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УДК 681.32 

РАСКРАСКА СМЕШАННОГО ГРАФА  
КАК ПОСТРОЕНИЕ РАСПИСАНИЯ ОБСЛУЖИВАНИЯ  

МНОГОПРОЦЕССОРНЫХ ТРЕБОВАНИЙ  
С ОДИНАКОВЫМИ ДЛИТЕЛЬНОСТЯМИ

Ю. Н. СОТСКОВ1)

1)Объединенный институт проблем информатики НАН Беларуси, 
ул. Сурганова, 6, 220012, г. Минск, Беларусь

Задача обслуживания частично упорядоченных единичных требований последовательными приборами фор-
мулируется как раскраска смешанного графа, т. е. как назначение целых чисел (цветов) 1 2, , ,…{ }t  вершинам 
(требованиям) V v v vn= …{ }1 2, , ,  смешанного графа G V A E= ( ), , , при котором вершины vp и vq, инцидентные 
ребру v v Ep q, ,  ∈  имеют различные цвета. А при наличии дуги v v Ai j,( ) ∈  цвет вершины vi не превосходит 
цвет вершины vj. Доказано, что оптимальная раскраска смешанного графа G V A E= ( ), ,  эквивалентна задаче 
GcMPT p Ci = 1 max поиска оптимального расписания обслуживания частично упорядоченных требований с еди-
ничными (одинаковыми) длительностями. В отличие от классических задач построения расписаний в рассмат
риваемой задаче GcMPT p Ci = 1 max необходимо несколько различных приборов для обслуживания отдельно-
го требования. Помимо отношений предшествования, заданных на множестве требований V v v vn= …{ }1 2, , , ,  
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должно выполняться некоторое подмножество требований одновременно. На основании доказанных в статье тео
рем утверждается, что множество аналитических результатов, полученных ранее для задач GcMPT p Ci = 1 max, 
имеют аналоги для оптимальных раскрасок смешанных графов G V A E= ( ), , , и наоборот.

Ключевые слова: оптимизация; расписание с единичными длительностями; быстродействие; смешанный граф; 
вершинная раскраска.
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MIXED GRAPH COLOURING AS SCHEDULING  
MULTI-PROCESSOR TASKS WITH EQUAL PROCESSING TIMES

Yu. N. SOTSKOV  a

aUnited Institute of Informatics Problems, National Academy of Sciences of Belarus,  
6 Surhanava Street, Minsk 220012, Belarus

A problem of scheduling partially ordered unittime tasks processed on dedicated machines is formulated as a mixed 
graph colouring problem, i. e., as an assignment of integers (colours) 1 2, , ,…{ }t  to the vertices (tasks) V v v vn= …{ }1 2, , ,  
of the mixed graph G V A E= ( ), ,  such that if vertices vp and vq are joined by an edge v v Ep q, ,  ∈  their colours have to be 
different. Further, if two vertices vi and vj are joined by an arc v v Ai j, ,( ) ∈  the colour of vertex vi has to be no greater than 
the colour of vertex vj. We prove that an optimal colouring of a mixed graph G V A E= ( ), ,  is equivalent to the scheduling 
problem GcMPT p Ci = 1 max of finding an optimal schedule for partially ordered multiprocessor tasks with unit (equal) 
pro cessing times. Contrary to classical shopscheduling problems, several dedicated machines are required to process an 
indivi dual task in the scheduling problem GcMPT p Ci = 1 max. Moreover, along with precedence constraints given on the 
set V v v vn= …{ }1 2, , , , it is required that a subset of tasks must be processed simultaneously. Due to the theorems proved 
in this article, most analytical results that have been proved for the scheduling problems GcMPT p Ci = 1 max so far, have 
analogous results for optimal colourings of the mixed graphs G V A E= ( ), , ,  and vice versa.

Keywords: optimisation; unittime scheduling; makespan; mixed graph; vertex colouring.
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Introduction
Scheduling models with the prerequisite of equal (or unit) processing times to all given tasks are an approxi

mation of coping with massindustrial productions and manufacturing of similar items, particularly for a job
shop manufacturing problem that allows managers to personalise each individual item [1]. Such a scheduling 
problem with unittimes and the minimisation of the makespan is equivalent to an optimal graph colouring that 
consists of assigning a minimal number of colours to vertices of the graph such that no two adjacent vertices 
have the same colour. When a scheduling problem requires both precedence and incompatibility constraints, 
one needs to use a mixed graph colouring introduced in [2] for a formulation of the unittime scheduling 
problem. Since the publication of article [2] in 1976, many studies of unittime scheduling problems with the 
makespan criterion are based on mixed graph colourings. 

Let G V A E= ( ), ,  denote a finite mixed graph with nonempty set V v v vn= …{ }1 2, , ,  of the vertices placed 
at the first position in parenthesis, arc set A at the second position, and edge set E at the third position. An arc 
v v Ai j,( ) ∈  defines the ordered pair of vertices vi and vj. An edge v v Ep q,  ∈  means an unordered pair of 

vertices vp and vq. In what follows, we assume that a mixed graph G V A E= ( ), ,  contains no multiple arcs, no 
multiple edges, and no loops. If the set A is empty, we have a graph G V E= ∅( ), , . If the set E is empty, we 
have a digraph G V A= ∅( ), , . In article [2], a mixed graph colouring is introduced as follows.

Definition 1 [2]. An integervalued function c V t: , , ,→ …{ }1 2  is a colouring c G( ) of the mixed graph 
G V A E= ( ), , , if the nonstrict inequality c v c vi j( ) ≤ ( ) holds for each arc v v Ai j,( ) ∈  and c v c vp q( ) ≠ ( ) for 
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each edge v v Ep q, .  ∈  A mixed graph colouring c G( ) is optimal, if it uses a minimal possible number χ G( ) 
of different colours c v ti( ) ∈ …{ }1 2, , , , such a minimal number χ G( ) being called a chromatic number of the 
mixed graph G V A E= ( ), , .

If A = ∅, a colouring c G( ) is the usual colouring of the vertices of the graph G V E= ∅( ), , . Contrary to 
a colouring of the vertices of the graph G V E= ∅( ), ,  existing for any graph G V E= ∅( ), , , a mixed graph 
G V A E= ( ), ,  with A ≠ ∅ and E ≠ ∅ may be uncolourable. A criterion for the existence of a colouring c G( )  
for the mixed graph G is proved in [2]. 

Theorem 1 [2]. A colouring c G( ) of  the mixed graph G V A E= ( ), ,  exists if  and only if  the digraph 
V A, , ∅( ) has no circuit containing adjacent vertices in the graph V E, , .∅( )

A mixed graph G V A E= ( ), ,  is colourable, if there exists a colouring c G( ) of the mixed graph G, other-
wise, a mixed graph G V A E= ( ), ,  is uncolourable.

Finding an optimal colouring c G( ) of the mixed graph G V A E= ( ), ,  is an NPhard problem, even if 
A = ∅ [3]. In articles [4; 5], it is shown that a jobshop scheduling problem with unit processing times of all 
operations and the minimisation of a schedule length (makespan) may be represented as an optimal colouring 
c G( ) of the specified mixed graph G V A E= ( ), , . In article [6], it is shown that any jobshop scheduling prob-
lem with unit processing times of all operations and the minimisation of a total completion time (TCT) may be 
represented as a mixed graph colouring c G( ) minimising a sum of colours of pathendpoints of the specified 
mixed graph G V A E= ( ), ,  (see also articles [7; 8]). 

The unittime scheduling problem with minimising makespan is NPhard even for three dedicated ma-
chines (processors) [9]. The complexity of a jobshop scheduling problem with a fixed number of jobs (and 
a fixed number of machines) is investigated in articles [10 –13]. 

Since the NPhard unittime flowshop scheduling problem [14] is polynomially reduced to the jobshop sche
duling problem to minimise the TCT, the latter problem is also NPhard. The complexity of a jobshop scheduling 
problem with any regular criterion is investigated in [10; 11; 13; 15]. The complexity of a mixed shopsche
duling problem is studied in [16; 17]. A different connection between mixed graph colourings and unittime 
shopscheduling problems is studied in [18–24]. Article [25] presents a comprehensive survey on mixed graph 
colourings and the equivalent unittime shopscheduling problems. 

In our article, we show that an optimal colouring c G( ) of the mixed graph G V A E= ( ), ,  is equivalent to 
finding an optimal schedule for partially ordered multiprocessor tasks with unit processing times (or with 
equal processing times). Contrary to a classical shopscheduling problem, several dedicated machines are 
used simultaneously by a task during the complete processing period. Along with the precedence constraints, 
which are given on the set V v v vn= …{ }1 2, , ,  of multiprocessor tasks, it is required that a subset of tasks must be 
processed simultaneously. Due to the proven equivalence of the above scheduling problem and the mixed graph 
colouring c G( ), most claims that have been proved so far for a wide class of scheduling problems (without opera
tion preemptions) have analogous claims for optimal mixed graph colourings c G( ), and vice versa. Throughout 
this article, we use the terminology from [26; 27] for graph theory and that from [28; 29] for scheduling theory. 

Two classes of shop-scheduling problems  
as mixed graph colourings

To classify shopscheduling problems, one can use a threefield notation a b g  introduced in [30], where 
a specifies a task system and machine environments, b is job characteristics, and g is an objective function 
(see [29] for the extensions of classifying parameters). 

General shop-scheduling problems with unit-time tasks and minimising makespan. In the general 
shop unittime minimumlength scheduling problem denoted by G t Ci =1 max, a job set J J J J J= …{ }1 2, , ,  
must be optimally processed on the different (i. e., dedicated) machines M M M M M= …{ }1 2, , , . We next de-
scribe the scheduling problem G t Ci =1 max  along with our presentation of this problem by means of the mixed 
graph colouring c G( ).

In the problem G t Ci =1 max, a job Jk ∈ J consists of a set V k( )  of linearly ordered operations. The pro-

cessing time ti of each operation vi in the set V V k

k

J
= ( )

= 1


 is equal to 1; ti = 1. Due to definition 1, we pre
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sent every job Jk ∈ J as a union of path v v vk k krk1 2
, , ,…( ) in the directed subgraph V A, , ∅( ) and the chain 

v v vk k krk1 2
, , ,…( ) in subgraph V E, ,∅( ) of the mixed graph G V A E= ( ), , , determining input data for the prob-

lem G t Ci =1 max. As a result, we define a vertex set V V k

k

J
= ( )

= 1


 of the mixed graph G V A E= ( ), , , a subset 

E v v v v v vk k k k k k
k

J

r rk k

*
−

=
=     … 



{ }1 2 2 3 1

1

, , , , , ,


 of the edge set E ⊇ E *, and a subset A* of the arc set A deter-

mined by the following implication:
 v v E v v Ai j i j, , .  ∈ ⇒ ( ) ∈* *  (1)

In the general shopscheduling problem G t Ci =1 max, along with a linear order given on the set V k( )  of all 
operations belonging to the same job Jk ∈ J, there are also given the precedence relations between operations 
belonging to different jobs in the set J. Let A\ A* denote a subset of set A such that implication (1) does not hold 
for each arc v v A Ai j, .( ) ∈ *

\  All the given precedence relations make up the precedence constraints. 
In the problem G t Ci =1 max, a specified machine from the set M M M M M= …{ }1 2, , ,  is required to pro-

cess operation vi from the set V V k

k

J
= ( )

= 1



. Let V v v v Vi i i i Vi
= …{ } ⊆

1 2
, , ,  denote a set of all operations processed 

on machine Mi ∈ M. Any pair of operations requiring the same machine Mi ∈ M cannot be processed simulta-
neously [28; 29; 31–33]. We represent all such incompatibility constraints for processing operations Vi ⊆ V on 

machine Mi ∈ M (called capacity constraints) by cliques v v vi i i Vi1 2
, , ,…{ } in the subgraph V E E, ,∅( )*

\  of 

the mixed graph G V A E= ( ), ,  constructed for the problem G t Ci =1 max. The general shopscheduling prob-

lem G t Ci =1 max  is to find a schedule for processing partially ordered operations V V Vi
k

k

J

i

M
= = ( )

== 11



, whose 

length (makespan) C C C CJmax | |max , , ,= …{ }1 2  is minimised among lengths of all feasible schedules. Here-
after, Ck denotes a completion time of the job Jk ∈ J. The minimisation of schedule length Cmax for partially 
ordered operations V with unit processing times is reduced to the optimal colouring c G( ) of the mixed graph 
G V A E= ( ), , , where the vertex set V is a set of operations, the arc set A determines the precedence constraints, 
and the edge set E determines the capacity constraints. More precisely, the union A E* *



 of the arc set A* and the 

edge set E * determines J  subsets V k( )  of linearly ordered operations of the jobs Jk ∈ J. The subset E \ E * of edges 

determines M  cliques v v vi i i Vi1 2
, , ,…{ } in the graph V E E, , ,∅( )*

\  where all operations v v vi i i Vi1 2
, , ,…{ }  

are processed on machine Mi ∈ M. The precedence relations between operations belonging to different jobs are 
determined in the directed subgraph V A A, ,\

* ∅( ) of the mixed graph G V A E= ( ), , .

To illustrate the above reduction of the problem G t Ci =1 max  to the optimal colouring c G( ), we con-
sider example 1 of the problem G t Ci =1 max  with four jobs and six machines (fig. 1). Let the machine 
set M M M M= …{ }1 2 6, , ,  have to process the job set J J J J J= { }1 2 3 4, , , . Job J1 ∈  J consists of the set 
V v v v1

1 2 3
( ) = { }, ,  of linearly ordered operations. Job J1 ∈  J is represented by a union of the path v v v1 2 3, ,( ) 

in the digraph V A, , ∅( ) and the chain v v v1 2 3, ,( ) in the graph V E, , .∅( )  Job J2 ∈  J consists of the set 
V v v v v v2

4 5 6 7 8
( ) = { }, , , ,  of linearly ordered operations. Job J2 ∈  J is represented by a union of the path 

v v v v v4 5 6 7 8, , , ,( ) in the digraph V A, , ∅( ) and the chain v v v v v4 5 6 7 8, , , ,( ) in the graph V E, , .∅( )  Job J3 ∈  J 
consists of the set V v v v v3

9 10 11 12
( ) = { }, , ,  of linearly ordered operations. Job J3 ∈  J is represented by a union 

of the path v v v v9 10 11 12, , ,( ) in the digraph V A, , ∅( ) and the chain v v v v9 10 11 12, , ,( ) in the graph V E, , .∅( )  Job 

J4 ∈  J consists of the set V v v v4

13 14 15
( ) = { }, ,  of linearly ordered operations. Job J4 ∈  J is represented by a union 

of the path v v v13 14 15, ,( ) in the digraph V A, , ∅( ) and the chain v v v13 14 15, ,( )  in the graph V E, , .∅( )
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Machine M1 processes operations of the set V v v1 1 4= { }, . The forbiddance to process operations from set V1 
simultaneously is represented by the clique v v1 4,{ } in graph V E, , .∅( )  Machine M2 processes operations 
V v v v v2 2 5 10 13= { }, , , . The forbiddance to process each pair of operations from set V2 simultaneously is rep-
resented by the clique v v v v2 5 10 13, , ,{ }  in graph V E, , .∅( )  Machine M3 processes operations V v v3 3 7= { }, . 
The forbiddance to process operations from set V2 simultaneously is represented by the clique v v3 7,{ } in 
graph V E, , .∅( )  Machine M4 processes operations V v v v3 9 11 15= { }, , . The forbiddance to process each pair 
of operations from set V2 simultaneously is represented by the clique v v v9 11 15, ,{ } in graph V E, , .∅( )  Ma-
chine M5 processes operations V v v v5 6 8 14= { }, , . The forbiddance to process each pair of operations from set V2 
simultaneously is represented by the clique v v v6 8 14, ,{ } in graph V E, , .∅( )  Machine M6 processes only one 
operation: V v6 12= { }.

Let the precedence relations between operations of the set V belonging to different jobs of the set  J  be given 
as follows: v1 → v11; v6 → v3; v8 → v3; v7 → v11; v8 → v12; v9 → v4; v9 → v13; v12 → v15. These precedence relations 
determine the following set of arcs: A A v v v v v v v v v v v v v\

* = ( ) ( ) ( ) ( ) ( ) ( )1 11 6 3 8 3 7 11 8 12 9 4 9, , , , , , , , , , , , ,, , ,v v v13 12 15( ) ( ){ }
A A v v v v v v v v v v v v v\

* = ( ) ( ) ( ) ( ) ( ) ( )1 11 6 3 8 3 7 11 8 12 9 4 9, , , , , , , , , , , , ,, , ,v v v13 12 15( ) ( ){ }  in the mixed graph G V A E= ( ), ,  such that implication (1) does not hold for each arc in the set A\ A*.
Similarly to the mixed graph, representing input data of a shopscheduling problem without operation 

preemptions [21; 28; 29; 32], input data for example 1 of the problem G t Ci =1 max is given by the mixed graph 

G V A E= ( ), ,  depicted in fig. 1, where a set of all operations is represented by the vertex set V V Vi
k

k

J

i

M
= = ( )

== 11



. 

The precedence constraints and capacity constraints are represented by a union of arc set A and edge set E. 
Based on the above reduction of the general shopscheduling problem G t Ci =1 max to the colouring c G( ) 

of a suitable mixed graph G V A E= ( ), , , one can derive the following correspondence of terms used in the op-
timal colouring c G( ) of the mixed graph G V A E= ( ), ,  and terms used in the general shopscheduling problem 
G t Ci =1 max:

{vertex vi ∈ V } ⇔ {nonpreemptive unittime operation vi ∈ V };

{vertices on path (on chain) v v vk k k
V k

1 2 1
, , ,…



( )

 in digraph V A, ,* ∅( ) (in graph V E, , )}∅( )*  ⇔

⇔ {set V v v vk
k k k

V k

( ) = …{ }( )1 2
, , ,  of linearly ordered operations of the job Jk ∈  J };

{precedence relations between operations belonging to different jobs} ⇔ {set of arcs A\ A*

in digraph V A A, , };\
* ∅( )

{clique v v vi i iVi1 2
, , ,…{ }  in graph V E E, , }∅( )*

\  ⇔ {operations V v v vi i i iVi
= …{ }1 2

, , ,

processed on machine Mi ∈ M };

Fig. 1. Mixed graph G V A E= ( ), ,  determining example 1 of the problem G t Ci =1 max
 

with four jobs and six machines, the optimal mixed graph colouring c G( ) being equivalent to example 1
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{a colouring c G( ) of the mixed graph G V A E= ( ), , } ⇔ {a feasible schedule for the 
problem G t Ci =1 max};

{an optimal mixed graph colouring c G( )} ⇔ {an optimal schedule for the problem 
G t Ci =1 max};

{the chromatic number χ G( )} ⇔ {the optimal value of makespan Cmax}.
The above correspondence of terms used in the optimal colouring c G( ) of the mixed graph G V A E= ( ), ,  

and those used in the general shopscheduling problem G t Ci =1 max implies the following claim. 
Lemma 1. Any general shop-scheduling problem G t Ci =1 max may be represented as an optimal mixed 

graph colouring c G( ) of a suitable mixed graph G V A E= ( ), , .

However, it is easy to see that an inverse claim to lemma 1 is not correct. 
An optimal schedule for example 1 is determined by the following optimal colouring c G( ) of the mixed 

graph G G V A E= = ( ), , : c v1 2( ) = , c v2 4( ) = , c v3 5( ) = , c v4 1( ) = ,  c v5 2( ) = ,  c v6 3( ) = , c v7 4( ) = , c v8 5( ) = ,  
c v9 1( ) = , c v10 3( ) = , c v11 4( ) = , c v12 5( ) = , c v13 1( ) = ,  c v14 4( ) = ,  c v15 5( ) = . This colouring c G( ) of the 
mixed graph G V A E= ( ), ,  is optimal, i. e., χ G( ) = 5. Indeed, the optimality of the schedule determined by 
the mixed graph colouring c G( ) follows from the fact that there is a job J2 ∈  J consisting of five operations 
V v v v v v2

4 5 6 7 8
( ) = { }, , , , , which implies the following nonstrict inequality: χ G( ) ≥ 5.

Job-shop scheduling with unit-time operations to minimise makespan. Article [2] with definition 1 of 
the mixed graph colouring c G( ) was published in Russian in 1976 along with other articles published before 
1997. In 1997, another mixed graph colouring (called a strict mixed graph colouring c G< ( )) has been intro-
duced in article [19] published in English. 

Definition 2 [19]. An integervalued function c V t< → …{ }: , , ,1 2  is a strict colouring of the mixed graph 
G V A E= ( ), , , if inequality c v c vi j< <( ) < ( ) holds for each arc v v Ai j,( ) ∈  and c v c vp q( ) ≠ ( ) for each edge 

v v Ep q, .  ∈  A strict mixed graph colouring c G< ( ) is optimal, if it uses a minimal possible number χ< ( )G  of 
different colours c v ti< ( ) ∈ …{ }1 2, , , . A minimal number χ< ( )G  is a strict chromatic number of the mixed 
graph G V A E= ( ), , .

It is clear that one can use a colouring c G( ) (definition 1) instead of a strict colouring c G< ( ) (definition 2) for 
every specific mixed graph G V A E= ( ), ,  such that the following implication (2) holds for each arc v v Ai j, :( ) ∈

 v v A v v Ei j i j, , .( ) ∈ ⇒   ∈  (2)

Remark 1. A strict colouring c G< ( ) of the mixed graph G V A E= ( ), ,  is a special case of the colouring c G( ),  if 
it is assumed that each inclusion v v Ai j,( ) ∈  implies the inclusion v v Ei j,  ∈  in the mixed graph G V A E= ( ), ,  
to be coloured.

Due to remark 1, one can add edge v vi j,  to the mixed graph G V A E= ( ), ,  for each arc v v Ai j,( ) ∈  such 

that implication (2) does not hold. Obviously, any strict colouring c G< ( ) of the mixed graph G V A E= ( ), ,  is 

a strict colouring c G<
+( )  of the mixed graph G V A E+ += ( ), ,  constructed via adding all above edges v vi j, .   

Furthermore, strict mixed graph colourings c G< ( ) and c G<
+( ) are the same as a mixed graph colouring c G+( ).

The connection of the strict mixed graph colouring c G< ( )  and the jobshop scheduling problem J t Ci =1 max 
is studied in [4 – 8]. The jobshop scheduling problem J t Ci =1 max is a special case of the general shopsche
duling problem G t Ci =1 max, if there are no precedence relations between operations belonging to different 
jobs (see [28–30]).

In article [4], it is shown that a mixed graph G V A E= ( ), ,  determining a jobshop scheduling problem 
J t Ci =1 max has the following mandatory properties. 

Property 1. The partition V E V E V E V Em m, , , , , , , ,∅( ) = ∅( ) ∅( ) … ∅( )1 1 2 2  

 holds, where the sub-
graph V Ek k, ,∅( ) of the mixed graph G V A E= ( ), ,  is a complete graph for each k m∈ …{ }1 2, , , .
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Property 2. The following partition V A V A V A V Ar r
, , , , , , , ,∅( ) = ∅( ) ∅( ) … ∅( )( ) ( ) ( ) ( ) ( ) ( )1 1 2 2

  

 holds, 

where each directed subgraph V Ak k( ) ( ) ∅( ), ,  of the mixed graph G V A E= ( ), ,  is a path v v vk k krk1 2
, , ,…( ) for 

k r∈ …{ }1 2, , , .

Property 1 (property 2) means that the subgraph V E, ,∅( ) of the mixed graph G V A E= ( ), ,  is a union of 
disjoint complete graphs (the directed subgraph V A, , ∅( ) is a union of disjoint paths, respectively). In the 
job-shop scheduling problem J t Ci =1 max, numbers m and r denote the cardinality of the machine set 
M M M M M= …{ }1 2, , , , m M= , and the cardinality of job set J J J J J= …{ }1 2, , , , r J= . Property 2 imp-

lies that if the inclusion v Vi
k∈ ( ) holds, operation vi belongs to the job Jk ∈  J, and vice versa (see definition 2). 

А job Jk ∈  J consisting of a set V k( ) of linearly ordered operations is represented as path v v vk k krk1 2
, , ,…( )  in 

digraph V A, , .∅( )  Operations V k( ) have to be processed in the order determined by path v v vk k krk1 2
, , , .…( )  

Property 1 means that if the inclusion vi ∈ Vk holds, operation vi has to be processed on machine Mk ∈ M. 
Due to definition 2 and property 1, each machine Mk ∈ M can process at most one operation within any unit-
time interval from the following set: 
 0 1 1 2 2 3 1, , , , , , , , .[ ] ( ] ( ] … −( ]{ }t t  (3)

An optimal strict colouring c V G< <→ … ( ){ }: , , ,1 2 χ  of the mixed graph G V A E= ( ), ,  determines an 
assignment of operations V to a minimal number of the following intervals:

 0 1 1 2 2 3 1, , , , , , , , .[ ] ( ] ( ] … ( ) − ( )( { }< <χ χG G  (4)

An assignment of operations V to the minimal number of unit-time intervals (4) is optimal since it deter-
mines a makespan optimal schedule for processing operations V, whose length is equal to the strict chromatic 
number χ< ( )G  of the mixed graph G V A E= ( ), ,  determining an example of the unit-time minimum-length 
job-shop scheduling problem J t Ci =1 max.  Properties 1 and 2 define the usual assumptions used in scheduling 
theory [28–30] in terms of graph theory [26; 27]. The following lemma 2 is proved in article [4]. 

Lemma 2 [4]. Any individual job-shop scheduling problem J t Ci =1 max is equivalent to an optimal strict 
colouring c G< ( ) of a suitable mixed graph G V A E= ( ), ,  possessing both properties 1 and 2, and vice versa. 

The proof of lemma 2 is based on the following correspondence of terms used in the strict mixed graph 
colouring c G< ( ) and those used in the job-shop problem J t Ci =1 max:

{vertex vi ∈ V } ⇔ {non-preemptive unit-time operation vi ∈ V };

{vertices on path v v vk k k
V k

1 2 1
, , ,…



( )

 in digraph V A, , }∅( )  ⇔ {set V v v vk
k k k

V k

( ) = …{ }( )1 2
, , ,

 of linearly ordered operations of the job Jk ∈  J }; 

{clique v v vi i iVi1 2
, , ,…{ } in graph V E, , }∅( )  ⇔ {operations V v v vi i i iVi

= …{ }1 2
, , ,

processed on machine Mi ∈ M };
{a strict mixed graph colouring c G< ( )} ⇔ {a schedule for the problem G t Ci =1 max};

{an optimal strict mixed graph colouring c G< ( )} ⇔ {an optimal schedule 
for the problem G t Ci =1 max};

{the strict chromatic number χ< ( )G } ⇔ {the optimal value of makespan Cmax}.
To illustrate lemma 2, we consider example 2 of the problem J t Ci =1 max, which is the same as already 

considered example 1 of the problem G t Ci =1 max with only one exception that there is no precedence constraint 
between operations belonging to different jobs in the set J. In other words, it is assumed that A\ A* = ∅. It is 
clear that a strict colouring c G< ( ) of the mixed graph G V A E= ( ), ,  depicted in fig. 2 determines a schedule exis
ting for example 2. Obviously, the mixed graph G V A E= ( ), ,  depicted in fig. 2 possesses both properties 1 and 2. 
This mixed graph G V A E= ( ), ,  is a subgraph of the mixed graph depicted in fig. 1. 
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An optimal schedule for example 2 is determined by the following strict mixed graph colouring c G< ( ): 
c v< ( ) =1 2, c v< ( ) =2 4, c v< ( ) =4 1, c v<( ) =6 3, c v< ( ) =7 4, c v< ( ) =8 5, c v< ( ) =9 1, c v< ( ) =10 3, c v< ( ) =11 4, 
c v< ( ) =12 5, c v< ( ) =13 1, c v< ( ) =14 4, c v< ( ) =15 5. This strict colouring c G< ( ) is optimal, i. e., χ< ( ) =G 5, due to 
the existence of a job J2 ∈  J with five operations V v v v v v2

4 5 6 7 8
( ) = { }, , , ,  implying the following nonstrict 

inequality: χ< ( ) ≥G 5.

It is important to highlight that there exists a general shopscheduling problem G t Ci =1 max which cannot be 
represented as the optimal strict colouring c G< ( ) of a mixed graph G V A E= ( ), , . This shortage of a strict mixed 
graph colouring to represent a general shopscheduling problem occurs since the strict inequality c v c vi j< <( ) < ( ) 
must hold for each arc v v Ai j,( ) ∈  in the colouring c G< ( ), and therefore, a strict mixed graph colouring cannot 
define a precedence relation vi → vj on the operations vi and vj belonging to different jobs in the set  J.

Remark 2. There are general shopscheduling problems G t Ci =1 max, which cannot be represented as opti-
mal strict colourings c G< ( ) of the suitable mixed graphs G V A E= ( ), , .

In the following section, we introduce a new class of the scheduling problems that is more general than the 
classes of the problems G t Ci =1 max and J t Ci =1 max considered in this section. Based on the newly introduced 
class of the scheduling problems, we prove that an optimal colouring c G( ) of any colourable mixed graph 
G V A E= ( ), ,  is equivalent to an appropriate optimal unittime minimumlength scheduling problem, and vice 
versa. 

Unit-time scheduling partially ordered multi-processor tasks
Contrary to the scheduling problems studied in the previous section, where each operation has to be processed 

on a single machine, in the scheduling system with multiprocessor tasks (MPT), a task may require either one pro-
cessor (machine) or several processors during the complete period of processing the task [29; 33–36]. As usual, 
two tasks (operations) requiring at least one common processor (machine) cannot be processed simultaneously.

Chapter 10 of the book [29, p. 264 –283] studies a general shop minimumlength scheduling prob-
lem GMPT t Ci =1 max along with other scheduling problems MPT b g  with multiprocessor tasks [33–36]. 
The symbol G in the field a of the threefield notation GMPT t Ci =1 max specifies a task system with arbi-
trary precedence constraints given on the set V v v vn= …{ }1 2, , ,  of the multiprocessor tasks. In the problem 
GMPT t Ci =1 max, it is needed to construct an optimal schedule for processing partially ordered multiproces-
sor tasks V v v vn= …{ }1 2, , ,  on the dedicated processors M M M M M= …{ }1 2, , , . The general shopschedu
ling problem G t Ci =1 max is a special case of the problem GMPT t Ci =1 max since the processing of task 
vi ∈ V requires a single processor for the problem G t Ci =1 max. In the general shopscheduling problem 
GMPT t Ci =1 max, a task vi ∈ V  may be regarded as a job  Ji including either one operation (task) vi ∈ V or more 
than one operation (several tasks from the set V  ). Let a simple job mean a job consisting only of one operation (task). 

Fig. 2. Mixed graph G V A E= ( ), ,  determining example 2  
of the problem J t Ci =1 max  with four jobs and six machines,  

the optimal strict mixed graph colouring c G< ( )  being equivalent to example 2
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For any example of the problem GMPT t Ci =1 max, one can construct a mixed graph G V A E= ( ), ,  such 
that an optimal colouring c G( ) of the mixed graph G V A E= ( ), ,  is equivalent to finding an optimal schedule 
for the problem GMPT t Ci =1 max. The construction of such a mixed graph G V A E= ( ), ,  is analogous to the 
construction of the mixed graph G V A E= ( ), ,  determining input data for the problem G t Ci =1 max (see the 
previous section). 

We next introduce a new class of the general shopscheduling problems GcMPT t Ci =1 max, which includes 
the problem GMPT t Ci =1 max as a special case studied in chapter 10 of the book [29]. More precisely, in the 
general shopscheduling problem GcMPT t Ci =1 max, it is required that a subset V k v v vk k k V k

( ) = …{ }( )1 2
, , ,  

of the tasks V v v v V kn= …{ } ⊇ ( )1 2, , ,  must be processed simultaneously in any feasible schedule. It is 
easy to see that the latter requirement may be represented by a circuit v v v vk k k kV k1 2 1

, , , ,…( )( )
 in the di-

rected subgraph V Ac, , ∅( ) of the mixed graph G V A E= ( ), , , which presents input data of the general 
shopscheduling problem GcMPT t Ci =1 max,  where the set A of the arcs includes the following subset: 

′ = ( ) ( ) … ( ) ( ){ }( ) ( ) ( )−A v v v v v v v vc k k k k k k k kV k V k V k1 2 2 3 11, , , , , , , , ⊆⊆ A.

Let the input data for the general shopscheduling problem GcMPT t Ci =1 max include w subsets 

V V V w1 2( ) ( ) … ( ), , ,  of the tasks such that every subset V k v v vk k k V k
( ) = …{ }( )1 2

, , ,  of the tasks V v v vn= …{ }1 2, , ,

V v v vn= …{ }1 2, , ,  must be processed simultaneously in any feasible schedule, where k w∈ …{ }1 2, , , . Then, we 
determine the following subset of arcs: 

 A v v v v v v v vc k k k k k k k kV k V k V k
= ( ) ( ) … ( ) ( ){ }( ) ( ) ( )−1 2 2 3 11, , , , , , , , .
kk

w

= 1



 (5)

Similarly as in the previous section, one can establish the correspondence of terms used in the optimal 
colouring c G( ) of the mixed graph G V A E= ( ), ,  with Ac ⊆ A and those used in the general shopscheduling 
problem GcMPT t Ci =1 max  see the table. 

Obviously, every instance of the problem GcMPT t Ci =1 max uniquely defines a mixed graph G V A E= ( ), ,  
determining input data for this instance. Therefore, to describe an instance of the general shopscheduling prob-
lem GcMPT t Ci =1 max, it is sufficient to define a mixed graph G V A E= ( ), , , which determines input data for 
this instance of the scheduling problem. In what follows, such an instance of the problem GcMPT t Ci =1 max 
will be called the problem GcMPT t Ci =1 max on the mixed graph G V A E= ( ), , .

The correspondence of terms used in the mixed graph colouring c G( )   
and those used in the problem GcMPT t Ci =1 max  on mixed graph G V A E= ( ), ,

Terms of the mixed graph colouring c G( ) Terms of the problem GcMPT t Ci =1 max

Vertex vi ∈ V Unittime task vi ∈ V (unittime operation of the job)

Vertices on the path (on the chain, respectively) 

v v vk k k
V k1 2 1

, , ,…




( )

 in the digraph V A, ,* ∅( )   

(in the graph V E, , )∅( )*

Set V v v vk
k k k

V k

( ) = …





( )1 2

, , ,  of linearly  

ordered operations (tasks) of the job Jk ∈ J

Clique v v vi i i Vi1 2
, , ,…{ } in the graph V E E, ,∅( )*

\
All tasks V v v vi i i i Vi

= …{ }1 2
, , ,  processed  

on the same machine (processor) Mi ∈ M

Set of arcs A\ A* in the digraph V A A, ,\
* ∅( )

Precedence relations given between tasks  
(operations) belonging to different jobs  
of the set J
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Terms of the mixed graph colouring c G( ) Terms of the problem GcMPT t Ci =1 max

Set of arcs A\ A* in the digraph V A A, ,\
* ∅( ) Precedence constraints given on the set of tasks V

Circuit v v v vk k k k
V k1 2 1

, , , ,…



( )

 in the digraph 

V A, , ,∅( )  where Ac ⊆ A

Tasks V k v v v Vk k k
V k

( ) = …







⊆
( )1 2

, , ,   

that must be processed simultaneously

A mixed graph colouring c G( ) of the mixed graph 
G V A E= ( ), ,

A feasible schedule for the problem  
GcMPT t Ci =1 max

An optimal mixed graph colouring c G( )  
of the mixed graph G V A E= ( ), ,

An optimal schedule for the problem  
GcMPT t Ci =1 max

The chromatic number χ G( ) The optimal value of makespan Cmax

Due to the correspondence of terms used in the colouring c G( ) and those used in the equivalent problem 
GcMPT t Ci =1 max  on the mixed graph G V A E= ( ), , , one can derive lemma 3. 

Lemma 3. Every general shop-scheduling problem GcMPT t Ci =1 max  on the mixed graph G V A E= ( ), ,  
is equivalent to an optimal mixed graph colouring c G( ).

Contrary to the jobshop scheduling problem J t Ci =1 max having a feasible schedule for any input data, 
there are instances of the general shopscheduling problem G t Ci =1 max, which have no feasible schedules. 
To construct an instance of such an unsolvable individual general shopscheduling problem G t Ci =1 max,  we 
add the precedence relation v5 → v9 to the input data of example 1 depicted in fig. 1. We call this modified 
example as example 1* and show that there is no feasible schedule for example 1* due to the existence of the 
circuit v v v v4 5 9 4, , ,( ) in the digraph V A, , ∅( ) and the edge v v4 5,[ ] in the graph V E, , .∅( )*  On the one hand, 

all tasks in the set v v v4 5 9, ,{ } must be processed simultaneously due to the circuit v v v v4 5 9 4, , , .( )  On the other 
hand, two tasks v4 and v5 cannot be processed simultaneously due to the edge v v E E4 5, .[ ] ∈ ⊂*  This contra-
diction implies that there is no feasible schedule for example 1*. Since the general shopscheduling problem 
G t Ci =1 max

 is a special case of the general shopscheduling problem GcMPT t Ci =1 max, there are similar 
instances of the problem GcMPT t Ci =1 max such that no feasible schedules exist. 

We prove the following criterion for the existence of a feasible schedule for the general shopscheduling 
problem GcMPT t Ci =1 max on the mixed graph G V A E= ( ), , .

Theorem 2. A feasible schedule for the general shop-scheduling problem GcMPT t Ci =1 max on the mixed 
graph G V A E= ( ), ,  exists, if and only if the digraph V A, , ∅( ) has no circuit containing adjacent vertices in 
the graph V E, , .∅( )

P r o o f. Due to lemma 3, a general shopscheduling problem GcMPT t Ci =1 max on the mixed graph 
G V A E= ( ), ,  is equivalent to optimal colouring c G( ) of the mixed graph G V A E= ( ), , .  A mixed graph 
G V A E= ( ), ,  with A ≠ ∅ and E ≠ ∅ may be uncolourable, i. e., there is no colouring c G( ) for the mixed graph 
G V A E= ( ), , . Furthermore, theorem 1 establishes a criterion for the existence of a colouring c G( )  for the 
mixed graph G V A E= ( ), ,  and this criterion directly proves theorem 2. 

To illustrate lemma 3 and theorem 2, we consider two examples of the general shopscheduling prob-
lem GcMPT t Ci =1 max with two nonsimple jobs J1 and J2, eleven multiprocessor tasks V v v v= …{ }1 2 11, , , , 
seven machines M M M M= …{ }1 2 7, , , , and three tasks v v v1 4 8, , ,{ }  which must be processed simultan
eously in any feasible schedule. The mixed graph G V A E= ( ), ,  depicted in fig. 3 determines input data 
for example 3. 

E n d i n g  t a b l e
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In example 3, machine M1 has to process three tasks of the set V v v v1 1 3 5= { }, , . The forbiddance to process any 

pair of tasks from the set V1 simultaneously is represented by the clique v v v1 3 5, ,{ } in the graph V E E, , .∅( )*
\  

Machine M2 has to process three tasks of the set V v v v2 2 5 6= { }, , .  The forbiddance to process any pair of tasks 

from the set V2 simultaneously is represented by the clique v v v2 5 6, ,{ } in the graph V E E, , .∅( )*
\  Machine M3 

has to process three tasks from the set V v v v3 3 7 9= { }, , . The forbiddance to process any pair of tasks from 

the set V3 simultaneously is represented by the clique v v v3 7 9, ,{ } in the graph V E E, , .∅( )*
\  Machine M4 

has to process three tasks of the set V v v v4 2 10 14= { }, , . The forbiddance to process any pair of tasks from the 

set V4 simultaneously is represented by the clique v v v2 10 14, ,{ } in the graph V E E, , .∅( )*
\  Machine M5 has 

to process two tasks of the set V v v5 8 10= { }, . The forbiddance to process tasks from the set V5 simultaneously 

is represented by the clique v v8 10,{ } in the graph V E E, , .∅( )*
\  Machine M6 has to process two tasks of the 

set V v v6 9 11= { }, . The forbiddance to process tasks from the set V6 simultaneously is represented by the clique 

v v9 11,{ } in the graph V E E, , .∅( )*
\  Machine M7 has to process one task: V v7 4= { }. All machines, which are 

used for processing the task vi ∈ V, are presented near vertex vi in fig. 3. 
There are two jobs J1 and J2, which are not simple. Job J1 ∈  J consists of the set V v v v v1

9 7 3 2
( ) = { }, , ,  of li

nearly ordered tasks (operations). Thus, job J1 ∈  J is represented by a union of the path v v v v9 7 3 2, , ,( ) in the di-

graph V A, ,* ∅( ) and the chain v v v v9 7 3 2, , ,( ) in the graph V E, , .∅( )*  Job  J2 ∈  J consists of the set V v v2

5 8
( ) = { },  

of linearly ordered tasks (operations). Thus, job J1 ∈  J is represented by a union of the path v v5 8,( ) in the di-
graph V A, ,* ∅( ) and the chain v v5 8,( ) in the graph V E, , .∅( )*  Other precedence relations between tasks and 

operations belonging to different nonsimple jobs are determined as follows: v1 → v4; v4 → v2; v4 → v8; v8 → v1; 
v9 → v5; v9 → v6; v9 → v8. All the precedence constraints determine the subset A of the arcs in the digraph 
V A A, , ,\

* ∅( )  where A A v v v v v v v v v v v v v v\
* = ( ) ( ) ( ) ( ) ( ) ( )1 4 4 2 5 3 4 8 8 1 9 5 9 4, , , , , , , , , , , , ,(( ) ( ) ( ){ }, , , , .v v v v9 6 9 8

In example 3, every job  Ji from the set J J J\ 1 2,{ } is simple, i. e., job  Ji consists of a single task that is iden-

tified with job  Ji. In example 3, the set of tasks V v v v V1

1 4 8
( ) = { } ⊂, ,  must be processed simultaneously in any 

feasible schedule. This requirement is determined by the circuit v v v v1 4 8 1, , ,( ) in the digraph V Ac, , .∅( )  Based 
on the correspondence of the terms (see the table), we construct the mixed graph G V A E= ( ), ,  depicted in fig. 3, 

Fig. 3. Mixed graph G V A E= ( ), ,  determining  
the problem GcMPT t Ci =1 max with eleven tasks and seven machines,  
the optimal mixed graph colouring c G( ) being equivalent to example 3
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which determines the input data for example 3 of the general shop-scheduling problem GcMPT t Ci =1 max 
with eleven multi-processor tasks, seven machines, two non-simple jobs, and three tasks, which must be pro-
cessed simultaneously in any feasible schedule. 

Due to theorem 2, there exists a feasible schedule for example 3 of the problem GcMPT t Ci =1 max on the 
mixed graph G V A E= ( ), , .  Due to lemma 3, an optimal schedule for example 3 may be determined by the 
following optimal colouring c G( ) of the mixed graph G V A E= ( ), ,  depicted in fig. 3: c v1 2( ) = , c v2 4( ) = , 
c v3 3( ) = , c v4 2( ) = , c v5 1( ) = , c v6 2( ) = , c v7 2( ) = , c v8 2( ) = , c v9 1( ) = , c v10 1( ) = , c v11 2( ) = . This mixed graph 
colouring c G( ) is optimal due to lemma 3 since χ G( ) = 4. Indeed, the optimality of the schedule determined by 
the mixed graph colouring c G( ) follows from the fact that there exists a job J1 ∈  J consisting of four unit-time 
operations V v v v v1

9 7 3 2
( ) = { }, , ,  that imply the non-strict inequality χ G( ) ≥ 4.

Due to theorem 2, there are examples of the general shop-scheduling problem GcMPT t Ci =1 max such that 
no feasible schedules exist for them. We construct an example of such an unsolvable general shop-scheduling 
problem GcMPT t Ci =1 max as follows. We replace the precedence relation v9 → v8 by the opposite relation 
v8 → v9 in the input data of example 3 depicted in fig. 3. There is no feasible schedule for such a modified exam-
ple 3 (we call it example 3*), where the precedence relation v9 → v8 is replaced by the relation v8 → v9. On the 
one hand, all tasks from the set v v v5 8 9, ,{ } must be processed simultaneously due to the circuit v v v v5 8 9 5, , , .( )  
On the other hand, two tasks v5 and v8 cannot be processed simultaneously due to the edge v v E E5 8, .[ ] ∈ ⊂*  
The contradiction obtained along with theorem 2 implies that there is no feasible schedule for example 3* of 
the problem GcMPT t Ci =1 max.

We next prove the following lemma, which is the inverse of lemma 3. 
Lemma 4. For any colourable mixed graph G V A E= ( ), , , there exists a general shop-scheduling problem 

GcMPT t Ci =1 max  on the mixed graph G V A E= ( ), , , which is equivalent to finding an optimal colouring c G( ).
P r o o f. We detect a set W of all circuits existing in the directed subgraph V A, , ∅( ) of the mixed graph 

G V A E= ( ), ,  and consider two possible cases: either W = ∅ or W ≠ ∅.
Case 1. Let the set W be empty; W = ∅. Then, one can construct the desired problem GcMPT t Ci =1 max on 

the mixed graph G V A E= ( ), ,  using the following algorithm. 
Algorithm 
Input: a mixed graph G V A E= ( ), ,  such that no circuit exists in the digraph V A, , .∅( )
Output: a general shop-scheduling problem GcMPT t Ci =1 max  on the mixed graph G V A E= ( ), , , which 

is equivalent to finding an optimal colouring c G( ).
Step 1: partition the graph V E, ,∅( ) into (maximal) components as follows: 

V E V E V E V Vm m m m r, , , , , , , , , , ,∅( ) = ∅( ) … ∅( ) ∅ ∅( ) … ∅ ∅( )+ +1 1 1 

 

where the subgraph V Ek k, ,∅( ) is a (maximal) component of the graph V E, ,∅( ) for each k m∈ …{ }1, ,  such 

that Vk ≥ 2. The subgraph Vj, ,∅ ∅( ) determines an isolated vertex for each index j m m r∈ + … +{ }1, , . De-

note this isolated vertex as follows: v Vj j1
{ } =: . Set M = ∅, k = 1, i = 0, l0 = 0.

Step 2: IF k = m + 1 THEN GOTO step 5 ELSE find all maximal (relative to inclusion) complete vertex- 
induced subgraphs V Ek k

1 1
, , ,∅( )  …, V Ek

l
k
lk k, ,∅( ) of the connected graph V Ek k, , .∅( )  Set r = 1, i := i + lk – 1 + 1.

Step 3: FOR index i, supplement machine Mi with the already constructed machine set, i. e., M M Mi: .= ∪ { }  
Establish that all tasks in the clique Vk

r  of the connected graph V Ek k, ,∅( ) must be processed on machine Mi, 

i. e., V V v v vk
r

i i i iVi
= = …{ }1 2

, , , , where all tasks v v vi i iVi1 2
, , ,…{ } must be processed on machine Mi in any fea-

sible schedule. Set i := i + 1.

Step 4: IF i lh
h

k
=

=
∑

0
 THEN set k := k + 1 GOTO step 2 ELSE set r := r + 1 GOTO step 3.

Step 5: FOR each index j m m r∈ + … +{ }1, , , supplement machine Mi + j – m with the already constructed 

machine set M. Establish that task vj1 with V vj j= { }
1

, which is isolated in the graph V E, , ,∅( )  must be processed 
on machine Mi + j – m. Establish that machine Mi + j must process only task vj1. Set M M M Mi i r: , , .= ∪ …{ }+ +1



79БГУ – столетняя история успеха

Дискретная математика и математическая кибернетика
Discrete Mathematics and Mathematical Cybernetics

Step 6: FOR each arc v vp q,( ) existing in the directed subgraph V A, , ∅( ) of the mixed graph G V A E= ( ), , , 
introduce the precedence relation vp → vq, which means that processing the task vp must be completed before 
starting the task vp in any feasible schedule. 

Step 7: a general shopscheduling problem GcMPT t Ci =1 max is constructed on the mixed graph 
G V A E= ( ), , , where the precedence relations on the task set V are determined at step 6 and the machine set M 
is determined at step 3 and step 5 STOP. 

Case 2. Let the set W be not empty, W = ∅. Since the mixed graph G V A E= ( ), ,  is colourable, every cir-
cuit v v v vk k k kV k1 2 1

, , , ,…( )( )
 in set W has no adjacent vertices in the subgraph V E, ,∅( ) of the mixed graph G 

(theorem 1). Therefore, all tasks v v v V kk k k V k1 2
, , , :…{ } = ( )

( )
 must be processed simultaneously in any feasible 

schedule for the desired general shopscheduling problem GcMPT t Ci =1 max on the mixed graph G V A E= ( ), , , 

where the circuit v v v vk k k kV k1 2 1
, , , ,…( )( )

 exists in the directed subgraph V A, , .∅( )

Let W = ( ) = …( ){ }
=

−
=

( ) ( )
V k v v v v v v

k

w

k k k k k k
k

w

V k V k
1

1

1
1 2 3 1 

, , , , , , . Then, we delete all arcs Ac defined in (5) 

from the mixed graph G V A E= ( ), ,  and apply the above algorithm to the obtained circuitfree mixed 
graph G V A A Ec

0 = ( ), , .\  As a result, the problem GcMPT t Ci =1 max is constructed on the mixed graph 
G V A A Ec

0 = ( ), , ,\  which is equivalent to finding an optimal colouring c G0( ). Consequently, the problem 
GcMPT t Ci =1 max on the mixed graph G V A E= ( ), ,  is equivalent to finding an optimal colouring c G( ). Lem-
ma 4 is thus proved. 

We apply the above constructive proof of lemma 2 to the mixed graph G V A E= ( ), ,  depicted in fig. 3 and 
obtain example 4 of the problem GcMPT t Ci =1 max on the mixed graph G V A E= ( ), ,  depicted in fig. 4. Note 
that examples 3 and 4 are different, e. g., all jobs are simple in example 4, while there are two nonsimple jobs in 
example 3. 

In general, it is easy to show that the proof of lemma 4 implies that for any colourable mixed graph 
G V A E= ( ), , , one can construct a general shopscheduling problem GcMPT t Ci =1 max on the mixed graph 
G V A E= ( ), , , which is equivalent to finding an optimal colouring c G( ) and all jobs in the set J are simple. 

Note that it is required to use nonsimple jobs for some objective functions g = …( )f C C CJ1 2, , , , since 
only completion times Ci of the jobs Ji ∈  J are their arguments. Hence, the completion times of some tasks may 

be ignored in the values of such objective functions. In particular, the total completion time g = =
=
∑ΣC Ci i
i

J

1
 is 

such an objective function.

Fig. 4. Mixed graph G V A E= ( ), ,  determining  
the problem GcMPT t Ci =1 max with eleven tasks and nine machines,  

the optimal mixed graph colouring c G( ) being equivalent to example 4
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Let T T= …{ }t t t1 2, , ,  denote a set of all tasks (operations) in the scheduling problem GcMPT t Ci =1 max, 
and let C it( ) denote a completion time of the task ti ∈ T. Due to the equalities max , , , max , , , ,maxC C C C C C CJ T1 2 1 2…{ } = = ( ) ( ) … ( ){ }t t t

max , , , max , , , ,maxC C C C C C CJ T1 2 1 2…{ } = = ( ) ( ) … ( ){ }t t t  the completion time of any task cannot be ignored in the value of 
the objective function g = Cmax. Therefore, only simple jobs may be used in the shop-scheduling problem with 
minimising makespan Cmax, where any non-simply job may be represented by the precedence relations on the 
task set T and the completion time C it( ) of each task ti ∈ T cannot be ignored in the value of Cmax. 

Obviously, the following theorem combines lemmas 3 and 4.
Theorem 3. Every general shop-scheduling problem GcMPT t Ci =1 max on the mixed graph G V A E= ( ), ,  

is equivalent to finding an optimal colouring c G( ) of the mixed graph G V A E= ( ), , . Further, for any colourable 
mixed graph G V A E= ( ), , , there exists an individual general shop-scheduling problem GcMPT t Ci =1 max on 
the mixed graph G V A E= ( ), , , which is equivalent to finding an optimal colouring c G( )  of the mixed graph 
G V A E= ( ), , .

To restrict a set of feasible schedules for a shop-scheduling problem α β g , which must be tested in or-
der to minimise a value of the regular objective function g [15], a finite set of semi-active schedules may be 
consi dered, since there exists an optimal semi-active schedule for a shop-scheduling problem α β g  with any 
regular objective function g [28]. 

Definition 3 [28; 29]. A schedule is called semi-active, if no task (operation) can be processed earlier without 
violating a given constraint or changing the task (operation) processing order in the obtained schedule. 

We remark that any colouring c G( ) of the mixed graph G V A E= ( ), ,  uniquely determines a strict order on 
the colours c vj( ) of all vertices in the set V. Due to this remark, one can define a minimal colouring c G( ) of 
the mixed graph G V A E= ( ), ,  as follows. 

Definition 4. A colouring c G( ) of the mixed graph G V A E= ( ), ,  is called minimal, if no colour c vi( ) can be 
decreased without changing the order of colours c vj( ) of the vertices in the set V vi\{ } in the obtained colouring 

′( )c G  of the mixed graph G V A E= ( ), , .

Obviously, each semi-active schedule existing for the general shop-scheduling problem GcMPT t Ci =1 max 
on the mixed graph G V A E= ( ), ,  uniquely determines a minimal colouring c G( ) of the mixed graph 
G V A E= ( ), , , and vice versa. Hence, we obtain theorem 4. 

Theorem 4. There exists a one-to-one correspondence between all minimal colourings c G( ) of the 
mixed graph G V A E= ( ), ,  and all semi-active schedules existing for the general shop-scheduling problem 
GcMPT t Ci =1 max on the mixed graph G V A E= ( ), , .

We used both graph terminology and scheduling one for the above problems. However, it is possible to 
describe most presented results either using only graph terminology or using only scheduling terminology. 

Conclusion
We introduced a new class of general shop-scheduling problems GcMPT t Ci =1 max for finding optimal sche-

dules for partially ordered multi-processor tasks with unit processing times. Contrary to a classical shop- 
scheduling problem, several machines are required to process a task in the problem GcMPT t Ci =1 max. It is 
also required that a subset of tasks must be processed simultaneously in any feasible schedule. We proved theo-
rem 3 showing that an optimal colouring c G( ) of any mixed graph G V A E= ( ), ,  is equivalent to the general 
shop-scheduling problem GcMPT t Ci =1 max, and vice versa. Hence, many terms used in scheduling theory 
(such as schedule, job, machine, processor, operation, task, processing time and makespan) may be considered 
as usual terms used in mixed graph colourings c G( ).

Due to theorems 3 and 4, most results that have been proven so far [4; 5; 7; 8; 14; 28; 29; 33–36] and will be 
proven in future for the scheduling problem GcMPT p Ci =1 max and for its special cases have analogous results 
for optimal colourings c G( ) of the appropriate mixed graphs G V A E= ( ), , . Conversely, most results that have 
been proven so far [2; 4; 5; 7; 8; 19; 25–27] and will be proven in future for optimal mixed graph colourings 
c G( ) have analogous results for scheduling problems GcMPT t Ci =1 max.
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