0.277 88.162 4 444 485
DenseNet-121 0.243 90.654 43 062 085
Top-5 model ensemble 0.243 90.966 90 405 973
Top-10 model ensemble 0.241 90.031 155490 078

Weighted ensemble by loss

EfficientNet-B0 0.277 89.408 29433 105
ResNet50 0.261 89.097 131 056 005
Xception 0.255 90.654 117 424 845
VGG16 0.596 70.405 78 826 565
MobileNet-v2 0.313 87.539 20475 205
Baseline CNN 0.269 87.539 4 444 485

DenseNet-121 0.244 90.343 43 062 085
Top-5 model ensemble 0.252 89.719 90 405 973
Top-10 model ensemble 0.245 90.343 155490 078

First of all, it should be noted that with the selected training parameters in the base data set, some models
could not find a solution (see VGG16 and MobileNet-v2 in table 1). For MobileNet-v2, the situation is im-
proved with a data set augmentation. The data set augmentation technique used for this task has increased the
accuracy of single models and an ensemble of models of the same architecture.

As can be seen, the complication of the model architecture gives a slight increase in accuracy. At the same
time, the number of weighting parameters of the model greatly is increased when using a more complex ar-
chitecture.

The weighted ensemble makes the possibility to improve the accuracy of some models on the base data set.
At the same time, on the extended data set, the accuracy of the ensemble either remained unchanged or slightly
is decreased. It can be said that weighting improves the overall accuracy of the ensemble in the case when it
can contain both too weak and strong models. Otherwise, when all models are about the same level, weighting
does not improve the classification.

The SVM ensemble, as a classical approach, has shown low accuracy for this task in comparison with
the ENNs. However, the ensemble of the CNN and the SVM models shows the highest accuracy on the test
data set.
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So, the combination of models of different architectures and training methods can significantly increase the
efficiency of classification. At the same time, the amount of consumed resources also increases accordingly.
For an ensemble of five models, the memory consumption is increased fivefold. And since the models learn in-
dependently, there is no way to use shared weights. Also, when each model is applied sequentially to the input
data, the inference time is increased fivefold. It makes sense to use the models with low memory consumption
in this case. Also, independent model training gives a possibility to produce parallel inference on the models
without increasing time.

Conclusion

The technique based on an ensemble of models for identifying objects of Earth remote sensing images was
proposed. It includes the following steps: preparing data, object feature extraction, creating base identification
models, optimising the model’s hyperparameters, construction of the ensemble, processing the data by the
ensemble.

The technique was applied to binary clastering of images obtained by synthetic aperture radar. Evaluation
of the proposed models on experimental data has showed that one of the effective ways to increase accuracy
in machine learning tasks is to form an ensemble of heterogeneous models trained on different sets of input
features.
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