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We consider a space of infinite signals composed of letters from a finite alphabet. Each signal generates a sequence of
empirical measures on the alphabet and the limit set corresponding to this sequence. The space of signals is partitioned
into narrow basins consisting of signals with identical limit sets for the sequence of empirical measures and for each nar-
row basin its packing dimension is computed. Furthermore, we compute packing dimensions for two other types of basins
defined in terms of limit behaviour of the empirical measures.

Keywords: packing dimension; empirical measure; basin of a probability measure.

Introduction

Signals of infinite length composed of letters from a finite alphabet may be classified in accordance with
limit behaviour of generated by these signals empirical measures on the alphabet. It turns out that different
classes of signals (which we call basins) have a sophisticated fractal structure, and the most adequate quantita-
tive characteristic for their description is fractal dimension. For the first time Hausdorff dimensions of certain
basins were calculated by Billingsley in [1; 2]. In [3] it was suggested to consider the so-called narrow basins,
that are distinguished among other types of basins by the fact that they form a partition of the space of all
infinite signals, and their Hausdorff dimensions were calculated. After Hausdorff dimension the next mostly
used fractal dimension is the packing one. In [4] the authors announced explicit formulae for the packing di-
mensions of narrow basins and basins of certain other types. In the present paper we set forth detailed proofs
for those formulae.

Let us proceed to strict definitions and statements.

Consider a finite set X = {1, e k}. In what follows this set will be called the alphabet and its elements the

letters. Any sequences of letters, finite or infinite, will be called the signals. The set of finite signals of length n
is naturally denoted as X", and the set of all infinite signals as

XN:{x:(xl, Xy, ...)|xl.eX}.

Each initial segment of a signal will be called its prefix.
Let M (X) be the set of all probability measures on X:

Zp(i)zl, p,(i)ZO}

Evidently, M (X ) is convex and compact. For each letter x € X denote by d, the unit measure supported at x,

M(X)z{uz (n(1), ..., u(k)) e R

that is Ui
b 1 y = x’
8.(»1)=1,
0,if y#x.
Every finite signal x =(x, ..., x, ) generates an empirical measure 8., € M (X) by the rule
O, +...+0,
o, ,=—————.
x,n n
In other words, 8x,n( y) is the average frequency of the letter y among x,, ..., x,. Every infinite signal

x= (xl, Xy, ) e X" defines a sequence of empirical measures 9, , generated by its prefixes of length n.
For each infinite signal x denote by ¥ (x) the set of all limit points of the sequence 8, , € M (X). In view

of compactness of M (X ) this set is non-empty. Moreover, in [3, lemma 3] it is proved that V(x) is compact
and connected.
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For every subset W < M (X) let us define the following sets in X ": the basin B(W), narrow basin NB(#¥),
and wide basin WB(W) by formulae

Bw)={xe x" |V (x)cw},
NB(W)={xe x" |V (x)=w},
WB(W)={xe x" |V (x) n W =2},

In other words, B(') denotes the set of infinite signals x such that all limit points of the sequence of empirical
measures 8, belong to 17, NB(W) denotes the collection of infinite signals x such that the set of limit points
of the sequence §, , coincides with ¥, and WB(W') denotes the set of infinite signals x such that the sequence
9, , has at least one limit point in . Obviously, these basins satisfy the inclusions

NB(W)c B(W)c WB(W).
From the above mentioned compactness and connectedness of ' (x) it follows that a narrow basin NB(W)
may be non-empty only in the case when the corresponding set of limit points ¥ is non-empty, compact, and
connected. Conversely, in [3] it was proved that for every non-empty connected compact set W < M (X ) the

narrow basin NB(/) is indeed non-empty. As for basins B(W) and WB(W), it is easily seen that they are

non-empty for all W# O.
Every infinite signal x defines uniquely the set ¥ (x). Therefore the narrow basins NB(I¥) corresponding to

different limit sets # do not intersect each other. Thus the entire space of infinite signals turns out to be parti-

tioned into the narrow basins corresponding to different connected compact subsets W c M (X ) However, the
basins of two other types may have non-empty intersections.

Let us fix a row of numbers 6 = (9(1), 0(2), ..., G(k)) (0, l)k (one number (i) for each letter i € X) and

define a metric p on the space of infinite signals X in the following way:

p(x, y)=]£[9(xt), where n :inf{t|xt ¢Yz} 1. (1)
=1

Here n denotes the length of the largest common prefix of x and y. If n = 0 then we put p(x, y)=1.
Consider the function

S(w, 8)=—F———, peM(X).

gu(z‘)lne(z’)

It is easy to see that it depends continuously on [ (under the convention 0In0 = 0).

The purpose of this paper is to prove the following two theorems declared in [4].

Theorem 1. Suppose the space X" is equipped with metric (1). Then for any non-empty connected compact
subset W < M (X ) we have the equality

dimPNB(W) = sup S(u, (-)),
new

S unu()

where dim, denotes the packing dimension.
Theorem 2. For any non-empty subset W < M (X ) we have

dim,B(W )= sup S(u, 0), )
new
dim,WB(W)=dim,X" = sup S(u,0). 3)
we M(X)

Remark. Hausdorff dimensions of the basins B(W) were first calculated in [1; 2] (under the additional as-
sumption Ze(i) =1, which may in fact be omitted), and dimensions of the wide basins were calculated in [5].

They have ;he form
dim,, WB(W ) =dim,B(W )= sup S(u, 6).

new
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Hausdorff dimensions of the narrow basins were recently calculated in [3]:
dim, NB(W )= inf S(u, 6).
ne

Concerning the packing dimensions of basins, as far as we know, they were not investigated by anyone
earlier.

The paper has the following structure. In the section «Packing dimensions of sets and local dimensions of
measures» we define the packing dimensions of sets, local dimensions of measures, and formulate a theorem
about relationships between them. In the section «An upper estimate for the packing dimension of a basin» we
prove an upper estimate for the packing dimension of a basin. In the section «Construction of a model set of
signals» we construct a model set of signals contained in the narrow basin. In the last section «A lower esti-
mate for the packing dimension of a narrow basiny», using the local dimensions of measures, we prove a lower
estimate for the packing dimension of the model set and then deduce from it theorems 1 and 2.

Packing dimensions of sets and local dimensions of measures
At first we recall definitions of packing measures and dimensions. A packing of a set 4 in a metric space is
any finite or countable collection of balls B(x;, 7;), centered at x; € 4 and of radii 7;, such that p(x,., xj) >+

for all i # j. An e-packing is a packing consisting of balls with radii not greater than €.
For every s > 0 we put

Cl(A)= sup{z r

Evidently, C; (A) does not increase while € decreases, and therefore there exists a limit

C*(4)= lim C3(4).

balls B(xl., r.) form an e-packing of A}.

The packing measure of dimension s of a set 4 is

P*(4)= inf{z C'(4;)
and its packing dimension is defined as
dimp A= inf{s >0

the sets 4, form a countable cover of A},

P(4)=0}.
Let M be a metric space and L be a Borel measure on M. Then the function
Inu(B(x, r
Du (x) = limsupM, xeM,
r—=0+0 Inr

is called the upper local dimension of the measure L.

The next theorem enables to calculate the packing dimensions of sets by means of the local dimensions of
measures.

Theorem 3 [6, proposition 2.3]. Suppose A is a subset of a metric space M. If there exists a finite Borel

measure L on M such that D, (x) < s forall x € 4, then dimp A <. Conversely, if D, (x) 25 forall x € A and

the outer measure u*(A) is positive, then dimp 4 = s.

An upper estimate for the packing dimension of a basin
Now for any non-empty subset W < M (X) we prove the estimate
dim,B(W) < sup S(u, 0). (4)
wew

It will imply the same estimate for the packing dimension of the narrow basin NB (W), since the latter is con-
tained in B(W).

For each infinite signal x = (xl, X5, ) and positive integer n we define a cylinder Z, (x) as the set of all
infinite signals with prefix (xl, ey xn):

Zn(x):{y:(yl,yz, ...)eXN‘y1 =X, ees yn=xn}.
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Denote by |Z | 1ts diameter with respect to metric (1). Obviously, it can be computed according to the

formula i
9)=ITo(:)
t=

and its logarithm can be written in the form
n k
In|Z,(x)| = ]In6(x,) =15, ,())n6(i). )
t=1 i=1

Recall that M (X ) consists of all probability measures on the alphabet X = {1, ey k}. These measures can
be interpreted as vectors (L= (u(l), e u(k)) in R¥. Supply the space R* with the norm

k
il = 2w

i=1

where | = (p,l, oo uk).

It naturally defines a metric and topology on M (.X).
For any neighbourhood O(L) of a measure i € M (X ) let us define the sets

x"(ow)={r=(x, ... x,) e X"

By McMillan’s equipartition theorem [7, p. 51] for any measure |L € M (X ) and any € > 0 there exists a neigh-
bourhood O(u) and a number N (u, €) such that

5., €0(W)}, neN. 6)

card X" (O(p)) < M) for all > N(u, ¢), (7)
where /(W) is the entropy of i defined as

k
=Y u(i)np ()
i=1
Now we start to prove inequality (4). Set

¢y = min [In@(i). (®)

1<i<k
Fix an arbitrary number s satisfying the condition
s> sup S(u, 0),

wew
and choose € > 0 so small that

sup S(u, 0)<s— i_e 9)
wew 0
Henceforth we will consider measures [ belonging to the closure W of the set . For each e 7 choose
a neighbourhood O(u) sufficiently small to satisfy condition (7) and, in addition, such that for all measures
ve O(p) the following inequality holds

Du()mnp() Y ui)nu(i)

i=1 i=1

€ €
+C—:S(u, 0) + . (10)

3 v(i)n6 (i) i " ’

i=1 i=1

Then from (8)—(10) it follows that

i)InO(i Y v(i)in6(i)

wherefrom, after multiplication by the negative denominator, we obtain

k

Z‘ 2¢

- <S—C—Ss+—,
2v0)
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k
2 i)In6(i) < —h(u) - 2¢ for all ve O(u). (11)

Notice that if for some x € X' we have S, ,€ O(p,) then by (5) and (11)

Z, (x)| = sni 3, ,(i)n6(i)< —n(h(],t) + 28),

i=1

and hence
Z,(x) <) (12)

Thus, for every measure L € ¥ there exists a neighbourhood O(p) such that conditions (7), (12) hold si-

multaneously. Choose a finite cover O(u1 ), e O(u,) of the compact set W by neighbourhoods of that type.
Consider a sequence of sets

Ay={xeB(W)

e n€0(1) L...u O(y,) for all n2 NY. (13)

Evidently, the greater is N, the greater is 4,. The definition of a basin implies that for each signal x € B(W) the
distance from §, , to ¥ tends to zero when n — oo. It follows that the sets A, form a cover of the basin B(W).

X, n

Take any positive integers m, N satisfying the conditions

m=N > max N(u. e)

where N (u o 8) are the constants from (7) corresponding to the measures 1. Consider an arbitrary packing
of the set 4, by disjoint cylinders of the form Z, (xi), where x; € Ay and n; =2 m. For each n 2 N(uj, 8) the
number of different cylinders Z (x) such that 6, , € 0( W, ) by virtue of (6) is equal to the number of elements

in the set X" (O(u : )) which by (7) does not exceed e r{ili) ve) . From here, taking into account (12) and (13),

we obtain the estimate

z z 2 ll, +e —n (u/)+2£)=

i n2mj=1

/ —me

/

— Y Y=L Soasmoe (14)
n>m ] 1 l_e

It is easy to see that every ball B(x r) in the space of signals X, provided r < 1, coincides with a cylinder

Z,(x),
balls B(x,, r,) where x; € 4y, in fact consists of disjoint cylinders of the form Z, (x,.), where
Zn,- (xi )‘
min6( /) .
J

|Sr<

aoa(x )‘ Therefore every packing of 4, by

(15)

Z, (xi)‘ <K<

It follows from (14), (15) that CS(AN) =0. Since the sets A4, cover B(W), this implies the equality
P’ (B(W)) = 0. Hence the packing dimension of the basin B(W) does not exceed s. In view of arbitrariness of
s> sup (W, 6) we obtain (4).

wew
Construction of a model set of signals
Let W be a non-empty connected compact subset in M (X ) In this section we construct a model set
D, c NB(W). We will prove later on that its packing dimension coincides with the dimension of narrow basin

NB(W) specified in theorem 1.

All details of construction of the model set D, are explicitly described in paper [3]. We recall briefly only
a general idea of the construction, omitting technical issues, which can be found in [3].
First of all, we need the following lemma.

EZ(’/ — cmoemH AR u,cxw\a]om J,ow,w/ 1
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Lemma 4 [3, lemma 5]. Let W be a non-empty connected compact subset of a metric space. Then there

exists a sequence x; € W such that its set of limit points coincides with W and, in addition, p(x,., X; +1) - 0.

By means of this lemma we choose and fix a sequence of measures |, € M (X ) such that its set of limit
points coincides with " and at the same time H“i -, +1H — 0. In addition, let all y, be strictly positive. This

can be ensured by the replacement u{(x) = (1 - 2_i)ui (x) + 27_ for all x € X (where k = |X|). We preserve the

prior notation L, for these corrected measures. As a result, the set of limit points of the sequence u; will not

change (will coincide with ), and the condition “ui — W, .|| = O will remain valid.
Let

C=max{-In6(/)[j=1,.... k}, (16)

C,=max{-Iny, (/) j=1.... k}. (17)
By positivity of |, all the constants C, are finite.
Choose a sequence of positive numbers &, satisfying the condition
g, —0,C¢g —0,asi—> oo, (18)
Then construct a sequence of positive integers n; satisfying the condition

1
ni+12(i+—]ni. (19)
Si
Using these €, and n,, define the sets
a={xex:|s,, - u|<e}cxn (20)

Since W; € M (X ) is a probability distribution on X; its Cartesian power p " is a probability distribution on X",
The law of large numbers implies that p}" (Ai) — 1 as n; — oo. Therefore the sequence 7, could be chosen grow-

ing so fast that along with (19) the following condition holds true:
—1 n:
n (I 4
—‘ ( .)‘—>Oasi—><>o. (21)
rn]m |ln W; ( j )|

Finally, define the model set D, according to the formulae
D, = AP X AP X ... x A, (22)

D, = A X A} X .... (23)
Lemma 5 [3, lemma 6]. Let W be a non-empty connected compact subset in M (X ) and a sequence of
strictly positive probability measures \; € M(X) be such that its set of limit points coincides with W and, at

the same time, Hui — W, 41| = O. In this setting the model set D,, defined in (16)—(23) has the property that for
each signal w € D, the set of limit points of the sequence d,, , coincides with W (in other words, V(w) =W

and hence D, C NB(W)).
In particular, this lemma implies NB (W) # &.

A lower estimate for the packing dimension of a narrow basin

In this section for the model set D_ associated (as described above) with a connected compact subset
W < M(X) we will prove the estimate

dim, D_, > sup S(u, ). (24)
new
Inasmuch as D, < NB(W) it will imply that
dim, NB(W) 2 sup S(u, 6). (25)
wew
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At first notice that for every finite signal x = (xl s X, ) € X" and measure L € M (X ), we have the relations

W (x) = (x Hu
k
Inp(x) z Inp(x,)=| 2 J)np(y

M (x) - | Z w(j)np(, - p”llsn]a;(k“n w(j)- (26)

For every finite signal x = (x;, ..., x,) we define the cylinder Z(x) consisting of all infinite signals with
prefix x:
Z(x):{w: (Wl’ Wy, ...)GXN‘WI =X, e W, :xn}.

n

Denote by |Z (x)| its diameter with respect to metric (1). Obviously,

|Z(x)| = He(x,.),
1n|Z(x)|:zn:1n6 zk: lnG

InZ (x |—|x|2u Jin6(j) <3, ~ n

max |1n 6 )| (27)

1<k

Take the sequence of measures W, € M (X ) used in the construction of model set D, and define the following
probability measure W on X :

=" X ps™ XL, (28)
For each signal w e X" we denote by w’ its finite prefixes of arbitrary lengths. Since every ball B (w, r) cx®

coincides with a cylinder Z, (w), where |Z, (w)| < 7 <|Z,_,(w)|,
. lnu(B(x, r)) ] lnp,(Z(w'))
[) :1 —————————-:1 _— 29
”(x) rlinsljro) Inr ﬂiuf ln|Z(w @)
Further we will prove the estimate
Inp(Z(w
im supM (1, 8) for all we D_. (30)

‘WW%m hdZ(W7 new

If the right-hand side in (30) vanishes then this estimate is trivial. Therefore it is sufficient to consider the
case when the right-hand side in (30) is positive.
Fix an arbitrary real number s satisfying the conditions

0<s<supS(u,0).

wew
The function S (},L, 9) attains its maximum on the compact set /¥ at a certain point " e . By construction p" is
a limit point for the sequence of measures ;. Hence there exists an infinite subset / N such that for all i € /,
k
2 W (J)Iny, (])
S (. 8)="7

iui (/)in(j)

>S
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and, consequently,
k

o ()i, (5 <s2u Nnd(j), iel (31
j=1
Take a number i € /. Consider an arbitrary model 51gna1 w € D_. By construction it has prefix of the form
w’ =xy, where xe D, _, and y € 4;"*".
Notice that in view of (19), (20), (22)
mn, + ...+ n,_n i-1)n,_n .
M_1z 1 <( )7y < i o (32)

|y|_ nn; B nn; ;1

Let us estimate the value of lnu(Z (w’)). By definition (28) of L,

m(Z(w) < (). (33)
It follows from (26) that

max |lnp,, )| (34)

1<j<k

1nMM <|y|2u h’lul |y|~H5Y’M_H:

Combining (33), (34), the inequality Hsy"y‘ - “i” < &, (which follows from definition (20) of the set 4.), and

equality (17), having the form max|ln W; ( Jj )| = C,;, we obtain the estimate
J

=

Inp(Z(w)) < Inpl!(») Z g, () +]ye,C.. (35)

Then, substitution of (31) in (35) gives

Inp(Z(w )<s|y|2ul )In6(;) +|y|e;C.. (36)

The product C;¢g; in view of (18) tends to zero. Therefore the second summand in the right-hand side of (36) is
infinitely small with respect to the first one. So (36) can be written in the form

Inp(Z(w )<s(|y|2ul In@( ](1+ai(w)),iel, 37)

where o, (w) = 0 as i — oo,
In the same way we may estimate 1n|Z (w')| from below by means of (16), (27):

1n|Z(w

(x)| +In|Z(y) 2 |x|c+|y|2|u, )In6(j) - |yle.C. (38)

j=1
Recall that €, — 0, and from (32) it follows |x| <g | y|. Therefore the first and third summands in the right-hand
side of (38) are infinitely small with respect to the second one, and so (38) can be written in the form

[IylZu )In6(; }(1 +B,(w)), (39)

1n|Z(w

where B; (w) = 0 as i — oo,

Dividing (37) by (39) and taking into account that the left and right hand sides in these inequalities are
negative, we obtain

1nu(Z(w’))> 1+ o, (w) l

ln|Z(w _Sl+Bi(w)’

It follows from here that for each model signal w € D_ and its prefixes w’,

el
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limsup lnu(Z(w')) 2

— (40)
wise  In|Z(w)

In view of arbitrariness of the number s < sup S(l, 0) the last inequality implies (30).
wew

If ],L(Dw) > ( then (24) follows from (29), (30), and theorem 3. But in fact, the equality ],L(Dw) =0 is most

likely to take place. In this case it is enough to replace the measure | in (30) by a probability measure v on D_
such that for any signal w € D_,

. In V(Z(w’))
= Inp(Z(w"))

To this end we define measures v, on the alphabet X by the formula

=1. (41)

S T (42)
(r (4)) "

and a measure v on the model set D_ = 4> x A5’ x ... (of the same type as in (28)):

i

V=" X v XL

By construction v (A i) =1. Therefore v(D,,) = 1. Formally v is not defined outside the model set D, but it may

be extended by zero if one wishes.
It follows from (21), (42) that when i — oo,

Inv.(j n il ( 4,
Mz l—ﬁ — 1 uniformly on j e X. (43)
[ty (/)] Iny; (/)
Evidently, |Z (w’)| — 0 as |w’| — co. From here and (40) it follows that u(Z (w’)) — 0 and hence |Z (W) —0
as |w’| — oo, The last convergence along with (43) implies equality (41). Thus estimates (24), (25) are comp-
letely proved.
The union of estimates (4) and (25) looks as follows:
sup S(U, 8) < dim, NB(W) < dim,B(W) < sup S(u, 6), (44)
wew wew

where the left inequality is proved for the connected compact subsets W < M (X ) and the right one for all
non-empty subsets # < M (X ). This immediately implies theorem 1.

To prove equality (2) from theorem 2, it is sufficient to notice that in view of (44) for any measure W* € W
we have

S(u*, 6) < dimPB(],L*) < dim,B(W) < sup S(u, 6),
wew

and take supremum over u* € W.

Equality (3) from theorem 2 follows from (44) and the inclusions

NB(M(X))c WB(W)cB(M(X))=x"
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