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CONTROL STRATEGY IN A LINEAR TERMINAL PROBLEM
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This paper deals with an optimal control problem for a linear discrete system subject to unknown bounded disturban-
ces, where the control goal is to steer the system with guarantees into a given terminal set while minimising the terminal
cost function. We define an optimal control strategy which takes into account the state of the system at one future time
instant and propose an efficient numerical method for its construction. The results of numerical experiments show an im-
provement in performance under the optimal control strategy in comparison to the optimal open-loop worst-case control
while maintaining comparable computation times.

Keywords: linear system; disturbance; optimal control; control strategy; algorithm.

Introduction

Optimal control problems for dynamical systems under uncertainty have been studied in the literature since
late 1960s [1-3]. The simplest approach that guarantees constraints satisfaction and achieves the guaranteed
value of the cost at the worst-case disturbance realisation is to find an optimal open-loop worst-case control.
The optimal open-loop worst-case control is constructed before the control process starts and is not corrected
during it; no information about possible future state measurements is used for its construction. It is well known
that optimal open-loop worst-case controls underestimate the potential of the control process, i. e., they give
a conservative estimate of the guaranteed optimal value of the problem and often cannot be constructed be-
cause of the constraints infeasibility (see, e. g., [4—6]). However, dynamic programming takes into account all
future state realisations, but the practical derivation of the dynamic programming strategy is computationally
intense with the exception of special cases of low dimensional systems and short control intervals.

Therefore, such control strategies are relevant that take into account some information about the future
states of the system and at the same time the complexity of their construction is comparable to the comple-
xity of calculating optimal open-loop worst-case controls. One of the possible approaches was proposed in
papers [6—8]. In [6] linear terminal problems were considered [7] deals with linear-quadratic optimal control
problems and [8] deals with problems of minimising the total momentum of the control input. All these papers
assume that before control process starts, we can choose one or more time instants (closing time instants of
the system according to [6; 8]), at which we can measure exactly the system state and make corrections in the
control input.

This paper deals with the problem considered in [6]. In contrast to [6], where a complex iterative algorithm
was used to construct an optimal control strategy with one closing instant, which requires sequential optimisation
first in control inputs and then in a parameter, we use the ideas of [8] to reduce the problem under consideration to
a single linear program, which allows to calculate the optimal control and the optimal parameter simultaneously.

Compared to [8], the problem studied in this paper has a terminal performance index and a discrete time
system, while in [8] a Lagrange cost of a special type and continuous time systems are investigated. Further
comparison of the results from [8] and the ones of this paper, the drawbacks and advantages of the two methods
are discussed in example 2. Two more examples demonstrate the efficiency of the new approach.

Optimal open-loop worst-case control
Consider a linear discrete-time time-invariant control system with a disturbance
x(t + 1) = Ax(t) + Bu(t) + Mw(t), x(O) =x,,t=0,1,..., T -1, (D
where x(r) e R" is the state, u(r) € U c R is the control input, w(¢) € W < R” is the unknown disturbance at

timet, A€ R"*" Be R"*’", M e R"*” are given matrices; Uz{ue]Rr cu_ <u < umax}, Wz{weRp:”w”w <

min —

<w }, where u

control input u(-):(u(t)e Ut=0,1,..., T—l) and a disturbance w(~):(w(t)e W,t=0,1,..., T—l) is de-
noted by x(t|x0, u(-), w(~)), t=0,1,...,T—1.

-
eR’, w,,,>0,

min? umax

z||w = max|zl.|. A trajectory of system (1) generated by a feasible
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Given a terminal set X, = {x eR":g . <Hx<g . }, where He R"*", g . g e R", the control goal

is to steer system (1) at time instant 7 to the terminal set with guarantees. The requirement of a guaranteed
(robust) steering to the set X, without any further assumptions yields the definition of a feasible open-loop
worst-case control.

Definition 1. A control input u() is called a feasible open-loop worst-case control if for any possible rea-

lisation of the disturbance w() it steers system (1) at time instant 7 into the terminal set, i. e. the following
inclusion holds

xX(T]xp, u(), w()) € Xp Vw(t)eW, t=0,1,...,T-1. )
The quality of a feasible open-loop worst-case control u() is measured by the value
J(u):m?)xc’x(T), ceR”, 3)

that represents the terminal cost (Mayer’s performance index) at the worst realisation of the disturbance and is
called the guaranteed value of the terminal cost. Here the prime symbol denotes a transpose.

Definition 2. A feasible open-loop worst-case control uo(-) is called optimal if it minimises the guaranteed
value of the terminal cost (3): J(uo) =minJ (u).
In guaranteed (robust) optimal contrgl problems, along with the disturbed system (1), one considers a so-
called nominal system
Xo(#+1) = Axo(¢) + Bu(t), x(0)=x,, =0,1,..., T =1,

that is used to formulate a deterministic optimal control problem equivalent to the problem of minimising the
cost (3) subject to system (1) and inclusion (2). The method for constructing this deterministic problem is well
investigated in the literature (see, e. g., [6]). It uses the linearity of system (1) and estimates of the worst-case
realisations of disturbances in the directions specified by the vector ¢ and the rows 4/ of the matrix H:

Z||1 = 2|Zi|'
i

The vector of estimates (0)= (yi(O), i=1 ..., m) allows to define a «tightened» terminal set for the no-

T-1-1 T-1t-1

Vo) = 3, M|, 1) = 3 |

t=0 t=0

WA'M

- i=1,...,m,

minal system and to formulate the deterministic problem in the form
J(u)= m(l? c’xo(T) + v0(0), 4

xo(t+1)= Axo(t)+Bu(t), xO(O)sz, u(t)e Uu,t=0,1,...,T -1,

min T Y(O) < HxO(T) S Cax Y(O)

T-1
Using the formula x,(7)= 4" x, + 2 A" Bu () for the terminal state of the nominal system and sub-
1=0
stituting it in problem (4) we conclude that the optimal open-loop worst-case control uo(-) can be calculated
as a solution to the linear program

T-1
miHZC'AT_t_IBu(t),
u() 2o
T-1
Gunin +V(0) = HA xy < 3 HA" """ Bu(1) < g = ¥(0) — HA' x,,
1=0

Upin S (1) Sty =0, ..., T =1,

max?

where the constant ¢’A” x, + v,(0) in the cost is omitted.

The optimal open-loop worst-case control is the simplest solution of the problem under consideration, when
system (1) has to be robustly steered to the terminal set while minimising the terminal cost (3). The open-loop
control does not take into account the possibility of future state measurements of system (1), that allow to close
the control loop and to make corrections to the planned control inputs (see, e. g., [7; 8]). In contrast to optimal
open-loop worst-case controls, such a possibility is taken into account by the control strategies. One of such
control strategies is introduced in the next section.
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Optimal control strategy
Before the control process starts, we fix a time instant 7; € {l, 2,....,T— 1} that is referred to as the closing
instant of system (1) (see [6; 8]). Denote Ay ={0,1,..., T, =1}, A\ ={T,, T, +1,.... T —1}; u,(-) = (uk(t) eU,
teA.) is the control input on the interval A w,()=(w,(f)e W, 1€A,) is the disturbance on A;;
Up={u,(-):u,(t)e U, te A} is the set of feasible control inputs on Ay W, ={w,(-): w,(t)e W, te A} is

the set of possible disturbances on A, k=0, 1.

Assume that on the interval A, a control input () =1, (~|xo) € U, is chosen. At time 7, system (1) reaches
a state x, that belongs to the set

X(Tl|x0’ ”0()) = {x eR":x= X(T1|xm ('), Wo('))’ wy() € Wo}
Following [7; 8], it is assumed that at time instant 7; we can:
1) measure exactly the current state x; = x(T1|x0, uy(+), wo ()),

2) choose a new control input u(-) =, (-|x1) e U, on A, taking into account the obtained state measure-

ment x;.
Taking into account 1) and 2) we look for a solution of the problem under consideration in terms of a cont-
rol strategy (with the closing instant 7;):

7T1={”0 (1) ([0 ). X(T1|x0, Ho (|x0))}

where the control input u(-) =u, (-|xo) is referred to as an initial open-loop control.

A trajectory of control system (1), corresponding to a strategy 7, and a disturbance w() = (Wo (), wl(-)), is
defined as a sequential solution of two systems [7; 8]:

x(¢+1) = Ax(2) + Buy(t) + Mwy(2), x(0)=x,, 1€ A,,
x(t + 1) = Ax(t) + Bul(t|x(T1 )) + Mwl(t), x(Tl) = x(T1|x0, uo(-), WO(-)), teA,.

Now we discuss conditions for the strategy 7, to be feasible, i. e. for the trajectory defined above to guarantee
the terminal constraints satisfaction.

First, the control input u](~|x1 ) € U, that is chosen at the time instant 7}, must satisfy the inclusion
X(T|x1» ”1('|x1))§XTs ©)

where X (T|x,, u())= {xe R :x=x(T|x, w,(-), w()), w() e Wl} is the set of possible terminal states
x(T | %, 2(-), W1(‘)) of system (1) with the initial condition x(T1)= x,, the control input u,(-) and the distur-

bance w ()
Secondly, the control input u,(-) should be such that for all states x, from the set X (T1|x0, uo()) there exist

a control (-|x1 ), satisfying (5). Summarising, we obtain the next definition.
Definition 3. A strategy =, is called a feasible control strategy if
X(T|x1, u, (|xl)) c X, Vx e X(Tl|x0, ”o())

Obviously, an arbitrary feasible strategy with the initial open-loop control uo(-|xo) is not better than a fea-
sible control strategy of the form

T, = {uo (~|x0); ulo(‘|xl), X € X(T1|x0, u0(~|x0))}, (6)
which on A, consists of the optimal open-loop worst-case controls ulo (-|x1) for states x,. Every open-loop con-
trol u/ (-|xl) for a fixed x, is the solution of the problem

Aln) =, min, mas, ¢x(T |, (), w () )

subject to (5). The quality of strategy (6) is obviously measured by the value
V(m)= max Jl(x(T1|x0, uy(-), wo()))
wo(') € Wy
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Note that if problem (7) is infeasible, then we assume J, (x1 ) = + oo, Therefore, if the strategy w, is not fea-

sible, 1. e. for some x; € X(Tl|x0, ”o()) there is no control input ”1('|x1> that satisfies (5), then V' (1, ) = +ec.
Definition 4. A feasible control strategy

m = {u8('|xo); (1), x € X(Tl|x0’ “g('|x0))}’ ®

is called optimal, if V(n?) = minV(n1 ), where minimum is taken over all feasible strategies of the form (6).

A control input ug (-|x0) is called the optimal initial open-loop control (within the optimal strategy n?).
Hence, the control strategy (8) is optimal if ug (-|xo) is a solution of the minimax problem
V(n’)= min max J;(x(T))),
(=) %OH%MOG%I((I»
€))
x(t+1)= Ax(t) + Buy (1) + Mwo(t), x(O) =Xy, L€ A,

and u/ (-|xl) are solutions of problems (7) for the states x, € X (Tl|x0, uy (-|x0 ))
Problem (9) implies that the optimal guaranteed value of the strategy = is equal to
()=, in, s min, s (T ( 3 160 50 1 (x(Tx 100 o)) )
while the optimal guaranteed value of the open-loop worst-case control uo(t) is calculated as
0)_ : . ’
)= 515 T 0, ) ) )
Taking into account the minimax inequality we conclude that V(Tc?) <J (uo). In the last section we will

provide some examples where the optimal control strategy with one closing instant achieves a significant im-
provement in comparison to the optimal open-loop worst-case control.

Calculating the optimal initial open-loop control

Before the control process starts, we need to know only the optimal initial open-loop control ug (~|x0).
The collection of the optimal open-loop worst-case controls ('|x1) is not calculated in advance. The control
input u) ('|x1 (T, )) is only found at the closing time instant 7;, when the current state x(7; ) is measured. There-
fore, the purpose of this section is to propose an efficient method for calculating the optimal initial open-loop
control ug (-|xo), i. . solving problem (9).

Problem (9) is the terminal control problem of the same type as the problem for calculating the optimal
open-loop worst-case control u0(~). It has no explicit terminal constraints; however, these are implicitly im-
posed by the condition x(Tl) eX = {xl o 1(x1) < +oo}. The principal difficulty in solving problem (9) is that
the function J; in the performance index is defined implicitly as the optimal value of problem (7). In this
regard, for the purposes of further presentation, we reformulate problem (9) in an equivalent form (see [9]):

V(n?) = uror(linaoc,

x(t + 1) = Ax(t) + Bu, (t) + Mwo(t), x(O) =X, U (t) elU,, teA,, (10)

Jl(x(Tl)) <o V() e,
The function J; (x1 ), x, € R”, as the optimal value of a linear program (to which problem (7) is reduced), is

a piecewise linear convex function (see [10, p. 180]), therefore for any fixed o € [oc ] the a-level set

min> Qmax
X, (o)= {xl e X :Jy(x)< Oc} is a convex polyhedron. Here o, = inf ¢’x + Yo (7}), 0pe = supc’x — vo(7;),
subject to g + V(7)) < Hx < g, — Y(T;). Then in (10) the terminal constraint has the form x(7;) e X, (o)
Vw, () ew,.

Since the exact description of the polyhedra X 1(oc) for all values of the parameter o is difficult, in [6; 8] it
was proposed to replace X 1(Oc) with their outer polyhedral approximations with normals to the faces of these
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polyhedra being independent of o.. Let p; e R", j= 1,2, ..., my, “ p; H =1, be a collection of vectors which rep-

resent the mentioned normals, and £, € R™ *" be a matrix, which rows are the vectors D Denote
fi(o)=max p/x, x € X, (at). (11
Then the outer approximating polyhedron for Xl(oc) is )_(I(OL)Z {xl eR":Px, < f(oc)}, where f(oc) =
= ( filo), j=1, ..., m ) With a sufficiently large set of vectors p;, j=1,2, ..., m,, X, (o) approximate the sets
Xi(o), o efo
In [6], in order to solve problem (10), an iterative algorithm was proposed. Each iteration of the algorithm
for the current value o, refines the approximation X, (oc k) and calculates the control ugk (1), t € A, that gua-
rantees steering the system to the set X, 1(ock) at the time instant 7. Thus, at each iteration k the algorithm

solves m, (k) problems (11) and one control problem. The value o, ; is found by any line search method.

In what follows we propose a method for solving problem (10), which does not require application of the
iterative procedure described in [6].

o |, quite accurately.

min®> ““max ]

Denote G, = HA" =", ¢/=¢’A" " and consider the case when rank(G{|c1 ) =m +1< n. Simple arguments
yield that in this case o;, = —o°, O
that f (o), o € R, is affine.

Assumption 1. For any j = 1, 2, ..., m; the vector p; is such that equalities rank(Gl’ |cl) = rank(Gl’ |cl‘ pj)
=m+1 hold.

Proposition. Let assumption 1 hold. Then

f(a)= fo+ Ao, (12)
where f, = f(0), A= (7»1., j=1...,m ) A, satisfies the conditions G{y + c,h; = p;, A;20.

Proof. Consider problem (11) for a fixed index j. The set X ((x) consists of those and only those vectors x,
for which the following system is feasible

x(t+1)=Ax(t) + Buy(¢), x(T,) = x, u)(¢t) e U, te A,

Zunin + V(1) S Hx(T) € g = ¥(T} ), ’x(T) < 0= vo(77)-
Following the arguments that were used to reduce the problem for constructing the optimal open-loop

worst-case control to problem (4), problem (11) can also be reduced to a linear program. We represent it in the
form

= 4o, 1. €. function (11) is defined on the entire real axis. Let us show

max

/(o) = max p/x,

8mint 7(711) SGx+ z GlD(t)ul(t) < 8max — Y(TI)’
tel (13)
ox + 2 cl’D(t)ul(t) <a-—7, (Tl),

te

Uiy < ul(t) S U LEA,

where D(¢)=A4""""'B, te A,
The problem dual to (13) has the form

fi(o)=  min (= 7(1)) 5" = (g + ¥(T})) w (0t = ¥o (T, + gl (7" (1) = v 1),
w(t) V(1) e A,
Gy =Gyt o), = p;,
D(¢) Gly* = D(1) Giy.+ D(1) e\, +v" (£) = va(1) =0,
A 20,y 20, y.20,v(1) 20, n(r) 20, 1€A,,

and the complimentary slackness conditions hold [9; 10]. Note that all the dual variables in (14), similarly to
A, depend on the index j that is omitted for simplicity of presentation.
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Denote y = y*— y.. Then, according to assumption 1, the system of linear algebraic equations (14) has
a unique solution (y, A)). If that solution has A, < 0, then the dual problem (14) is infeasible and the primal
problem (13) is unbounded on X, (oc). Let A, >0, then both problems (13), (14) are feasible. The second group
of equality constraints in problem (14) can be represented as

Vi (6)=v,(t)==D(t) p, 1 € A,

Taking into account non-negativeness of the dual variables and the complementary slackness conditions, it
is clear that the dual variables are calculated according to the formulae

* yi, inO, _ 03 inO, _1
V= 0, v <0, Vuj = Ly 3 <0, i=1,...,m,
w(t) = (v*k(t), k=1,..., r), vi(t)= (v;:(t), k=1,..., r), (15)

g0 OO [0l
)

where v(1)= (v, (t), k=1,...,r)=D(1) p;, e A,

Problem (14) for o, = 0 has same optimal solution, therefore we can conclude that f; (o) = £;(0)+ 2,0,
which proves formula (12).

Along with the proposition we derived a simple formula for calculating the components of the vector f, that
allows to avoid solving linear programs (13) or (14):

Sy = 50)= (e = V() 7 = (gmin + 7)) 2o = Vo TR+ 3 (1 (1) = (1))

te A
It also follows that if rank(Gl’ ¢ ) # rank( Gq p; ), then f; (o) = +oo.

Considering the relation (12) the problem for constructing the optimal initial open-loop control (10) (case

rank(G1’| C1) = m +1 < n) can be presented in the form

V(TC?) = ul(;lg,n(xa’

x(t+1)= Ax(t) + Bu, (t) +Mw0(t), x(0)=x0, uy(t)e U, te A,, (16)

Bx(T)) < fo + o Yw, () € W,

and further reduces to the linear program

min o,
u (), o
Y, BA" T Buy(t) - o< fy - ¥ — RA"x,, 7)
tel
Unin = Uy (Z) < Unax> L € AOﬂ
where 72(%, j=1 .., ml): Yi = Wnax z ‘pj’A’MHI.
tel

Now let us consider the case when rank(G,’|c1 ) =n<m+1. In this case —eo < 0 ;;, < O, < +oo, function

max

(o), ae [ocmm, O ax ], is piecewise affine and concave. Here in order to construct the optimal initial open-
loop control ug ( | xo) we propose to replace the approximation of the set X, (oc) with the approximation of the set
E (o) = {(go, E)eR" ™ :Tu () e Uy, g+ V(1) SE+ Y, GD(1)uy(1) S grax — Y(T7),

te
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‘20"‘201 ) <o —v,(7; )}

tel

by the polytope Z(o)= {(&o’ E)eR"*": go&o+ 0 < f(oc)}, where g, = (qu >0,j=1,..., ml), matrix
0 eR™ *™ consists of rows qu e R", j=1,...,m,, thatare chosen in advance, and f(oc) = (]_;(O(), j=1 ..., m ),
where f;(at) is the optimal value of the linear program

17](0‘) = émgx %jE.yo + q;éa
0> 5> Uy

Zuin + V(1) <&+ 3 GD(1) (1) € g = V(7)o + 2 D (1) (1) < =7, (7)), (18)

tel te

Upin S U (t) Upas TE A,

Following the arguments of the proposition, we derive that f (OL), o € R, is calculated by the formulae

flo)=fo + ko, =g, 20,

Z‘(O):<gmax - Y(T1 )) Y= (gmin + Y(T1 )) Ve ™ Yo(Tl)%j + Z (ur,naxv*(t) - ur,ninv*(t))’

te
where y,, ¥ v.(),v"(¢), t € A,, are found from (15) with the following adjustment: y =g, v(r)= D’(¢)G{q; +
+ D’(t)clqoj, te A,

The problem for constructing the optimal initial open-loop control (10) (case rank(Gl’
the form

c1)=n<m+1) has

V(nlo) = min o,

x(t + 1) = Ax(t) +Bu0(t) +Mw0(t), x(O):xO, uo(t) elU, teA,, (19)
Px( )<f0+q00c Vwo()eWO

with B = gyc + Q,G, and can be reduced to the linear program similarly to the reduction of problem (16) to

problem (17).
The resulting linear program of the form (17) has 7, + 1 variables and m, constraints. Depending on the

required accuracy of approximation of the set X;(ct) or the set (o) the number of constraints can be quite
large. However, in contrast to the method from [6], where first problems (13), (18) are solved and then the
problem of the dimension comparable with the dimension of problems (17), (19) for a fixed parameter o is
solved, problem (17) is solved only once and its solution immediately yields the optimal value of the parameter
a’= V(Jt?) and the optimal initial open-loop control u, (~|x0).

Note that in the second case (ramk(G{|c1 ) =n < m +1) the space dimension where we approximate the set
El((x) is higher than the state space dimension #, which can be undesirable and lead to a significant increase
in the number of constraints in problem (19). To avoid this problem one has to explore the piecewise affine
structure of the function f(ct), 0 € [0y, Onay |- This will be the focus of a future work.

It is also worth mentioning that the idea of approximating the set El(oc) can be applied in the case
rank(G{ |cl) =m + 1, if the number of terminal constraints m is less than the number of states »n of the control

min?

system. Such an approach reduces the dimension of the space where approximations are constructed and is
applied to solve examples 2 and 3 in the next section.

Examples

Let us illustrate the proposed method for constructing the optimal control strategy by three examples.
The first example is a discrete analogue of the problem from [6], the second is the problem of minimising the
total momentum of the control input from [8], and the third is a modification of the latter. Discrete systems for
the examples are obtained by discretisation of continuous systems with the sampling period 2 =0, 1.

EZ@’ — cmoemH AR Mm@]ovwb J,ow,w/ 45



Kypnaa Besopycckoro rocyrapcTBeHHOro yuusepcurera. Maremaruka. Madopmaruka. 2021;2:38-50
Journal of the Belarusian State University. Mathematics and Informatics. 2021;2:38-50

YWY —

Example 1. Consider a discretised problem from [6]:
X, (T ) — max,

(D)= ( 0.9950 0.0998Jx )+ (o.ooso)u )+ (o.oosojw (1), 5(0)= @ 0

—-0.0998 0.9950 0.0998 0.0998

x(T)esz{xeRZ:x*SXISx*}, |u(l)|£1, w(t)|§0.5, t=0,...,.T-1.

Let us choose the control horizon 7= 120 and the closing instant 7', = 80. In [6] x, = 2, x" = 7; however, in
this case there exists no feasible open-loop worst-case control (in both continuous problem from [6] and dis-
crete problem (20)). Therefore, we choose x, =2, x* = 10. This modification does not affect the optimal control

strategy since the constraint x; (T ) <10 is not active, but it allows to compare the optimal open-loop worst-case
control and the optimal strategy. In particular, problem (20) has the optimal open-loop worst-case control uo(-)

that achieves the optimal guaranteed value equal to J (uo) =1.501102, while the optimal control strategy (8)

has the optimal guaranteed value V(n? ) = o’ = 2.754 215. Calculating the optimal open-loop worst-case con-

trol takes 0.0151 s, while to obtain the optimal strategy we needed 0.0186 s. Figures 1 and 2 illustrate the
results. The obtained solutions correspond to results from [6] (with provision for discretisation), but allow to
avoid a computationally intense iterative procedure (see table 1 in [6]).

Let us explain in more detail fig. 1, which shows the state trajectories of the nominal system correspon-

ding to (20) under the optimal open-loop worst-case control uo(t), t=0, ..., 119 (dashed line /), and under
the optimal initial open-loop control u8(t|x0), t=0, ..., 79 (solid line 2). A dotted line represents the set
X (T |x0, u()) of possible states of system (20) under the optimal open-loop worst-case control. This set lies
entirely in the terminal set X, (grey area), which illustrates that constraints (2) are satisfies with guarantees.

The optimal initial open-loop control u8(~|xo) generates the set X (T1|x0, u8(-|x0)) of possible states of sys-
tem (20) at the closing instant 7;. This set belongs to the set X 1(060) (dotted lines at the bottom of fig. 1), i. e.
for any x, € X (T1|x0, ug (-|x0 )) the inequality J,(x;) 2> . holds. For a satisfactory representation of the set

X 1(060), 83 vectors were required, i. e. m, = 83. Point x; corresponds to the extremal value of the function J;,

Le. J; (x{k ) = 0.’. Despite the approximation of the set X’ l(oco), the last equality holds exactly. The state trajec-
tory that corresponds to the optimal open-loop worst-case control (|x1* ) for the state x(7;) = x; is shown by
dash-dotted line 3. Note that geometrically

J(uo) =minx,, x€ X(T|x0, uo(.)), V(n?) =a’=minx,, xe X(T|x1*, u (|x;‘))

Figure 2 represents the optimal open-loop worst-case control uo(t), t=0, ..., 119 (dashed line), optimal
initial open-loop control ug <t|x0 ), t=0,...,79 (solid line before the closing instant), optimal open-loop worst-
case control ulo (t|x1* ), t =80, ..., 119 (solid line after the closing instant), and the trajectories that correspond

to the worst-case disturbance. The latter here is the disturbance that delivers the exact optimal value. In the
example under consideration, the worst disturbances for the optimal open-loop worst-case control and for the op-

sign(c’AT_’_lM), t=0,...,T-1.
Example 2. The following problem was solved in [8]:

Iy

j|u(t)| — min,

0

timal strategy coincide and are equal to w*(¢) =

Wmax

X =%y, X, =—x;+u+w, x(0)=x, (21)

‘x(tf )‘ <x%

u(t)| <1,

w(t) < w', te0,1, ]
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t
Let u(t)=u,(1) = u,(), 0 < uj(t) <1l,j=1,2, x3(t)=Ju1(s) + 1, (s)ds, 1 € [0, tf], and suppose that the
0
control and the disturbance are discrete with the sampling period equal to # =0, 1. In this case we obtain the dis-
crete problem with n =3, r =2:

x4(T) — min,

0.9950  0.0998 0 0.0050 —0.0050 0.0005
x(t+1)=|-0.0998 0.9950 0 |x(¢)+|0.0998 —0.0998 |u()+| 0.1051 |w(z), (22)
0 0 1 0.1 0.1 0

x(O)z)_co,

x(T)<xi=1,2, 0<u,(t)<1, j=1,2,

w(l)| <w', t=0,...,T—-1,

t
where T = %, Xy = (xo, 0). We assume that parameters are as in [8]: t= 10 resulting in 7= 100, X, = (5, 0, O),

x"=2,w"=0,3. The closing instant 7; = 80 is chosen.

The optimal open-loop worst-case control u0(~) of problem (22) gives the optimal guaranteed value equal
to J (uo) =5.722 047. The optimal control strategy has the optimal guaranteed value V(n?) =0a’=5.039103.
Compared to [8], where J(uo) =5.656317 and V(nlo) =5.0131865, slightly worse performance is due to

discrete disturbance, while in [8] disturbance was assumed piecewise continuous. We are not presenting the
optimal controls and trajectories here since they visually coincide with the results in [8].
The principal difference in solving problem (22) and applying the method from [§] to solve problem (21) is

that the function f(ct) as defined by (12) for problem (22) is linear in the parameter o, while for problem (21)

this function is piecewise linear. This results in lower dimension of problem (19). The latter has 7} + 1 vari-
ables, while the resulting problem in [8] has 7 variables. As a result, to obtain the optimal strategy by solution
of problem (19) we needed only 0.0812 s (0.75 s in [8]). The disadvantage of the method proposed in this paper

compared to [8] is that we approximate the set =, (oc) in R? instead of R? in [8].
Example 3. Consider a modification of problem (21)
I
'[ |u(t)| — min,
0

X=Xy, %=X+ X+ w, X =u, x(0)=x,

‘xi(lf)‘ <x" i=1,2,

u(t)| <1,

w(t)| < w", te [0, t ]
Here a modification concerns the so-called indirect control of system (21).

t
Introducing u(¢)=u,(1) — u,(?), x4(t):.|‘ul (s)+uy(s)ds, te [0, tf], as in example 2, we obtain the dis-

crete problem withn =4, r=2: °

x4(7) — min,

0.9950 0.0998 0.0050 0 0.0002 —0.0002 0.0005
~0.0998 0.9950 0.0998 0 0.0050 —0.0050 0.1051
x(t+1)= x(7) + u(t) + w(t), (23)
0 0 10 0.1 -0.1 0
0 0 0 1 0.1 0.1 0
x(0)=%, (e, )| < i=12, 0<uy(6) <1, j=1,2, |w(r)] <w, r=0,.., T -1,

The closing instant 7} = 60 is chosen. We illustrate the solution for the initial condition X, = (7, 0, 0, 0),
and the parameters x* = 1.5, w* = 0.2.
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Fig. 1. Phase-plane solution representation of example 1. Fig. 2. Optimal control and trajectories in example 1
Trajectories under the optimal open-loop worst-case under the worst-case disturbance w* ()

control (line /), under the optimal initial
open-loop control (line 2), and the optimal open-loop
worst-case control on the interval after the closing
instant for a sample state x; (line 3)
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Fig. 3. Phase-plane solution representation of example 2. Fig. 4. Optimal control and trajectories in example 2
Trajectories under the optimal open-loop worst-case under the worst-case disturbance w* ()

control (line /), under the optimal initial
open-loop control (line 2), and the optimal open-loop
worst-case control on the interval after the closing
instant for a sample state x; (line 3)
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The optimal open-loop worst-case control uo(-) in problem (23) has the optimal guaranteed value equal
to J (uo) =7.438263. The optimal strategy gives V(n?) =0’=6.657 643. The time spent to construct the

optimal open-loop worst-case control was 0.015 s, while for the optimal control strategy 0.139 s were spent.
Figures 3 and 4 show results for problem (23). In fig. 3 projections of the state trajectories on the

phase plane x,x,, the terminal set, sets of possible states and the intersection of the set X, l(oco) by a plane
{x3 =1.966 4, x, =4.166 4}, where the point x{ (Tl) and the set X (T1|x0, uy ('|x0 )) lie, are shown. To approximate
sets X, (o) we used m, = 1385 vectors. In the neighbourhood of the point x; = (6.813 7, 2.519 2, 1.966 3, 4.166 4)
the approximation accuracy is Jl(xl* ) ~a’=6.8-10"".

In fig. 4 the optimal open-loop worst-case control uo(-), the optimal initial open-loop control ug (-|x0)

and the realisations of the particular optimal strategy and the corresponding trajectory in the process with the
disturbance defined as in example 1, are presented. The mentioned disturbance is the worst for the optimal

open-loop worst-case control uo(-). The optimal strategy in the same process has the value equal to 5.136926.

Conclusion

This paper considers a guaranteed terminal cost minimisation problem for linear discrete systems with un-
known bounded disturbance. We study two types of control inputs that achieve the guaranteed constraint satis-
faction and minimise the cost in the problem under consideration. The first is the optimal open-loop worst-case
control that is constructed entirely before the control process starts, is not corrected during the process, and
ignores any possible information about the system’s future behaviour. The second is the optimal control strate-
gy with one closing instant, where closure means taking into account a state measurement at one future time
instant. The optimal control strategy consists of the optimal initial open-loop control, defined at time instances
before the closure, and a collection of optimal open-loop worst-case controls, defined after the closing instant
for all possible (due to disturbance and initial control) states at that closing instant. Practical application of the
optimal strategy implies using the optimal initial open-loop control before the closing instant and then cho-
osing optimal open-loop worst-case control depending on the state measurement in a particular control process.

While optimal control strategies with one closing instant for linear terminal problems were introduced
in [6], the main contributions of this paper consist both in the new formulation of the problem for constructing
the optimal initial open-loop control and the numerical method for its solution. The proposed formulation is
a minimax optimal control problem with a cost function that is implicitly defined as the optimal value of an-
other optimal control problem. We thoroughly elaborated the structure of this problem using the duality theory,
which allowed us to reduce it to an equivalent linear program and significantly simplify the method for optimal
strategy construction compared to the algorithm introduced in [6]. Numerical experiments demonstrate effec-
tiveness of the proposed approach and superiority of the optimal control strategy over the optimal open-loop
worst case control.
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