Z[I/ICKPETHAH MATEMATHUKA
N MATEMATHUYECKAA KUBEPHETUKA

DISCRETE MATHEMATICS
AND MATHEMATICAL CYBERNETICS

VIIK 681.32

PACKPACKA CMEHIAHHOI'O I'PA®A
KAK IIOCTPOEHHME PACIIMCAHNA OBCAYJXUBAHWA
MHOTOITPOOECCOPHBIX TPEBOBAHUVUN
C OAMHAKOBBIMU AAUTEABHOCTAMMN

10. H. COTCKOB"

DO6veounennwviii uncmumym npoénem ungpopmamuru HAH Benapycu,
ya. Cypeanosa, 6, 220012, 2. Munck, Berapyce

3ajada 00CITyKMBAHHSI YaCTHYHO YIOPSIIOYEHHBIX €IMHUYHBIX TPEOOBAHUI MMOCIIEI0BATEILHBIME TPHOOpamMu Gop-
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puBaeMou 3anade GcMPT| D= 1|C
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JOJIKHO BBINTOJIHATHCA HEKOTOPOEC IMOAMHOKECTBO Tpe60BaHHﬁ OTHOBPEMEHHO. Ha ocHoBanuu JOKa3aHHBIX B CTAThE TCO-

peM yTBEp)KIOaeTcs, YTO MHOKECTBO aHAIMTHYECKHUX PE3yNbTaToB, MONYyUYEeHHBIX paHee it 3axad GeMPT | 2= 1| C
MMEIOT aHAJIOTH JJISl ONITUMAJIBHBIX PACKPACOK CMEIIaHHbIX rpadoB G = (V, A, E ), 1 Ha000pOT.

max?

Kniouessle cnosa: ontTuMu3alysi; pacliicaHue ¢ eIMHUYHBIMUI JUTUTENILHOCTSIMU; OBICTPOZACIHCTBHE; CMENIaHHBIN rpad;
BEpIIMHHAs PacKpackKa.

bnazooaprnocms. 310 riccne0BaHIE BRITOTHEHO NP YaCTHYHOH (prHAHCOBOM oanep:kke bemopycckoro pecmyomm-
KaHCKoro (hoHnIa pyHIaMEHTATBHBIX HcchenoBanuii (mpoekT Ne ©21-010).

MIXED GRAPH COLOURING AS SCHEDULING
MULTI-PROCESSOR TASKS WITH EQUAL PROCESSING TIMES

Yu. N. SOTSKOV*

*United Institute of Informatics Problems, National Academy of Sciences of Belarus,
6 Surhanava Street, Minsk 220012, Belarus

A problem of scheduling partially ordered unit-time tasks processed on dedicated machines is formulated as a mixed
graph colouring problem, i. e., as an assignment of integers (colours) {1, 2, ..., t} to the vertices (tasks) V' = {vl, Vo, eues vn}
of the mixed graph G = (V, A, E ) such that if vertices v, and v, are joined by an edge [vp, vq] € E, their colours have to be
different. Further, if two vertices v; and v; are joined by an arc (vi, vj) € A, the colour of vertex v; has to be no greater than

the colour of vertex v,. We prove that an optimal colouring of a mixed graph G = (V, 4, E) is equivalent to the scheduling
problem GeMPT | D= 1|Cmax of finding an optimal schedule for partially ordered multi-processor tasks with unit (equal)
processing times. Contrary to classical shop-scheduling problems, several dedicated machines are required to process an
individual task in the scheduling problem GeMPT | pi= 1|C
set V= {vl, Vs vees V) }, it is required that a subset of tasks must be processed simultaneously. Due to the theorems proved
in this article, most analytical results that have been proved for the scheduling problems GeMPT | D= 1|Cmax so far, have
analogous results for optimal colourings of the mixed graphs G = (V, A E ), and vice versa.

Moreover, along with precedence constraints given on the

max*

Keywords: optimisation; unit-time scheduling; makespan; mixed graph; vertex colouring.
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Introduction

Scheduling models with the prerequisite of equal (or unit) processing times to all given tasks are an approxi-
mation of coping with mass-industrial productions and manufacturing of similar items, particularly for a job-
shop manufacturing problem that allows managers to personalise each individual item [1]. Such a scheduling
problem with unit-times and the minimisation of the makespan is equivalent to an optimal graph colouring that
consists of assigning a minimal number of colours to vertices of the graph such that no two adjacent vertices
have the same colour. When a scheduling problem requires both precedence and incompatibility constraints,
one needs to use a mixed graph colouring introduced in [2] for a formulation of the unit-time scheduling
problem. Since the publication of article [2] in 1976, many studies of unit-time scheduling problems with the
makespan criterion are based on mixed graph colourings.

Let G= (V, A, E ) denote a finite mixed graph with non-empty set V' = {vl, Vs oo vn} of the vertices placed
at the first position in parenthesis, arc set 4 at the second position, and edge set £ at the third position. An arc

(vi, vj) € A defines the ordered pair of vertices v; and v,. An edge [vp, vq]e E means an unordered pair of
vertices v, and Ve In what follows, we assume that a mixed graph G = (V, A, E ) contains no multiple arcs, no
multiple edges, and no loops. If the set 4 is empty, we have a graph G =(V, &, E). If the set E is empty, we
have a digraph G = (V, A, @). In article [2], a mixed graph colouring is introduced as follows.

Definition 1 [2]. An integer-valued function c:¥ —{L, 2, ..., ¢} is a colouring ¢(G) of the mixed graph

G=(V, 4, E), if the non-strict inequality c(v,)< c(vj) holds for each arc (vi, vj)e A and c(vp);t c(vq) for
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each edge [vp, vq] € E. A mixed graph colouring c(G) is optimal, if it uses a minimal possible number X(G)

of different colours c(vl.) € {1, 2,..., t}, such a minimal number x(G) being called a chromatic number of the
mixed graph G = (V, A, E)

If A =, a colouring ¢(G) is the usual colouring of the vertices of the graph G =(V, &, E). Contrary to
a colouring of the vertices of the graph G = (V, @, E) existing for any graph G = (V, D, E ), a mixed graph
G=(V, 4, E) with A # & and E # & may be uncolourable. A criterion for the existence of a colouring ¢(G)
for the mixed graph G is proved in [2].

Theorem 1 [2]. 4 colouring c(G) of the mixed graph G=(V, A, E) exists if and only if the digraph
(V, A, @) has no circuit containing adjacent vertices in the graph (V, K, E)

A mixed graph G = (V, A E ) is colourable, if there exists a colouring c(G) of the mixed graph G, other-
wise, a mixed graph G =(V, 4, E) is uncolourable.

Finding an optimal colouring c(G) of the mixed graph G=(V, A, E ) is an NP-hard problem, even if
A =D [3]. In articles [4; 5], it is shown that a job-shop scheduling problem with unit processing times of all
operations and the minimisation of a schedule length (makespan) may be represented as an optimal colouring
c(G) of the specified mixed graph G = (V, A E ) In article [6], it is shown that any job-shop scheduling prob-
lem with unit processing times of all operations and the minimisation of a total completion time (TCT) may be
represented as a mixed graph colouring c(G) minimising a sum of colours of path-endpoints of the specified
mixed graph G = (V, A, E) (see also articles [7; 8]).

The unit-time scheduling problem with minimising makespan is NP-hard even for three dedicated ma-
chines (processors) [9]. The complexity of a job-shop scheduling problem with a fixed number of jobs (and
a fixed number of machines) is investigated in articles [10—13].

Since the NP-hard unit-time flow-shop scheduling problem [14] is polynomially reduced to the job-shop sche-
duling problem to minimise the TCT, the latter problem is also NP-hard. The complexity of a job-shop scheduling
problem with any regular criterion is investigated in [10; 11; 13; 15]. The complexity of a mixed shop-sche-
duling problem is studied in [16; 17]. A different connection between mixed graph colourings and unit-time

shop-scheduling problems is studied in [18-24]. Article [25] presents a comprehensive survey on mixed graph
colourings and the equivalent unit-time shop-scheduling problems.

In our article, we show that an optimal colouring ¢(G) of the mixed graph G =(V, 4, E) is equivalent to

finding an optimal schedule for partially ordered multi-processor tasks with unit processing times (or with
equal processing times). Contrary to a classical shop-scheduling problem, several dedicated machines are
used simultaneously by a task during the complete processing period. Along with the precedence constraints,

which are given on the set V' ={v}, v,, ..., v, } of multi-processor tasks, it is required that a subset of tasks must be
processed simultaneously. Due to the proven equivalence of the above scheduling problem and the mixed graph
colouring ¢ (G), most claims that have been proved so far for a wide class of scheduling problems (without opera-
tion preemptions) have analogous claims for optimal mixed graph colourings c(G), and vice versa. Throughout
this article, we use the terminology from [26; 27] for graph theory and that from [28; 29] for scheduling theory.

Two classes of shop-scheduling problems
as mixed graph colourings
To classify shop-scheduling problems, one can use a three-field notation 0c|[3|y introduced in [30], where
o specifies a task system and machine environments, [ is job characteristics, and y is an objective function

(see [29] for the extensions of classifying parameters).
General shop-scheduling problems with unit-time tasks and minimising makespan. In the general

shop unit-time minimum-length scheduling problem denoted by G|ti = 1| Cax> @ job set J= {Jl, Jys s ] J‘}
must be optimally processed on the different (i. e., dedicated) machines M = {M My, o, My, } We next de-
scribe the scheduling problem G| t,= 1|Cm along with our presentation of this problem by means of the mixed
graph colouring c(G).

In the problem G|tl. :1|C

ax >

ax

a job J, € J consists of a set 0 of linearly ordered operations. The pro-
11

cessing time ¢, of each operation v, in the set V' = U y®) s equal to 1; #, = 1. Due to definition 1, we pre-

k=1

max?
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sent every job J, € J as a union of path (vkl, Vigs o0 Vi ) in the directed subgraph (¥, 4, @) and the chain

(vk], Vigs -0 Vi, ) in subgraph (V, o, F ) of the mixed graph G = (V, A E ), determining input data for the prob-
171

lem G|t,=1|Cppyy- As a result, we define a vertex set V= | J V® of the mixed graph G =(¥, 4, E), a subset

k=1
1

E'={]J {[vkl, Vi, ], I:sz’ Vi, }, - |:Vk,. bV }} of the edge set £ 2 E*, and a subset 4" of the arc set 4 deter-
P 3 Tk

mined by the following implication:
[vl., vj]eE*:(v. v.)eA*. (1)

2 7]

In the general shop-scheduling problem G| t,= 1|Cm along with a linear order given on the set %) of all

operations belonging to the same job J, € J, there are also given the precedence relations between operations
belonging to different jobs in the setJ. Let 4\4" denote a subset of set 4 such that implication (1) does not hold

for each arc (vi, vj) € A\A". All the given precedence relations make up the precedence constraints.

In the problem G| t,= 1| C.ax» @ specified machine from the set M = {M My, s M M‘} is required to pro-

cess operation v, from the set V' = U 0, Let V= {vl-l, Vi oo Vi } C ¥V denote a set of all operations processed
on machine M; € M. Any pair of Ié);)lerations requiring the same machine M; € M cannot be processed simulta-
neously [28; 29; 31-33]. We represent all such incompatibility constraints for processing operations V;  V on
machine M; € M (called capacity constraints) by cliques {vil, Vigs +eos Vi\Vf\} in the subgraph (V, D, E\E *) of
the mixed graph G = (V, A E ) constructed for the problem G|ti = 1|Cmax. The general shop-scheduling prob-
is to find a schedule for processing partially ordered operations V = m V= ﬂ V(k), whose
length (makespan) C,,, = max{Cl, G, ... G Jl} is minimised among lengths of all fee{s:i}lole scli;:liules. Here-

lem G|t,=1|C,

ax

after, C; denotes a completion time of the job J, € J. The minimisation of schedule length C,,, for partially
ordered operations J with unit processing times is reduced to the optimal colouring c(G) of the mixed graph
G= (V, A E ), where the vertex set V' is a set of operations, the arc set 4 determines the precedence constraints,

and the edge set E determines the capacity constraints. More precisely, the union 4" U E” of the arc set 4™ and the
edge set E” determines |J | subsets V') of linearly ordered operations of the jobs J, € J. The subset E\E" of edges
determines |M | cliques {vil, Vigs +eos v,w} in the graph (V, D, E\ E*)’ where all operations {vil, Vigs oeos vi\%\}
are processed on machine M, € M. The precedence relations between operations belonging to different jobs are
determined in the directed subgraph (V, A\A", @) of the mixed graph G =(V, 4, E).

To illustrate the above reduction of the problem G|ti =l|Cmlx to the optimal colouring ¢(G), we con-

sider example 1 of the problem G|t,. =1|Cm with four jobs and six machines (fig. 1). Let the machine

ax
set M:{Ml, M,, ...,M6} have to process the job set J:{Jl, Iy I, J4}. Job J, € J consists of the set
yl) = {vl, Vs, v3} of linearly ordered operations. Job J; € J is represented by a union of the path (vl, Vs, v3)
in the digraph (V, A, @) and the chain (vl,vz, v3) in the graph (V, D, E) Job J, € J consists of the set
Vv ={v4, Vs, Vg, V7, vg} of linearly ordered operations. Job J, € J is represented by a union of the path
(v4» Vs, Vg, v5, v ) in the digraph (¥, 4, @) and the chain (v,, vs, g, vy, v ) in the graph (V, @, E). Job J; € J
consists of the set V') = {v9, Vios V11 v12} of linearly ordered operations. Job J; € J is represented by a union
of the path (vy, vj9, V11, V1, ) in the digraph (V; 4, &) and the chain (v, vg, v, v}, ) in the graph (V, &, E). Job

J, € Jconsists of the set y@= {v13, Vigs V15} of linearly ordered operations. Job J, € J is represented by a union
of the path (v13, Vi Vls) in the digraph (V, A, @) and the chain (VB, Vi Vls) in the graph (V, a, E)
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Fig. 1. Mixed graph G = (V, A, E) determining example 1 of the problem G| t,= 1|C

max

with four jobs and six machines, the optimal mixed graph colouring c(G) being equivalent to example 1

Machine M, processes operations of the set ¥} ={v,, v, }. The forbiddance to process operations from set /]
simultaneously is represented by the clique {vl, v4} in graph (V, &, E ) Machine M, processes operations
V,= {vz, Vs, Vo> vl3}. The forbiddance to process each pair of operations from set V, simultaneously is rep-
resented by the clique {v,, v5, v, vj3} in graph (¥, &, E). Machine M, processes operations V; = {vy, v, }.
The forbiddance to process operations from set V, simultaneously is represented by the clique {v3, v7} in
graph (V, @, E). Machine M, processes operations V3= {vy, v;;, vj5 }. The forbiddance to process each pair
of operations from set V, simultaneously is represented by the clique {v9, Vi1 vl5} in graph (V, D, E ) Ma-
chine M, processes operations Vs = {v6, Vg, Via } The forbiddance to process each pair of operations from set V,,

simultaneously is represented by the clique {v6, Vg, v14} in graph (V, &, E ) Machine M, processes only one
operation: Vg ={v}, }.

Let the precedence relations between operations of the set J belonging to different jobs of the set J be given
as follows: V| = V15 Vg = V35 Vg —> V35 Vg = Vi3 Vg = Via5 Vg = V45 Vo — Vi35 V), — Vys. These precedence relations
determine the following set of arcs: A\4" = {(vl, vll), (v6, V3 ), (Vg; v3), (v7, vn), (vg, V12), (vg, V4), (V9, V13):
(V2> vis )} in the mixed graph G = (V, 4, E) such that implication (1) does not hold for each arc in the set 4\4".

Similarly to the mixed graph, representing input data of a shop-scheduling problem without operation
preemptions [21; 28; 29; 32], input data for example 1 of the problem G|t, =1|C,,, is given by the mixed graph
M| 171
G= (V, A4, E) depicted in fig. 1, where a set of all operations is represented by the vertex set V' = U V= U ),
i=1 k=1
The precedence constraints and capacity constraints are represented by a union of arc set 4 and edge set E.
Based on the above reduction of the general shop-scheduling problem G|t,. = 1|Cmax to the colouring c(G)
of a suitable mixed graph G = (V, A E ), one can derive the following correspondence of terms used in the op-
timal colouring c( G) of the mixed graph G = (V, A E ) and terms used in the general shop-scheduling problem
G|t =1|Cppay:
{vertex v; € V'} <& {non-preemptive unit-time operation v, € V'};

{vertices on path (on chain) (vkl, Vigs - Vig j in digraph (V’ A, @) (in graph (V, @, E" ))} =3

b (0]

< {set yh) = Vi Vi o0 Vi of linearly ordered operations of the job J, € J};

(0]
{precedence relations between operations belonging to different jobs} < {set of arcs A\4"
in digraph (V, A\A, @)};

{clique {vil, Vis oo v,.w} in graph (V, D, E\E*)} < {operations V; = {Vil’ Viys oo v,-‘V_‘}
processed on machine M, € M};
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{a colouring ¢(G) of the mixed graph G =(V, 4, E)} &< {a feasible schedule for the
problem G|t = l| max }
{an optimal mixed graph colouring ¢(G)} < {an optimal schedule for the problem

max

G|, =1|C
{the chromatic number X(G)} < {the optimal value of makespan C,,,}.

The above correspondence of terms used in the optimal colouring ¢(G) of the mixed graph G =(V, 4, E)
and those used in the general shop-scheduling problem G|t = 1| 'nax iMplies the following claim.

Lemma 1. Any general shop-scheduling problem G|ti = 1|C

max May be represented as an optimal mixed

graph colouring c(G) of a suitable mixed graph G = (V, A, E)
However, it is easy to see that an inverse claim to lemma 1 is not correct.
An optimal schedule for example 1 is determined by the following optimal colouring c(G) of the mixed

graph G = (V, A, E): c(vl) =2, c(vz) =4, c(v3) =5, c(v4) =1, c(vs) =2, c(v6) =3, c(v7) =4, c(vs) =5,

c(vo)=1, c(v9)=3, c(v;)=4, c(n,)=5, c(ws)=1 c(ns)=4, c¢(vs)=35. This colouring ¢(G) of the

mixed graph G =(V, 4, E) is optimal, i. e., x(G)=35. Indeed, the optimality of the schedule determined by

the mixed graph colouring ¢(G) follows from the fact that there is a job J, € J consisting of five operations
(@) - {v4, vs, Vg, V5, v4 }, which implies the following non-strict inequality: x(G) 2 5.

Job-shop scheduling with unit-time operations to minimise makespan. Article [2] with definition 1 of
the mixed graph colouring c(G) was published in Russian in 1976 along with other articles published before
1997. In 1997, another mixed graph colouring (called a strict mixed graph colouring c_(G)) has been intro-
duced in article [19] published in English.

Definition 2 [19]. An integer-valued function c_: V — {1, 2,... t} is a strict colouring of the mixed graph

G=(V, 4, E), if inequality c(v;) < c<(vj) holds for each arc ( )e A and c( );t c( ) for each edge

Vis j
[vp, v, :I € E. A strict mixed graph colouring c<(G) is optimal, if it uses a minimal possible number 7 <(G) of
different colours ¢_(v;)€{l, 2, ..., 7}. A minimal number x_(G) is a strict chromatic number of the mixed

graph G=(V, 4, E).
It is clear that one can use a colouring ¢(G) (definition 1) instead of a strict colouring c_(G) (definition 2) for
every specific mixed graph G =(V, 4, E) such that the following implication (2) holds for each arc (v;, v;) € 4:

Vi> Vi
(,, ])eA:>[l, ]]eE ()

Remark 1. A strict colouring c_(G) of the mixed graph G = (¥, 4, E) is a special case of the colouring ¢(G), if

it is assumed that each inclusion (v v, ) € A implies the inclusion[ ] € E in the mixed graph G =(V, 4, E)

i J l’ _]
to be coloured.

Due to remark 1, one can add edge [ ] to the mixed graph G = (V A4, E) for each arc (v v, )e A such

l’ ] i° J

that implication (2) does not hold. Obviously, any strict colouring c_(G) of the mixed graph G =(V, 4, E) is
a strict colouring ¢ (G+) of the mixed graph G*= (V, A, E +) constructed via adding all above edges [V,, V]]
Furthermore, strict mixed graph colourings ¢_(G) and c. (G+) are the same as a mixed graph colouring c(G )

The connection of the strict mixed graph colouring ¢ (G) and the job-shop scheduling problem J |t = 1| hax
is studied in [4—8]. The job-shop scheduling problem J |t = 1| ax 1S @ special case of the general shop-sche-

duling problem G|t = 1| x> 1f there are no precedence relations between operations belonging to different

jobs (see [28-30]).
In article [4], it is shown that a mixed graph G = (V, A E ) determining a job-shop scheduling problem

J | t,= 1|CmaX has the following mandatory properties.

Property 1. The partition (V, a, E):(Vl, J, E U v, O, E U U V a3, E holds, where the sub-
graph (V, @, E, ) of the mixed graph G =(V, 4, E) is a complete graph for each ke {1, 2, ..., m}.
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Property 2. The following partition(V, A, @):(V(l), A(l), @)U(V(z), A(z), @)U...U(V(r), A(V), @) holds,

where each directed subgraph (V(k), A(k), @) of the mixed graph G = (V, A, E ) is a path (vk], Vi -0 Ve ) for
ke{1,2,...,r}. k
Property 1 (property 2) means that the subgraph (V, <, E ) of the mixed graph G = (V, A E ) is a union of
disjoint complete graphs (the directed subgraph (V, A, @) is a union of disjoint paths, respectively). In the
job-shop scheduling problem J |ti :1|Cm
M={M, My, .. .M} m=|M

numbers m and » denote the cardinality of the machine set

ax >

, and the cardinality of job set J = {Jl, s o Jy

}, r= |J| Property 2 imp-
lies that if the inclusion v, € 7% holds, operation v; belongs to the job J, € J, and vice versa (see definition 2).

A job J, € J consisting of a set 78 of linearly ordered operations is represented as path (vkl, Vigs -+ Vi, ) in

digraph (V, A, @). Operations 7% have to be processed in the order determined by path (vkl, Vigs -+ Vi, )

Property 1 means that if the inclusion v; € ¥, holds, operation v, has to be processed on machine M, € M.
Due to definition 2 and property 1, each machine M, € M can process at most one operation within any unit-
time interval from the following set:

{lo.1], (1, 2], (2,3], ... (¢ =1 ]} 3)
An optimal strict colouring c_:V — {1, 2., x<(G)} of the mixed graph Gz(V, A, E) determines an

assignment of operations J to a minimal number of the following intervals:

flo.1]. (1, 2], (2.3]. ... (x(G) - Lx(G) ]}. )

An assignment of operations / to the minimal number of unit-time intervals (4) is optimal since it deter-
mines a makespan optimal schedule for processing operations ¥, whose length is equal to the strict chromatic
number y_(G) of the mixed graph G = (V, A, E) determining an example of the unit-time minimum-length
job-shop scheduling problem J | t,= 1|Cmax. Properties 1 and 2 define the usual assumptions used in scheduling
theory [28—30] in terms of graph theory [26; 27]. The following lemma 2 is proved in article [4].

Lemma 2 [4]. Any individual job-shop scheduling problem J |tl. = 1|Cmax is equivalent to an optimal strict
colouring c<(G) of a suitable mixed graph G = (V, A E ) possessing both properties 1 and 2, and vice versa.

The proof of lemma 2 is based on the following correspondence of terms used in the strict mixed graph
colouring ¢_(G) and those used in the job-shop problem J|z, =1|C,,,:

{vertex v, € V'} & {non-preemptive unit-time operation v, € V'};

. . k
) in digraph (V’ 4, Q)} & {set V( ): {vkl’ Vig> =+ ka(k)}

of linearly ordered operations of the job J, € J};

{vertices on path (vkl, Vigs ++os vkl‘
y (k)

{clique {Vil’ Vips +ees viw} in graph (V, D, E)} < {operations V, = {vl.l, Vips oo Vi
processed on machine M, € M};
{a strict mixed graph colouring c<(G)} < {a schedule for the problem G|t,. = 1|Cmax};
{an optimal strict mixed graph colouring c<(G)} < {an optimal schedule
for the problem G|tl. = 1|Cmax};
{the strict chromatic number ) _(G)} < {the optimal value of makespan C,,,}.

To illustrate lemma 2, we consider example 2 of the problem J |tl. =1|Cm which is the same as already

ax 2
considered example 1 of the problem G | t,= 1|Cmax with only one exception that there is no precedence constraint
between operations belonging to different jobs in the set J. In other words, it is assumed that 4A\4" = . It is
clear that a strict colouring c_(G) of the mixed graph G = (V; A4, E) depicted in fig. 2 determines a schedule exis-
ting for example 2. Obviously, the mixed graph G = (V, A E ) depicted in fig. 2 possesses both properties 1 and 2.

This mixed graph G = (V, A E ) is a subgraph of the mixed graph depicted in fig. 1.
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Fig. 2. Mixed graph G =(V, 4, E) determining example 2
of the problem J | t,= 1|Cmax with four jobs and six machines,
the optimal strict mixed graph colouring c<(G) being equivalent to example 2

An optimal schedule for example 2 is determined by the following strict mixed graph colouring c<(G):

c<(v1): 2, c<(v2): 4, c<(v4) =1, c<(v6)= 3, c<(v7): 4, c<(v8)= 5, c<(v9): 1, c<(v10)= 3, c<(v11): 4,
c.(vy)=5, cc(w3) =1, c.(v4) =4, c.(v5)=5. This strict colouring ¢_(G) is optimal, i. e., x.(G) =5, due to
the existence of a job J, € J with five operations y= {v4, Vs, Vg, V7, vg} implying the following non-strict
inequality: x<(G) 5.

It is important to highlight that there exists a general shop-scheduling problem G| t,= 1| C,.ax Which cannot be
represented as the optimal strict colouring c<(G) of a mixed graph G = (V, A, E ) This shortage of a strict mixed
graph colouring to represent a general shop-scheduling problem occurs since the strict inequality ¢ <(v,.) <c. (vj)
must hold for each arc (Vw vj) € A in the colouring c_ (G), and therefore, a strict mixed graph colouring cannot
define a precedence relation v; — v; on the operations v, and v; belonging to different jobs in the set J.

Remark 2. There are general shop-scheduling problems G| t,= 1|Cn[1 which cannot be represented as opti-

mal strict colourings c_(G) of the suitable mixed graphs G =(V, 4, E).
In the following section, we introduce a new class of the scheduling problems that is more general than the

classes of the problems G| t,=1 | Cpax and J | t, = 1| C,,

class of the scheduling problems, we prove that an optimal colouring c(G) of any colourable mixed graph

G =(V, 4, E) is equivalent to an appropriate optimal unit-time minimum-length scheduling problem, and vice
versa.

considered in this section. Based on the newly introduced

ax

Unit-time scheduling partially ordered multi-processor tasks

Contrary to the scheduling problems studied in the previous section, where each operation has to be processed
on a single machine, in the scheduling system with multi-processor tasks (MPT), a task may require either one pro-
cessor (machine) or several processors during the complete period of processing the task [29; 33—36]. As usual,
two tasks (operations) requiring at least one common processor (machine) cannot be processed simultaneously.

Chapter 10 of the book [29, p. 264-283] studies a general shop minimum-length scheduling prob-

lem GMPT |ti :1|Cmax along with other scheduling problems MPT|B|y with multi-processor tasks [33-36].

The symbol G in the field o of the three-field notation GMPT |ti = 1|C specifies a task system with arbi-

max
trary precedence constraints given on the set V' = {vl, Vs eens vn} of the multi-processor tasks. In the problem
GMPT | t,= 1|C it is needed to construct an optimal schedule for processing partially ordered multi-proces-

max?

sor tasks V= {vl, Voy een vn} on the dedicated processors M = {M My, . M M‘}. The general shop-schedu-
ling problem G|tl. =1|C

max

is a special case of the problem GMPT |ti =1|C

max

since the processing of task
v; € V requires a single processor for the problem G|ti :1|Cm In the general shop-scheduling problem

GMPT|t;=1|C

max?

atask v, € V' may be regarded as a job J; including either one operation (task) v, € V" or more
than one operation (several tasks from the set /). Let a simple job mean a job consisting only of one operation (task).
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For any example of the problem GMPT |tl. =1|Cm one can construct a mixed graph G = (V, A, E ) such
that an optimal colouring c(G) of the mixed graph G = (V, A E ) is equivalent to finding an optimal schedule
for the problem GMPT |tl. = 1|C

max*

ax

The construction of such a mixed graph G = (V, A, E) is analogous to the

construction of the mixed graph G = (V, A, E ) determining input data for the problem G|tl. =1|Cm (see the
previous section).

We next introduce a new class of the general shop-scheduling problems GeMPT | t,= l| Craxs
the problem GMPT|ti = 1|C

ax

which includes
as a special case studied in chapter 10 of the book [29]. More precisely, in the

max

general shop-scheduling problem GeMPT |ti :1|Cmax, it is required that a subset V' (k)= {vkl, Vs +eos ka(k)}

of the tasks V= {v,, Voy een vn} ) V(k) must be processed simultaneously in any feasible schedule. It is
easy to see that the latter requirement may be represented by a circuit (vkl, Viys -5 vk‘y(k)‘, Vk,) in the di-

rected subgraph (V, A4, @) of the mixed graph Gz(V, A, E), which presents input data of the general

shop-scheduling problem GcMPT |tl. :1|Cm where the set 4 of the arcs includes the following subset:

ax >

[
A _{(Vkla Vi, ), ("kf iy )’ v (vkv(k> ~1 Vi )’ (Vk”k), " )} ol

Let the input data for the general shop-scheduling problem GcMPT |tl. :1|Cm include w subsets

ax

V(1), V(2), ...,V (w) of the tasks such that every subset V(k)={vkl,vk2, ...,ka(k)} of the tasks V=

= {vl, Vs ens vn} must be processed simultaneously in any feasible schedule, where & € {1, 2, ..., w}. Then, we
determine the following subset of arcs:

w
Ac - kL—Jl {(vkl’ Vi, )’ (vkz’ Vis )’ e (ka(k) -b vk\V(k)\ )’ (VkV(k) » Vi )} ()

Similarly as in the previous section, one can establish the correspondence of terms used in the optimal
colouring c(G) of the mixed graph G = (V, A, E ) with 4, € 4 and those used in the general shop-scheduling
problem GeMPT |tl. = 1|Cmax see the table.

Obviously, every instance of the problem GeMPT | t,= 1|Cm uniquely defines a mixed graph G=(V, 4, E )

determining input data for this instance. Therefore, to describe an instance of the general shop-scheduling prob-
lem GeMPT | t,= 1| Cax» it is sufficient to define a mixed graph G =(¥, 4, E), which determines input data for

this instance of the scheduling problem. In what follows, such an instance of the problem GeMPT |ti = 1|Cmax
will be called the problem GeMPT | t,= 1| C,ax On the mixed graph G = (V, A E )

ax

The correspondence of terms used in the mixed graph colouring c(G)
and those used in the problem GcMPT|t,=1|C,,,, on mixed graph G=(V, 4, E)

max

Terms of the mixed graph colouring ¢(G) Terms of the problem GeMPT |t,;=1|Cyy

Vertex v, e V' Unit-time task v, € V (unit-time operation of the job)

Vertices on the path (on the chain, respectively)
- - y® = i
[vkl, Vigs wees v"ly(k)} in the digraph (V, A, @) Set Vigs Vs« Vk\y(k)\ of linearly

(in the graph (V, o.E )) ordered operations (tasks) of the job J, € J

i All tasks V; = {vil, Vips s Vi } processed
Clique {v,-l, Vis oo Vi }in the graph (V, @, E\E ) . K
K on the same machine (processor) M, € M

Precedence relations given between tasks

Set of arcs A\A4" in the digraph (V, A\A", @) (C%Ii;rati(inj) belonging to different jobs
of the se
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Ending table

Terms of the mixed graph colouring ¢(G) Terms of the problem GeMPT | t,= 1|Cmax
Set of arcs 4\4" in the digraph (V, A\A”, @) Precedence constraints given on the set of tasks V
Circuit (vkl, Vigs oo vk‘,/(k)" Vklj in the digraph Tasks V (k) = {vkl, Vigs wees ka(k)} cV
(V, A, D), where A, < 4 that must be processed simultaneously
A mixed graph colouring ¢(G) of the mixed graph | A feasible schedule for the problem
G=(V, 4, E) GeMPT |8, =1| C
An optimal mixed graph colouring c(G) An optimal schedule for the problem
of the mixed graph G = (¥, 4, E) GcMPT| t,= 1| Crox
The chromatic number ¥ (G) The optimal value of makespan C,,,

Due to the correspondence of terms used in the colouring ¢(G) and those used in the equivalent problem
GcMPT |, =1|Cppyy on the mixed graph G = (V, 4, E), one can derive lemma 3.

Lemma 3. Every general shop-scheduling problem GeMPT |ti = 1| Cax ON the mixed graph G = (V, A E )

ax

is equivalent to an optimal mixed graph colouring c(G).

Contrary to the job-shop scheduling problem J |ti = 1| C,..x having a feasible schedule for any input data,

ax

there are instances of the general shop-scheduling problem G|tl- =1|C’m which have no feasible schedules.

ax>
To construct an instance of such an unsolvable individual general shop-scheduling problem G| t,= 1|Cmax, we
add the precedence relation vy — v, to the input data of example 1 depicted in fig. 1. We call this modified
example as example 1" and show that there is no feasible schedule for example 1° due to the existence of the
circuit (v4, Vs, Vo, v4) in the digraph (¥, 4, @) and the edge [v4, v5] in the graph (V, D, E*) On the one hand,
all tasks in the set {v4, Vs, v9} must be processed simultaneously due to the circuit (v4, Vs, Vg, Vg ) On the other
hand, two tasks v, and v cannot be processed simultaneously due to the edge [v4, v5] € E"c E. This contra-
diction implies that there is no feasible schedule for example 1°. Since the general shop-scheduling problem
G|ti :1|Cmax is a special case of the general shop-scheduling problem GeMPT |tl. :1|Cm
instances of the problem GeMPT | t,= 1|Cm such that no feasible schedules exist.

ax

o there are similar
We prove the following criterion for the existence of a feasible schedule for the general shop-scheduling
problem GeMPT | = 1|Cmax on the mixed graph G =(V, 4, E).

Theorem 2. A feasible schedule for the general shop-scheduling problem GcMPT | ;= l| C,
graph G = (V, A, E) exists, if and only if the digraph (V, A, @) has no circuit containing adjacent vertices in
the graph (V, &, E).

Proof. Due to lemma 3, a general shop-scheduling problem GcMPT |tl. :1|CmaX on the mixed graph

« ON the mixed

G =(V, A, E) is equivalent to optimal colouring c(G) of the mixed graph Gz(V, A, E) A mixed graph
G=(V, 4, E) with 4 # & and E # & may be uncolourable, i. e., there is no colouring ¢(G) for the mixed graph
G= (V, A E ) Furthermore, theorem 1 establishes a criterion for the existence of a colouring C(G) for the
mixed graph G = (¥, A4, E) and this criterion directly proves theorem 2.

To illustrate lemma 3 and theorem 2, we consider two examples of the general shop-scheduling prob-
lem GeMPT |tl. = 1|Cmax with two non-simple jobs J, and J,, eleven multi-processor tasks V' = {vl, Vs e v“},
seven machines M = {Mp M,, ..., M7}, and three tasks {vl, Vs, vg}, which must be processed simultan-

eously in any feasible schedule. The mixed graph G :(V, A E ) depicted in fig. 3 determines input data
for example 3.
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Fig. 3. Mixed graph G = (V, A, E ) determining
the problem GcMPT| = 1|C with eleven tasks and seven machines,

max

the optimal mixed graph colouring c(G) being equivalent to example 3

In example 3, machine M, has to process three tasks of the set V; = {vl , V3, Vs } The forbiddance to process any
pair of tasks from the set ; simultaneously is represented by the clique {vl, Vs, v5} in the graph (V, &, E\E" )
Machine M, has to process three tasks of the set V, = {vz, Vs, Vg } The forbiddance to process any pair of tasks
from the set ¥, simultaneously is represented by the clique {v,, v, v, } in the graph (V, @, E\E* ) Machine M,
has to process three tasks from the set ;= {v3, Vs, vg}. The forbiddance to process any pair of tasks from
the set J; simultaneously is represented by the clique {v3, Vs, v9} in the graph (V, D, E\E *) Machine M,
has to process three tasks of the set V, = {vz, Vio- Vi 4}. The forbiddance to process any pair of tasks from the
set V, simultaneously is represented by the clique {vz, Vigs Vi 4} in the graph (V, D, E \E*). Machine M; has
to process two tasks of the set V; = {vg, Vlo}- The forbiddance to process tasks from the set V5 simultaneously
is represented by the clique {vg, Vlo} in the graph (V, J, E\EX) Machine M, has to process two tasks of the
set V= {v9, Vi } The forbiddance to process tasks from the set V;, simultaneously is represented by the clique
{vg, Vu} in the graph (V, O, E\E X) Machine M, has to process one task: V; = {v4}. All machines, which are
used for processing the task v, € V] are presented near vertex v, in fig. 3.

There are two jobs J; and J,, which are not simple. Job J, € J consists of the set yl) = {vg, V1, V3, vz} of li-
nearly ordered tasks (operations). Thus, job J, € Jis represented by a union of the path (vg, Vi, Vi, vz) in the di-
graph (V, A, @) and the chain (v9, Vs, V3, vz) in the graph (V, g, E* ) Job J, € J consists of the set y = {vs, vg}
of linearly ordered tasks (operations). Thus, job J, € J is represented by a union of the path (v5, vg) in the di-
graph (V, A, @) and the chain (vs, vg) in the graph (V, D, E* ) Other precedence relations between tasks and

operations belonging to different non-simple jobs are determined as follows: v, — vy; v, = vy; v, = Vg3 Vg = Vy;
Vo = Vs Vo = Vg Vo — vg. All the precedence constraints determine the subset 4 of the arcs in the digraph

(V, A\A", @), where A\4" = {(vl, v4), (v4, vz), (v5, v3), <v4, vg), (vg, vl), (vg, vs), (v9, v4), (v9, v6), (vg, Vg )}
In example 3, every job J; from the set J\{Jl, J2} is simple, 1. €., job J, consists of a single task that is iden-
tified with job J,. In example 3, the set of tasks yl = {vl, Vg, vg} c ¥V must be processed simultaneously in any
feasible schedule. This requirement is determined by the circuit (vl, Vs Vg, vl) in the digraph (V, 4., @). Based
on the correspondence of the terms (see the table), we construct the mixed graph G = (V, A E ) depicted in fig. 3,
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which determines the input data for example 3 of the general shop-scheduling problem GeMPT |ti = 1|CmaX

with eleven multi-processor tasks, seven machines, two non-simple jobs, and three tasks, which must be pro-
cessed simultaneously in any feasible schedule.
Due to theorem 2, there exists a feasible schedule for example 3 of the problem GeMPT |t,. = 1| Cax ON the

mixed graph G = (V, A, E ) Due to lemma 3, an optimal schedule for example 3 may be determined by the
following optimal colouring ¢(G) of the mixed graph G=(V, 4, E) depicted in fig. 3: c(vl) =2, c(v2)= 4,
c(v3) =3, c(v4) =2, c(vs) =1, c(vé) =2, c(v7) =2, c(vg) =2, c(v9) =1, C(Vlo) =1, c(v”) = 2. This mixed graph
colouring c(G) is optimal due to lemma 3 since x(G) =4, Indeed, the optimality of the schedule determined by

the mixed graph colouring c(G) follows from the fact that there exists a job J, € J consisting of four unit-time
operations y(= {v9, Vs, V3, v2} that imply the non-strict inequality X(G) >4.

Due to theorem 2, there are examples of the general shop-scheduling problem GeMPT | t,= 1|CmlX such that
no feasible schedules exist for them. We construct an example of such an unsolvable general shop-scheduling
problem GeMPT |tl- = 1| Cnax as follows. We replace the precedence relation v, — vg by the opposite relation

vg — V, in the input data of example 3 depicted in fig. 3. There is no feasible schedule for such a modified exam-
ple 3 (we call it example 37), where the precedence relation vy — vy is replaced by the relation vg — vo. On the

one hand, all tasks from the set {vs, Vg, v9} must be processed simultaneously due to the circuit (V5, Vg, Vg, Vs )
On the other hand, two tasks v5 and v¢ cannot be processed simultaneously due to the edge [vs, v8] €eE'CE.
The contradiction obtained along with theorem 2 implies that there is no feasible schedule for example 3" of
the problem GeMPT | t,= 1|Cmax

We next prove the following lemma, which is the inverse of lemma 3.

Lemma 4. For any colourable mixed graph G = (V, A, F ) there exists a general shop-scheduling problem
GcMPT | t;= 1|Cmax on the mixed graph G =(V, 4, E), which is equivalent to finding an optimal colouring c¢(G).

Proof. We detect a set Q of all circuits existing in the directed subgraph (¥, 4, &) of the mixed graph

G =(V, 4, E) and consider two possible cases: either Q = @ or Q # J.
Case 1. Let the set Q be empty; Q = J. Then, one can construct the desired problem GeMPT | t,= 1| Cax ON

the mixed graph G = (V, A4, E) using the following algorithm.

Algorithm

Input: a mixed graph G = (V, A E ) such that no circuit exists in the digraph (V, A, @).

Output: a general shop-scheduling problem GeMPT |t,. = 1|Cm on the mixed graph G = (V, A E ), which
is equivalent to finding an optimal colouring c(G).

Step 1: partition the graph (V, O, E ) into (maximal) components as follows:

7@ B)=0n. @, e)U .- U 2. E)U( 2.2)U - Ui 2, 2),

where the subgraph (Vk, Qa, Ek) is a (maximal) component of the graph (V, &, E) for each k € {1, ..., m} such

ax

that |Vk| = 2. The subgraph (Ij, D, @) determines an isolated vertex for each index je{m+1, ..., m+r}. De-
note this isolated vertex as follows: {Vh } =V.SetM=0,k=1,i=0,[,=0.
Step 2: IF k=m + 1 THEN GOTO step 5 ELSE find all maximal (relative to inclusion) complete vertex-
induced subgraphs (Vkl, D, E,i), ey (Vkl", a, E,lj ) of the connected graph (Vk, a, Ek). Setr=1,i=i+/[_,+1.
Step 3: FOR index i, supplement machine M, with the already constructed machine set, i. €., M :=M U {M ; }
Establish that all tasks in the clique ¥;" of the connected graph (Vk, I, E k) must be processed on machine M,

I

e,V =V = {vil, Vi o0 Vi }, where all tasks {vil, Vi -5 v,.w} must be processed on machine M, in any fea-
sible schedule. Seti:=i+ 1.
k
Step 4: IF i= Y I, THEN setk := k+ 1 GOTO step 2 ELSE set 7 :=r+ | GOTO step 3.

h=0
Step 5: FOR each index j e {m +1,...,m+ r}, supplement machine M; with the already constructed

+j—m
machine set M. Establish that task v; with I} = {vjl }, which is isolated in the graph (V, D, E ), must be processed

Establish that machine M;  ; must process only task v;. Set M =M v {M M

on machine M, FUTIN H,}.

i+j—m*
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Step 6: FOR each arc (vp .V, ) existing in the directed subgraph (¥, 4, @) of the mixed graph G =(V, 4, E),
introduce the precedence relation v, — v , which means that processing the task v, must be completed before

starting the task v, in any feasible schedule.
Step 7: a general shop-scheduling problem GcMPT |ti :1|C

'nax 1S constructed on the mixed graph
G= (V, A E ), where the precedence relations on the task set /' are determined at step 6 and the machine set M

is determined at step 3 and step 5 STOP.
Case 2. Let the set Q be not empty, Q = . Since the mixed graph G = (V, A E ) is colourable, every cir-

cuit (vkl, Vigs -5 Vk\v(k)\’ Vkl) in set Q has no adjacent vertices in the subgraph (V, &, E) of the mixed graph G

(theorem 1). Therefore, all tasks {Vkl, Vs =+ Vi } =V (k) must be processed simultaneously in any feasible

schedule for the desired general shop-scheduling problem GeMPT | t,= 1| C,..x onthe mixed graph G = (V, A E ),

ax

where the circuit (vkl, Vg -5 vk‘V(k)‘, Vs, ) exists in the directed subgraph (V, A, @).

Let Q:le(k):kUl{(vk], Vi Vi 5 Vi -1 Vi Vi )} Then, we delete all arcs 4, defined in (5)
from the mixed graph Gz(V, A, E) and apply the above algorithm to the obtained circuit-free mixed
graph GOZ(V, A\A,, E) As a result, the problem GcMPT |ti =1|Cmax is constructed on the mixed graph
GO:(V, A\A,, E ), which is equivalent to finding an optimal colouring c(GO). Consequently, the problem
GeMPT |t =1|C,,
ma 4 is thus proved.

We apply the above constructive proof of lemma 2 to the mixed graph G =(¥, 4, E) depicted in fig. 3 and
obtain example 4 of the problem GeMPT | t, = 1|Cmax on the mixed graph G = (V, A E ) depicted in fig. 4. Note
that examples 3 and 4 are different, e. g., all jobs are simple in example 4, while there are two non-simple jobs in

example 3.
In general, it is easy to show that the proof of lemma 4 implies that for any colourable mixed graph

on the mixed graph G = (V, A E ) is equivalent to finding an optimal colouring C(G). Lem-

ax

G= (V, A4, E), one can construct a general shop-scheduling problem GcMPT|ti :1|Cmax on the mixed graph
G= (V, A, E ), which is equivalent to finding an optimal colouring c(G) and all jobs in the set J are simple.
Note that it is required to use non-simple jobs for some objective functions y = f (Cl, G, ... G J‘), since

only completion times C; of the jobs J; € J are their arguments. Hence, the completion times of some tasks may
1

be ignored in the values of such objective functions. In particular, the total completion time Yy =2C, = 2 C, is
such an objective function. i=1

M,, M,, M,

Fig. 4. Mixed graph G = (V; A E ) determining
the problem GcMPT| =1 | Cax With eleven tasks and nine machines,
the optimal mixed graph colouring c(G) being equivalent to example 4
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LetT= {’Cl, Tyy oens tm} denote a set of all tasks (operations) in the scheduling problem GeMPT | t,= 1|C

max?

and let C (’Ci) denote a completion time of the task T, € 7. Due to the equalities max{Cl, G- G J‘} =
=Chux = max{C (1), C(t3), ... C ('tm )}, the completion time of any task cannot be ignored in the value of

the objective function Y= C,,,. Therefore, only simple jobs may be used in the shop-scheduling problem with
minimising makespan C

ax» Where any non-simply job may be represented by the precedence relations on the
task set 7"and the completion time C (Ti) of each task t; € T cannot be ignored in the value of C, ..

Obviously, the following theorem combines lemmas 3 and 4.

Theorem 3. Every general shop-scheduling problem GeMPT |tl. = 1|Cmax on the mixed graph G = (V, A, E )
is equivalent to finding an optimal colouring c(G) of the mixed graph G = (V, A E ) Further, for any colourable
mixed graph G = (V, A, E ) there exists an individual general shop-scheduling problem GeMPT | t,= 1|CmaX on
the mixed graph G = (V, A, E) which is equivalent to finding an optimal colouring c(G) of the mixed graph
G=(V, 4, E).

To restrict a set of feasible schedules for a shop-scheduling problem 0c|[3

¥, which must be tested in or-
der to minimise a value of the regular objective function y [15], a finite set of semi-active schedules may be

considered, since there exists an optimal semi-active schedule for a shop-scheduling problem 0c|B|y with any
regular objective function y [28].

Definition 3 [28; 29]. A schedule is called semi-active, if no task (operation) can be processed earlier without
violating a given constraint or changing the task (operation) processing order in the obtained schedule.

We remark that any colouring c(G) of the mixed graph G = (V, A E ) uniquely determines a strict order on
the colours c(vj) of all vertices in the set V. Due to this remark, one can define a minimal colouring ¢(G) of
the mixed graph G = (¥, 4, E) as follows.

Definition 4. A colouring C(G) of the mixed graph G = (V, A E ) is called minimal, if no colour c(v,-) can be
decreased without changing the order of colours c(vj ) of the vertices in the set V\{vi} in the obtained colouring
¢’(G) of the mixed graph G =(V, 4, E).

Obviously, each semi-active schedule existing for the general shop-scheduling problem GeMPT | ;= 1| Cirax
on the mixed graph G = (V, A E ) uniquely determines a minimal colouring c(G) of the mixed graph
G= (V, A, E ), and vice versa. Hence, we obtain theorem 4.

Theorem 4. There exists a one-to-one correspondence between all minimal colourings c(G) of the
mixed graph G = (V, A E ) and all semi-active schedules existing for the general shop-scheduling problem
Gc]\lPT|ti =1|C on the mixed graph G = (V, A, E)

We used both graph terminology and scheduling one for the above problems. However, it is possible to
describe most presented results either using only graph terminology or using only scheduling terminology.

Conclusion

We introduced a new class of general shop-scheduling problems GeMPT | t,= 1| C nax for finding optimal sche-
dules for partially ordered multi-processor tasks with unit processing times. Contrary to a classical shop-
scheduling problem, several machines are required to process a task in the problem GeMPT |ti = 1| Chax- It 18
also required that a subset of tasks must be processed simultaneously in any feasible schedule. We proved theo-
rem 3 showing that an optimal colouring c(G) of any mixed graph G = (V, A E ) is equivalent to the general
shop-scheduling problem GcMPT|t,- =1|Cmax, and vice versa. Hence, many terms used in scheduling theory
(such as schedule, job, machine, processor, operation, task, processing time and makespan) may be considered
as usual terms used in mixed graph colourings ¢(G).

Due to theorems 3 and 4, most results that have been proven so far [4; 5; 7; 8; 14; 28; 29; 33-36] and will be
proven in future for the scheduling problem GeMPT | D= 1| C nax and for its special cases have analogous results
for optimal colourings ¢(G) of the appropriate mixed graphs G = (¥, 4, E). Conversely, most results that have
been proven so far [2; 4; 5; 7; 8; 19; 25-27] and will be proven in future for optimal mixed graph colourings
c(G) have analogous results for scheduling problems GcMPT|ti =1|C

max*
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