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УДК 517.938

УПАКОВОЧНЫЕ РАЗМЕРНОСТИ БАССЕЙНОВ, 
ПОРОЖДЕННЫХ РАСПРЕДЕЛЕНИЯМИ  

НА КОНЕЧНОМ АЛФАВИТЕ

В. И. БАХТИН 1), Б. САДОК 2)

1)Белорусский государственный университет, пр. Независимости, 4, 220030, г. Минск, Беларусь 
2)Люблинский католический университет им. Иоанна Павла II,  

ал. Рацлавицкая, 14, 20950, г. Люблин, Польша

Рассматривается пространство бесконечных сигналов, составленных из букв конечного алфавита. Каждый 
сигнал порождает последовательность эмпирических мер на алфавите и отвечающее этой последова тельности 
предельное множество. Все пространство сигналов разбивается на узкие бассейны, состоящие из сигналов с оди-
наковыми предельными множествами для последовательности эмпирических мер. Для каждого узкого бассейна вы-
числяется его упаковочная размерность. Кроме того, рассчитываются упаковочные размерности бассейнов двух 
других типов, определяемых в терминах предельного поведения эмпирических мер.

Ключевые слова: упаковочная размерность; эмпирическая мера; бассейн вероятностной меры.
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PACKING DIMENSIONS OF BASINS  
GENERATED BY DISTRIBUTIONS  

ON A FINITE ALPHABET

V. I. BAKHTIN a, B. SADOK b
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bJohn Paul II Catholic University of Lublin, 14 Racławickie Alley, Lublin 20950, Poland
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We consider a space of infinite signals composed of letters from a finite alphabet. Each signal generates a sequence of 
empirical measures on the alphabet and the limit set corresponding to this sequence. The space of signals is partitioned 
into narrow basins consisting of signals with identical limit sets for the sequence of empirical measures and for each nar-
row basin its packing dimension is computed. Furthermore, we compute packing dimensions for two other types of basins 
defined in terms of limit behaviour of the empirical measures. 

Keywords: packing dimension; empirical measure; basin of a probability measure.

Introduction
Signals of infinite length composed of letters from a finite alphabet may be classified in accordance with 

limit behaviour of generated by these signals empirical measures on the alphabet. It turns out that different 
classes of signals (which we call basins) have a sophisticated fractal structure, and the most adequate quantita-
tive characteristic for their description is fractal dimension. For the first time Hausdorff dimensions of certain 
basins were calculated by Billingsley in [1; 2]. In [3] it was suggested to consider the so-called narrow basins, 
that are distinguished among other types of basins by the fact that they form a partition of the space of all 
infinite signals, and their Hausdorff dimensions were calculated. After Hausdorff dimension the next mostly 
used fractal dimension is the packing one. In [4] the authors announced explicit formulae for the packing di-
mensions of narrow basins and basins of certain other types. In the present paper we set forth detailed proofs 
for those formulae. 

Let us proceed to strict definitions and statements. 
Consider a finite set X k= …{ }1, , . In what follows this set will be called the alphabet and its elements the 

letters. Any sequences of letters, finite or infinite, will be called the signals. The set of finite signals of length n 
is naturally denoted as X  n, and the set of all infinite signals as

X x x x x Xi
¥ = = …( ) ∈{ }1 2, , .

Each initial segment of a signal will be called its prefix. 
Let M X( ) be the set of all probability measures on X:

M X k i ik

i
( ) = = ( ) … ( )( ) ∈ ( ) = ( ) ≥












∑m m m m m1 1 0, , , .¡

Evidently, M X( ) is convex and compact. For each letter x ∈ X denote by dx the unit measure supported at x, 
that is

dx y
y x
y x

( ) =
=
≠





1

0

, ,

, .

if

if

Every finite signal x x xn= …( )1, ,  generates an empirical measure dx n M X, ∈ ( ) by the rule

d
d d

x n
x xn

n, .=
… ++

1

In other words, dx n y, ( ) is the average frequency of the letter y among x1, …, xn. Every infinite signal 
x x x X= …( ) ∈1 2, ,

¥ defines a sequence of empirical measures dx, n generated by its prefixes of length n. 
For each infinite signal x denote by V x( ) the set of all limit points of the sequence dx n M X, .∈ ( )  In view 

of compactness of M X( ) this set is non-empty. Moreover, in [3, lemma 3] it is proved that V x( ) is compact 
and connected.
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For every subset W M X⊂ ( ) let us define the following sets in X  ¥: the basin B W( ), narrow basin NB W( ), 
and wide basin WB W( ) by formulae

B W x X V x W( ) = ∈ ( ) ⊂{ }¥

,

NB W x X V x W( ) = ∈ ( ) ={ }¥

,

WB W x X V x W( ) = ∈ ( ) ∩ ≠ ∅{ }¥

.

In other words, B W( ) denotes the set of infinite signals x such that all limit points of the sequence of empirical 
measures dx, n belong to W, NB W( ) denotes the collection of infinite signals x such that the set of limit points 
of the sequence dx, n coincides with W, and WB W( ) denotes the set of infinite signals x such that the sequence 
dx, n has at least one limit point in W. Obviously, these basins satisfy the inclusions

NB B WBW W W( ) ⊂ ( ) ⊂ ( ).
From the above mentioned compactness and connectedness of V x( ) it follows that a narrow basin NB W( ) 

may be non-empty only in the case when the corresponding set of limit points W is non-empty, compact, and 
connected. Conversely, in [3] it was proved that for every non-empty connected compact set W M X⊂ ( ) the 
narrow basin NB W( ) is indeed non-empty. As for basins B W( ) and WB W( ), it is easily seen that they are 
non-empty for all W ≠ ∅.

Every infinite signal x defines uniquely the set V x( ). Therefore the narrow basins NB W( ) corresponding to 
different limit sets W do not intersect each other. Thus the entire space of infinite signals turns out to be parti-
tioned into the narrow basins corresponding to different connected compact subsets W M X⊂ ( ). However, the 
basins of two other types may have non-empty intersections. 

Let us fix a row of numbers θ θ θ θ= ( ) ( ) … ( )( ) ∈( )1 2 0 1, , , ,k k  (one number θ i( ) for each letter i ∈ X ) and 
define a metric ρ on the space of infinite signals X  ¥ in the following way:

 ρ θx y x n t x yt
t

n

t t, , inf .( ) = ( ) = ≠{ } -
=

∏
1

1where  (1)

Here n denotes the length of the largest common prefix of x and y. If n = 0 then we put ρ x y, .( ) = 1

Consider the function

 S
i i

i i
M Xi

k

i

km θ
m m

m θ
m,

ln

ln

, .( ) =
( ) ( )

( ) ( )
∈ ( )=

=

∑

∑
1

1

 

It is easy to see that it depends continuously on m (under the convention 0 ln 0 = 0).
The purpose of this paper is to prove the following two theorems declared in [4].
Theorem 1. Suppose the space X  ¥ is equipped with metric (1). Then for any nonempty connected compact 

subset W M X⊂ ( ) we have the equality 
 dim sup ,P

W
W SNB( ) = ( )

∈m
m θ ,  

where dim P denotes the packing dimension.
Theorem 2. For any nonempty subset W M X⊂ ( ) we have

 dim sup ,P
W

W SB( ) = ( )
∈m

m θ ,  (2)

 dim dim sup , .P P
M X

W X SWB( ) = = ( )
∈ ( )

¥

m
m θ  (3)

Remark. Hausdorff dimensions of the basins B W( ) were first calculated in [1; 2] (under the additional as-
sumption θ i

i
( ) =∑ 1, which may in fact be omitted), and dimensions of the wide basins were calculated in [5]. 

They have the form
dim dim sup , .H H

W
W W SWB B( ) = ( ) = ( )

∈m
m θ
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Hausdorff dimensions of the narrow basins were recently calculated in [3]:
dim inf , .H W

W SNB( ) = ( )
∈m

m θ

Concerning the packing dimensions of basins, as far as we know, they were not investigated by anyone 
earlier. 

The paper has the following structure. In the section «Packing dimensions of sets and local dimensions of 
mea sures» we define the packing dimensions of sets, local dimensions of measures, and formulate a theorem 
about relationships between them. In the section «An upper estimate for the packing dimension of a basin» we 
prove an upper estimate for the packing dimension of a basin. In the section «Construction of a model set of 
signals» we construct a model set of signals contained in the narrow basin. In the last section «A lower esti-
mate for the packing dimension of a narrow basin», using the local dimensions of measures, we prove a lower 
estimate for the packing dimension of the model set and then deduce from it theorems 1 and 2. 

Packing dimensions of sets and local dimensions of measures
At first we recall definitions of packing measures and dimensions. A packing of a set A in a metric space is 

any finite or countable collection of balls B x ri i, ,( )  centered at xi ∈ A and of radii ri , such that ρ x x r ri j i j,( ) > +  
for all i ≠  j. An e-packing is a packing consisting of balls with radii not greater than e.

For every s > 0 we put

 C A r B x r As
i
s

i
i ie e( ) = ( )











∑sup , .balls form an -packing of  

Evidently, C Ase ( ) does not increase while e decreases, and therefore there exists a limit

 C A C As s( ) = ( )
→

lim .
e e

0
 

The packing measure of dimension s of a set A is

P A C A A As s
i

i
i( ) = ( )











∑inf the sets form a countable cover of ,,

and its packing dimension is defined as

dim inf .P
sA s P A= > ( ) ={ }0 0

Let M be a metric space and m be a Borel measure on M. Then the function

D x
B x r
r

x M
r

m
m( ) =

( )( )
∈

→ +
limsup

ln ,

ln
, ,

0 0

is called the upper local dimension of the measure m.
The next theorem enables to calculate the packing dimensions of sets by means of the local dimensions of 

measures.
Theorem 3 [6, proposition 2.3]. Suppose A is a subset of a metric space M. If there exists a finite Borel 

measure m on M such that D x sm ( ) ≤  for all x ∈ A, then dim P  A ≤ s. Conversely, if D x sm ( ) ≥  for all x ∈ A and 
the outer measure m*( )A  is positive, then dim P  A ≥ s.

An upper estimate for the packing dimension of a basin
Now for any non-empty subset W M X⊂ ( ) we prove the estimate

 dim sup , .P
W

W SB( ) ≤ ( )
∈m

m θ  (4)

It will imply the same estimate for the packing dimension of the narrow basin NB W( ), since the latter is con-
tained in B W( ).

For each infinite signal x x x= …( )1 2, ,  and positive integer n we define a cylinder Z xn ( ) as the set of all 
infinite signals with prefix x xn1, , :…( )

Z x y y y X y x y xn n n( ) = = …( ) ∈ = … ={ }1 2 1 1, , , , .
¥
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Denote by Z xn ( )  its diameter with respect to metric (1). Obviously, it can be computed according to the 
formula

Z x xn t
t

n

( ) = ( )
=

∏θ
1

,

and its logarithm can be written in the form 

 ln ln ln .,Z x x n i in t x n
i

k

t

n

( ) = ( ) = ( ) ( )
==
∑∏ θ d θ

11

 (5)

Recall that M X( )  consists of all probability measures on the alphabet X k= …{ }1, , . These measures can 
be interpreted as vectors m m m= ( ) … ( )( )1 , , k  in ¡k. Supply the space ¡k with the norm

m m m m m= = …( )
=
∑ i
i

k

k
1

1, , , .where

It naturally defines a metric and topology on M X( ).
For any neighbourhood O m( ) of a measure m ∈ ( )M X  let us define the sets

 X O x x x X O nn
n

n
x nm d m( )( ) = = …( ) ∈ ∈ ( ){ } ∈1, , , ., ¥

 (6)

By McMillan’s equipartition theorem [7, p. 51] for any measure m ∈ ( )M X  and any e > 0 there exists a neigh-
bourhood O m( ) and a number N m e,( ) such that

 card for allX O e n Nn n hm m em e( )( ) ≤ ≥ ( )( ) +( )
, ,  (7)

where h m( ) is the entropy of m defined as

h i i
i

k
m m m( ) = - ( ) ( )

=
∑ ln .

1

Now we start to prove inequality (4). Set

 c i
i kθ θ= ( )

≤ ≤
min ln .

1
 (8)

Fix an arbitrary number s satisfying the condition

 s S
W

> ( )
∈

sup , ,
m

m θ  

and choose e > 0 so small that

 sup , .
m θ

m θ e
∈

( ) < -
W
S s c

3  (9)

Henceforth we will consider measures m belonging to the closure W  of the set W. For each m ∈W  choose 
a neighbourhood O m( ) sufficiently small to satisfy condition (7) and, in addition, such that for all measures 
n m∈ ( )O  the following inequality holds

 
m m

n θ

m m

m θ

i i

i i

i i

i i

i

k

i

k
i

k

i

( ) ( )

( ) ( )
<

( ) ( )

( ) ( )
=

=

=

=

∑

∑

∑ln

ln

ln

ln

1

1

1

11

k c S c
∑

+ = ( ) +e m θ e
θ θ

, .  (10)

Then from (8) – (10) it follows that

m m

n θ

e e

n θ
θ

i i

i i
s c s

i i

i

k

i

k

i

k

( ) ( )

( ) ( )
< - ≤ +

( ) ( )
=

= =

∑

∑ ∑

ln

ln ln

,
1

1 1

2 2

wherefrom, after multiplication by the negative denominator, we obtain
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 s i i h O
i

k
n θ m e n m( ) ( ) < - ( ) - ∈ ( )

=
∑ ln .

1

2 for all  (11)

Notice that if for some x ∈ X  ¥ we have d mx n O, ∈ ( ) then by (5) and (11)

s Z x sn i i n hn x n
i

k
ln ln ,,( ) = ( ) ( ) < - ( ) +( )

=
∑d θ m e

1

2

and hence
 Z x en

s n h( ) < - ( ) +( )m e2
.  (12)

Thus, for every measure m ∈W  there exists a neighbourhood O m( ) such that conditions (7), (12) hold si-
multaneously. Choose a finite cover O O lm m1( ) … ( ), ,  of the compact set W  by neighbourhoods of that type. 

Consider a sequence of sets

 A x W O O n NN x n l= ∈ ( ) ∈ ( ) ∪ …∪ ( ) ≥{ }B for alld m m, .1  (13)

Evidently, the greater is N, the greater is AN. The definition of a basin implies that for each signal x W∈ ( )B  the 
distance from dx, n to W tends to zero when n → ∞. It follows that the sets AN form a cover of the basin B W( ).

Take any positive integers m, N satisfying the conditions

m N N
j l j≥ ≥ ( )

≤ ≤
max , ,

1
m e

where N jm e,( ) are the constants from (7) corresponding to the measures mj. Consider an arbitrary packing 
of the set AN by disjoint cylinders of the form Z xn ii

( ), where xi ∈ AN and ni ≥ m. For each n N j≥ ( )m e,  the 
number of different cylinders Z xn ( ) such that d mx n jO, ∈ ( ) by virtue of (6) is equal to the number of elements 

in the set X On
jm( )( ), which by (7) does not exceed e

n h jm e( ) +( ). From here, taking into account (12) and (13), 
we obtain the estimate 

 
Z x e e

e

n i
i

s n h n h

j

l

n m

n

j

l

n m

i

j j( ) ≤ =

=

∑ ∑∑

∑

( ) +( ) - ( ) +( )
=≥

-

=≥

m e m e

e

2

1

1

∑∑ =
-

→ → ∞
-

-
le
e

m
me

e
1

0 as .

 

(14)

It is easy to see that every ball B x r,( ) in the space of signals X  ¥, provided r < 1, coincides with a cylinder 
Z xn ( ),  where n is determined by the conditions Z x r Z xn n( ) ≤ < ( )- 1 . Therefore every packing of AN by 
balls B x ri i, ,( )  where xi ∈ AN , in fact consists of disjoint cylinders of the form Z xn ii

( ), where

 Z x r
Z x

jn i i
n i

j
i

i( ) ≤ <
( )

( )min
.

θ
 (15)

It follows from (14), (15) that C As N( ) = 0. Since the sets AN cover B W( ), this implies the equality 
P Ws

B( )( ) = 0. Hence the packing dimension of the basin B W( ) does not exceed s. In view of arbitrariness of 
s S

W
> ( )

∈
sup ,
m

m θ  we obtain (4).

Construction of a model set of signals
Let W be a non-empty connected compact subset in M X( ). In this section we construct a model set 

D W∞ ⊂ ( )NB . We will prove later on that its packing dimension coincides with the dimension of narrow basin 
NB W( ) specified in theorem 1.

All details of construction of the model set D∞ are explicitly described in paper [3]. We recall briefly only 
a general idea of the construction, omitting technical issues, which can be found in [3].

First of all, we need the following lemma. 
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Lemma 4 [3, lemma 5]. Let W be a nonempty connected compact subset of a metric space. Then there 
exists a sequence xi ∈ W such that its set of  limit points coincides with W and, in addition, ρ x xi i, .+( ) →1 0

By means of this lemma we choose and fix a sequence of measures mi M X∈ ( ) such that its set of limit 
points coincides with W and at the same time m mi i- →+ 1 0.  In addition, let all mi be strictly positive. This 

can be ensured by the replacement ′ ( ) = -( ) ( ) +-
-

m mi
i

i

i
x x

k
1 2

2
 for all x ∈ X (where k X= ). We preserve the 

prior notation mi for these corrected measures. As a result, the set of limit points of the sequence mi will not 
change (will coincide with W ), and the condition m mi i- →+ 1 0  will remain valid.

Let
 C j j k= - ( ) = …{ }max ln , , ,θ 1  (16)

 C j j ki i= - ( ) = …{ }max ln , , .m 1  (17)

By positivity of mi all the constants Ci are finite. 
Choose a sequence of positive numbers ei satisfying the condition

	 ei → 0, Ci ei → 0, as i → ∞. (18)
Then construct a sequence of positive integers ni satisfying the condition

 n i ni
i

i+ ≥ +




1

1

e
.  (19)

Using these ei and ni, define the sets

 A x X Xi
n

x n i i
ni

i
i= ∈ - <{ } ⊂: .,d m e  (20)

Since mi M X∈ ( ) is a probability distribution on X, its Cartesian power mi
ni is a probability distribution on X ni. 

The law of large numbers implies that mi
n

i
i A( ) → 1 as ni → ∞. Therefore the sequence ni could be chosen grow-

ing so fast that along with (19) the following condition holds true:

 
n A

j
i

i i
n

i

j i

i- ( )
( ) → → ∞

1

0
ln

min ln
.

m

m
as  (21)

Finally, define the model set D∞ according to the formulae

 D A A Ai
n n

i
ni= × × … × +

1 2
2 3 1,  (22)

 D A An n
∞ = × × …1 2

2 3 .  (23)
Lemma 5 [3, lemma 6]. Let W be a nonempty connected compact subset in M X( ), and a sequence of 

strictly positive probability measures mi M X∈ ( ) be such that its set of limit points coincides with W and, at 
the same time, m mi i- →+ 1 0. In this setting the model set D∞ defined in (16) – (23) has the property that for 
each signal w ∈ D∞ the set of limit points of the sequence δw, n coincides with W (in other words, V w W( ) =  
and hence D W∞ ⊂ ( )NB ).

In particular, this lemma implies NB W( ) ≠ ∅.

A lower estimate for the packing dimension of a narrow basin
In this section for the model set D∞ associated (as described above) with a connected compact subset 

W M X⊂ ( ) we will prove the estimate
 dim sup , .P

W
D S∞

∈
≥ ( )

m
m θ  (24)

Inasmuch as D W∞ ⊂ ( )NB  it will imply that

 dim sup , .P
W

W SNB( ) ≥ ( )
∈m

m θ  (25)
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At first notice that for every finite signal x x x Xn
n= …( ) ∈1, ,  and measure m ∈ ( )M X , we have the relations

m m mn x
i

i

n
x x x( ) = ( ) = ( )

=
∏

1

,

ln ln ln ,,m m d mx
i

i

n

x n
j

k
x x x j j( ) = ( ) = ( ) ( )

= =
∑ ∑

1 1

 ln ln max ln .,m m m d m mx

j

k

x n j k
x x j j x j( ) - ( ) ( ) ≤ ⋅ - ( )

= ≤ ≤
∑

1
1

 (26)

For every finite signal x x xn= …( )1, ,  we define the cylinder Z x( ) consisting of all infinite signals with 
prefix x:

Z x w w w X w x w xn n( ) = = …( ) ∈ = … ={ }1 2 1 1, , , , .
¥

Denote by Z x( )  its diameter with respect to metric (1). Obviously,

Z x xi
i

n

( ) = ( )
=

∏θ
1

,

ln ln ln ,,Z x x x j ji
i

n

x n
j

k

( ) = ( ) = ( ) ( )
= =
∑ ∑θ d θ

1 1

 ln ln max ln .,Z x x j j x j
j

k

x n j k
( ) - ( ) ( ) ≤ ⋅ - ( )

= ≤ ≤
∑ m θ d m θ

1
1

 (27)

Take the sequence of measures mi M X∈ ( ) used in the construction of model set D∞ and define the following 
probability measure m on X ¥:
 m m m= × × …1 2

1 2 2 3n n n n
.  (28)

For each signal w ∈ X ¥ we denote by ′w  its finite prefixes of arbitrary lengths. Since every ball B w r X,( ) ⊂ ¥ 
coincides with a cylinder Z wn ( ), where Z w r Z wn n( ) ≤ < ( )- 1 ,

 D x
B x r
r

Z w
Z wr w

m
m m( ) =

( )( )
=

′( )( )
′(→ + ′ → ∞

limsup
ln ,

ln
limsup

ln

ln0 0 )) .  (29)

Further we will prove the estimate

 limsup
ln

ln
sup , .

′ → ∞ ∈
∞

′( )( )
′( ) ≥ ( ) ∈

w W

Z w
Z w

S w D
m

m θ
m

for all  (30)

If the right-hand side in (30) vanishes then this estimate is trivial. Therefore it is sufficient to consider the 
case when the right-hand side in (30) is positive. 

Fix an arbitrary real number s satisfying the conditions
0 < < ( )

∈
s S

W
sup , .
m

m θ

The function S m θ,( ) attains its maximum on the compact set W at a certain point m*∈W. By construction m* is 
a limit point for the sequence of measures mi. Hence there exists an infinite subset I ⊂ ¥ such that for all i ∈ I,

S
j j

j j
si

i i
j

k

i
j

km θ
m m

m θ
,

ln

ln

( ) =
( ) ( )

( ) ( )
>=

=

∑

∑
1

1
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and, consequently, 

 m m m θi i
j

k

i
j

k
j j s j j i I( ) ( ) < ( ) ( ) ∈

= =
∑ ∑ln ln , .

1 1

 (31)

Take a number i ∈ I. Consider an arbitrary model signal w ∈ D∞. By construction it has prefix of the form 
′ = ∈ ∈-

+w xy x D y Ai i
ni, .where and1

1

Notice that in view of (19), (20), (22)

 
x
y

n n n n
n n

i n n
n n

n
n

i i

i i

i i

i i

i

i
i=

+ … +
≤

-( )
≤ ≤-

+

-

+ +

1 2 1

1

1

1 1

1
e .  (32)

Let us estimate the value of ln .m Z w′( )( )  By definition (28) of m,

 m mZ w yi
y′( )( ) ≤ ( ).  (33)

It follows from (26) that

 ln ln max ln .
,

m m m d m mi
y

i i
j

k

y y i j k iy y j j y j( ) ≤ ( ) ( ) + ⋅ - ( )
= ≤ ≤

∑
1

1
 (34)

Combining (33), (34), the inequality d m ey y i i, - <  (which follows from definition (20) of the set Ai), and 

equality (17), having the form max ln ,
j i ij Cm ( ) =  we obtain the estimate

 ln ln ln .m m m m eZ w y y j j y Ci
y

i i
j

k

i i′( )( ) ≤ ( ) ≤ ( ) ( ) +
=

∑
1

 (35)

Then, substitution of (31) in (35) gives

 ln ln .m m θ eZ w s y j j y Ci
j

k

i i′( )( ) ≤ ( ) ( ) +
=

∑
1

 (36)

The product Ci ei in view of (18) tends to zero. Therefore the second summand in the right-hand side of (36) is 
infinitely small with respect to the first one. So (36) can be written in the form

 ln ln , ,m m θ aZ w s y j j w i Ii
j

k

i′( )( ) ≤ ( ) ( )








 + ( )( ) ∈

=
∑

1

1  (37)

where ai w( ) → 0  as i → ∞.
In the same way we may estimate ln Z w′( )  from below by means of (16), (27):

 ln ln ln ln .Z w Z x Z y x C y j j y Ci i
j

k
′( ) = ( ) + ( ) ≥ - + ( ) ( ) -

=
∑ m θ e

1

 (38)

Recall that ei → 0, and from (32) it follows x yi≤ e . Therefore the first and third summands in the right-hand 
side of (38) are infinitely small with respect to the second one, and so (38) can be written in the form

 ln ln ,Z w y j j wi
j

k

i′( ) ≥ ( ) ( )








 + ( )( )

=
∑ m θ b

1

1  (39)

where bi w( ) → 0  as i → ∞.
Dividing (37) by (39) and taking into account that the left and right hand sides in these inequalities are 

negative, we obtain
ln

ln
, .

m a
b

Z w
Z w

s
w
w

i Ii

i

′( )( )
′( ) ≥

+ ( )
+ ( ) ∈

1

1

It follows from here that for each model signal w ∈ D∞ and its prefixes ′w ,
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 limsup
ln

ln
.

′ → ∞

′( )( )
′( ) ≥

w

Z w
Z w

s
m

 (40)

In view of arbitrariness of the number s S
W

< ( )
∈

sup ,
m

m θ  the last inequality implies (30).

If m D∞( ) > 0 then (24) follows from (29), (30), and theorem 3. But in fact, the equality m D∞( ) = 0 is most 
likely to take place. In this case it is enough to replace the measure m in (30) by a probability measure n on D∞ 
such that for any signal w ∈ D∞	,

 lim
ln

ln
.

′ → ∞

′( )( )
′( )( ) =

w

Z w
Z w

n
m

1  (41)

To this end we define measures ni on the alphabet X by the formula

 n
m

m
i

i

i
n

i
n

i
iA

=
( )( )1/

 (42)

and a measure n on the model set D A An n
∞ = × × …1 2

2 3  (of the same type as in (28)):

n n n= × × …1 2
1 2 2 3n n n n

.

By construction ni
n

i
i A( ) = 1. Therefore n D∞( ) = 1. Formally n is not defined outside the model set D∞ but it may 

be extended by zero if one wishes. 
It follows from (21), (42) that when i → ∞,

 
ln

ln

ln

ln
.

n
m

m

m
i

i

i i
n

i

i

j
j

n A

j
j X

i( )
( ) = -

( )
( ) → ∈

-

1 1

1

uniformly on  (43)

Evidently, Z w′( ) → 0 as ′ → ∞w . From here and (40) it follows that m Z w′( )( ) → 0 and hence Z w′( ) → 0 
as ′ → ∞w . The last convergence along with (43) implies equality (41). Thus estimates (24), (25) are comp-
letely proved. 

The union of estimates (4) and (25) looks as follows:
 sup , dim dim sup , ,

m m
m θ m θ

∈ ∈
( ) ≤ ( ) ≤ ( ) ≤ ( )

W
P P

W
S W W SNB B  (44)

where the left inequality is proved for the connected compact subsets W M X⊂ ( ) and the right one for all 
non-empty subsets W M X⊂ ( ). This immediately implies theorem 1.

To prove equality (2) from theorem 2, it is sufficient to notice that in view of (44) for any measure m*  ∈ W 
we have

S B W SP P
W

m θ m m θ
m

* *

∈
( ) ≤ ( ) ≤ ( ) ≤ ( ), dim dim sup , ,B

and take supremum over m* ∈ W.
Equality (3) from theorem 2 follows from (44) and the inclusions

NB WB BM X W M X X( )( ) ⊂ ( ) ⊂ ( )( ) = ¥

.
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