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Introduction

It is known that the Painlevé equations appeared as a result of solving the classification problem regarding
the Painlevé property for the second order ordinary differential equations [1; 2]. For the equations of higher
orders, the Painlevé problem, which consists in determining the conditions for the absence of movable multi-
valued singularities for solutions, in the general case remains open. At present, the most complete results have
been obtained only for polynomial equations of higher orders. So, for example, equations of the form

y"=P(z,3,¥.5"),
where P(z, v, v, y”) is a polynomial of y and its derivatives are considered in [3—10]. Some classes of equa-

tions of the fourth and higher orders were studied in [11; 12].
One of the first works on the classification of higher-order equations with respect to the Painlevé property
was a paper by Chazy [3]. It deals with the Painlevé property of the equation

:i(y’—a;i)(y"—ai’) s iAk(y’—a£)3+Bk(y’—aé)2 G -a) |

k=1 Y= a y—a;

=
Il

(M

where the poles g, = ak(z) are finite, distinct and in general are functions of the independent variable z.
The paper [3] also contains the system of 31 algebraic and differential equations

6 6 6 6
(A) D A4,=0, Y ad;==6, Y a;d; =2 a, 24; + 2
j=1 j=1 j=1 j=1

5 6(j#k),

’

(B) i(Bk—Bj)[—%— laJ+A,;—ia£_a(A 3A)—§Ak2a’A 0,

0. C—C,\ & 34;(ai—a)) +(2B,-B,)(a;—a})+ a-a]
—24,C, - -
2ac-$920 ) %
©) ~Bl+B;-B,D+E=0,
(D) i( B, -3a}4,)=0,
i =0, i F; =0, iafF, 0, —ay’— B,C, + C{ + D(ay - C, +Eak+FkH( a;)+
j=1 j=1 j=1
. 3 i) B )2—(@—6;-)(az—a;)+(az—a;)(az'—a;')=O,
i=1 ak—aj

for 26 unknown functions 4, = 4,(z), B, = B,(z),C;, = C;(z), D=D(z), E = E(z), F, = F,(z). In[3,p. 367-369]
Chazy claimed that the solution of this system determines necessary and sufficient conditions for the ab-
sence of movable critical points of solutions of the equation (1). In this case, the poles g, are the parameters

of the system. The equations of the system (.A)—(F) we denote below by (Al), e (.Ag), (Bl), e (Bé),

(@) (Co)- (D). (). n (F):

The solution of the Chazy .A-system was obtained in [13] and the solution of the complete Chazy system in
the case of constant poles @, in expanded form is given in [14]. However, the question of integrating the Chazy
equation (1) remained open until now. In this paper, we prove that in the case of constant poles, under some
additional conditions, the equation (1) is integrated in elliptic functions.

Let us briefly summarise some results from [13; 14] which we need to obtain the main result stated in
theorem 3.
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Solution of system (.A)

First, let us note that the successive elimination of the variables 4, allows us uniquely express A, 45, A4,
A5, A, in terms of A4,. Indeed from the system (.A) we successively obtain

6 a a a a
Ag=—As —A,— Ay — A, — A, Ag=——— — 204, - 304, - 2604 10y
6 s T Ay Az — Ay — Ay, As a P e B B D
56 56 56 56 56
_ 2(‘741 Tapta,y—a;s— a46) 35036 596 59
A, = - A5 - A, - ——>A4,, ()
45946 45446 45946 45446

4o 2al3(—a12 —ap+2a, + 2a5 + 2"16)
,=

A30~4 A5

13242526 4
A3y A3sA A7 A4 A3 2
3443536 124343536

——+ —+—+ —
Q34035036

ap 43 Ay A5 Gy

Q13014050 1 1 2 2 2 2a,,0,,a,5016 o
4 A3%4%5%6 A+ 13%495%6 A2,
34035036

where a;; denote the non-zero pole differences a; — a;. Let’s also note the structure of 4,
B noA;‘ + nlAf + n2A12 + mA, + ny
2 5
(az - 04)(02 - as)(az - as)Qz
where Q, = dy A} + d, A, + d,, and the coefficients n,y, ..., n, u d,, d,, d, are determined through a,, ..., a.

After the substitution of the expressions thus obtained into the system (.A), the first four equations of this
system become identities, and the equations (A5 ) - (.Ag) acquire the form

G)

2 2 2

AyyUystiygUisgU - aziuiystigelisgU auusgUU
2 2 2.2 "2 2 2.2 2 2 2 2.2
a5, 055a5605 a34a35a3,05 Ay ay3ay5a,605

2 2

asiuUsU ag uysUs U -0
2 2 2 2.2 2 2 2 2 2.2 °
as,a53054a5605 g A3 045505

i J
the fifth and second degrees in A4,, respectively.
Next two theorems from [14] follow from the successive considering of the two cases (u; = 0 and U =0).

Lemma 1. The system (.,4) admits the symmetry (Ak, ak)H (Aj, a; ) L k=1..,6.

respectively, where a; =a;, — a;, u;=2a,— a; —a; + (a1 - al.)(a1 -a; )Al; U and U,, Us, Uy are polynomials of

This lemma shows that the permutation of arbitrary components (A s ak) of the solution of the system (.A)
with arbitrary components (A s aj) leads to the solution of the system (.A).

Theorem 1. The system (A) has the solution

1 1
Aj: + ,j=1...,4,
as—a; as—a

A5:1+1+1+1+2, 4)

a—ds ay—ds d3—ds dy—ds ds—dg

1 1 1 1 2
- -

+ +

Ay =

under the following condition on the poles

65, — 35305+ 5,03 + (=35, + 45,05 — 35,03 ) ag + (5, - 35,05 + 643 ) ag =0, (5)
where sy, ..., s, are elementary symmetric polynomials in a, ..., a,.
Consideration of the case U= 0 requires that the equation for 4, has the form py4; + p, 4} + p,4; +
+ py A7 + p,A, + ps =0, where p, are polynomials in a,, ..., a,
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Theorem 2. Let A, be a solution of the fifth degree equation for some fixed values of the poles a, such that
0,#0. Then A, and A, (k=2, ..., 6), evaluated on the basis of this value of A, and formulas (2), (3), define the
solution of the system (A).

Thus, theorems 1 and 2 determine the solution of the Chazy .A-system. It should be noted that theorem 1
is a special case of theorem 2. However, under condition (5) the 4, can be determined in the closed form (4).

Solution of system (B)—(F)

The solution of the system (.A)—(F) for known A, is reduced to the successive solution of three linear al-
gebraic systems with additional constraints. In the general case, the solution of the systems (B), (C), (F) can
be obtained by the Gauss method. Therefore, the system (B) with known 4, is a linear system Az B = R; with
respect to B = (Bl, .oy Bg )T, where matrix 4, has the entries:

A, 1 . 54, & 1
{AB}kJ':? _ajaj;tk: {AB}kk:_ 2 _iglak—ai’lik

In general, the rank of this matrix does not exceed five. The vector R, depends only on 4,, a, and their
derivatives. Under the condition of theorem 1, the matrix A, can be represented in closed form as well. To do
this we need to substitute the values 4, ..., 4¢ from (4) into the above matrix 4.

With known 4, and B, from the equation (D) we find that
1Q 3

D=-=Y B +=d/4

2 ! J 2 J

The system (C ) with respect to C = (Cl, ooy Cg )T is also linear and can be represented in the form 4. C =R
with the matrix 4:

1 . 6 1 .
{Ac}kj: a—a,’ j#k; {Ac}kk:_ZA"_zak—a,.’ ik

i=1
The rank of the matrix 4 also does not exceed five. In this case, the inhomogeneity vector R contains 4,
B,, a,, their derivatives and the unknown function £ (z) Under the condition of theorem 1, the matrix 4, can
also be written explicitly. To do this we substitute the values 4, ..., A from (4) into the above matrix 4.
The system (.7-"4)—(.7-"9) is also linear with respect to F = (Fl, ey F6)T. In this case, the inhomogeneity
matrix R contains the unknown function E(z). However, the substitution of F; into the equations (.7-", ) - (.7-"3)
allows us to define E(z).

A case of constant poles

The Chazy equation in the case of constant poles ak has the form
6

6
B
m ’ /3 ,2 k
= +
y yyk 1«V a Zy Y Zﬁy‘ak

(6)

6
’ Ck
+y
121)/_

The system (A) remains the same, and the system (B)—

_a‘
o1y T %

6 6 Fk
+Dy” + Ey’ + H y—a Z
( ) is greatly simplified and acquires the form

. 5 2 .
(B (_EA"_Z‘I% JB +2[—+ JB 0, k=1,....,6 (j#k),
. 6 1 6
() _2A"_Z‘lak ) 2; —Bk+Bk B.D+E=0,
6
(D") 2D+ Y B; =0,
j=1
54
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6 6 6 6
(F) Y F=0, Y aF=0, Y aF=0-BC,—DC,+Ci+F][](a-a)=0.

j j j=1 j=1
The solution of the .A-system in closed form is given by theorem 1. The solution of the system (B* ) - (.7-" *)

in closed form is obtained in [14]. Using these results, we investigate the integrability of the Chazy equa-
tion (6).

Let us consider the case when B, =0, k=1, ..., 6. The following statements are true regarding to the defi-
nition of the remaining coefficients of the Chazy equation (6).

Lemma 2. If'in the Chazy equation (6) A, are determined by theorem 1 and B, =0, k=1, ..., 6, then the

Sfulfillment of the Chazy system (B : ) - (.7-" : ) necessarily leads to
D=0,F,=0k=1,...,6.

Lemma 3. Let the following conditions be fulfilled in the Chazy equation (6):
Al. The coefficients A, and the poles a, are defined by theorem I and B,, C,, D, E satisfy the Chazy system

(5°)-(#7)
A2.B,=0,k=1,...,6.
A3. The constant poles a,, satisfy the condition

hy=a,+a,+ay+a,—as—3as#0.

Then Cy = Cy, E = &, where Cy, £ are the arbitrary constants and C, — Cs are determined by the formulas

2a; — as —aé)hl— Z(a. —a6)2

& 2 ( J .
C.:— . — C ) :1,...,4,
! hy (aj aé) Tt (aS_a6)h1 /
£ h,—2a; + 2a
Csz—h—l(as—a6)2—(36+16.

Lemma 4. [f the conditions A1, A2 of lemma 3 are fulfilled and h, =0, then C;=Cs, E = & where Cs, € are
the arbitrary constants and C, — C,, C, are determined by the formulas

2 2
el el

The proof of lemmas 2—4 follows directly from the result of the paper [14], where the solution of the Chazy
system (6) is given in the case of theorem 1. The above formulas for determining the remaining coefficients of
the equation (6) follow from the corresponding formulas in the paper [14] with B, =0,k=1, ..., 6.

The general integral of the equation (6) will be sought in the form

(W)’ = K,P(w) + K,0(w) + R(w), (7)

where K, K, are the arbitrary coefficients and P(w), O(w), R(w) are the polynomials of w with constant coef-

ficients not higher than the fourth degree. In this case, the third constant of integration is obtained by separating
the variables in the equation (7) and its integration.
It is clear that in the case of the existence of such polynomials P(w), Q(w), R(w), the solution of (7) and,

therefore, the solution of the equation (6) is generally expressed in a rational way in terms of the Weierstrass
elliptic function go(z)
Differentiating twice (7) and excluding arbitrary constants K, and K,, we find

7 _ ” ’” ’ _ /’ ” ” P,R _ PR, _ P’/ R’ _ R ’
W’”: W,W” P’Q PQ’ _ W/3 P Q, P Q, + W, Q ( ,) (, Q Q )
P'Q-PQ 2(P'Q - PQ’) 2(P'Q - PQ’)
Hereinafter the primes on the polynomials P(w), O(w), R(w) denote the corresponding derivatives with

respect to w. Comparing this equation with the equation (6) we have three conditions for the definition of the
polynomials P(w), Q(w), R(w):
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P/I _P ”
PO —PQ =W a’
P// —PO” 6 A
A ©)
(P 0- PQ W ak
P(Q/R//_ Q”R/) + Q(R/P//_R//P/) +R(P/Q//_P//Q/) 6 C
; ; =E+ Yy ——, (10)
2(P'O-PQ’) oW
moreover B, =0, F;, =0,D=0.
Without loss of generality in (8)—(10) we consider
6
PO-PQ'=[](w-q,) (1)

k=1
4 4 4
- i 0= i p= j o thi
where P = ijw , Q—quw , R—erw and in this case
Jj= Jj=0 Jj=0

P4=0,9,=1,4;=0. (12)
Then from the condition (8) which has the form (11) we find

o 1
py=-1p,==5 p==(-¢,-0,),
1 21 3 (13)
Py = Z(_qu + 03), qy = ﬁ(z%z +3¢,0,+ 29,0, — 604)5
where ¢, here and below are the symmetric polynomials with respect to a, ..., a,, and q,, g, must satisfy the
following two conditions:
1 1
——a/(2¢,+0;) - — (4, + (52)(2‘15 +3¢,6, + 29,0, - 664) —6=0,
4 54
(14)
029 | 1 (242 + 3,0, + 2 6 =0
hd2m 5 ﬁ(ﬁ( 9, + 54,0, + 24,6, = (54) +65=0.
The condition (9) recorded by the virtue of (11) in the form
6
P"Q' - P'Q"=-2(P’Q-PQ’ ;W o
under the fulfillment of (12), (13) and 4, from theorem 1, defines ¢,, ¢,
2
q,= 5(a3a4 +ay(ay+ a,) + ay(ay + ay + a,))(as + a5, as)

q, = —(al +a,+a;+ a4)a5 - (al +a,+a;+a,— 2a5)a6.

Note that the values ¢,, ¢,, defined by (15), satisfy the conditions (14).
The condition (10) by the virtue of (11) takes the form

6
P(O’R”- Q"R’)+ Q(R’P"—R"P’)+ R(P'Q" - P"Q")=2(P'Q - PQ’)[E + wgkak } (16)
k=1

This condition leads to the determination of the coefficients of the polynomial R. Wherein two cases must
be considered corresponding to lemmas 3 and 4.
In the case of lemma 3, that is /; # 0, the coefficients of the polynomial R are determined by the relations
—((ZC6 - Sas)(—3a2a3a4 - 3a1(a3a4 + az(a3 + a4)) + (a3a4 + az(a3 + a4) + al(a2 +ay;+ay, ))as) +

+ (—35<a2a3a4 + al(a2a3 + (a2 + a3)a4 )) + 35(a1 +a,+a;+ a4)a52 +

+ 2(3(612613 +aya, + aza, + 3(a2 +a;+ a4)a5 - 66152 + al(a2 +ay+a,+ 3a5)))a6 +

56 E?y — MOIeMmH AR M‘mvfﬂw& ﬁ//wrwf
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+(5(a3a4 + a2(a3 +a4) + al(a2 +a;+ a4))—3(4C+ 5(a1 +a,+ay+ a4))a5 -

- 125a§)a62 + 12€a5a2)/(6h1(a5 —ag )),

n= (2(5(a5 - a6)(a3a4 + az(a3 + a4) + al(a2 +a;+ a4) - 3a6(a5 + aq )) + C(—2a3a4 +3aya; + a7

+ 3a,a —3a; + 3(a3 +a,— 2615)a6 —3ag + az(—2a3 - 2a, + 3(a5 + aé)) +

+ al(—2a2 —2a;—2a, + 3(‘7‘5 + a6 )))))/(3h1(a5 G ))’

==& rn=0,r=0,

where C; = C;, E = £ and C, & are the arbitrary constants. The rest of the equations of the condition (16) be-
come identity due to (17) and the values of the coefficients C, from lemma 3 and the condition of theorem 1.
In the case of lemma 4, that is /4, = 0, the coefficients of the polynomial R are determined by the relations

1y = (ay(ay - as)as(2C; + Eag) + (2Csa} + 3a2 (2C; - 3€a) — ayas (8C; + 3€as))ag + (=ay (6C; + Eay) +
+ (=6Cs + Eay)as +188a3 ) ag +3€ (a, - 3as)ag — a3 (3a, — a5 — ag)(2Cs + Eas — Eag) —
— ay(a, — as —3ag)(3a, — a5 — ag ) (2Cs + Eas — Eag) — af (3a; + 3a, — a5 — ag ) (2Cs + Eas — Eag) —
~ ay(ay + a, — a5 ~ 3ag)(3a; + 3a, — a; — ag ) (2C; + Eas — Eag ))/(12(a5 - aé)z),
i = (2Csa? + 20503 + 2Ca3 + 2Csa; + Ealas + Eddas + Eaas + Eajas — 20sal + 5Ea3 - (18)
- (4C5a1 + &al + 4Csa, + Ea; + 4Csay + Eay + 4Csa, + Eay +
+2(=2Cs + E(ay + ay + ay + ay))as + 3€a52)a6 +
+(6Cs + 2 (a) + a, + ay + a,) — 5€as ) ag + 35a§)/(6(a5 - aé)z),
r==E =0, r,=0,

where Cs = Cs, E = £ and Cs, £ are the arbitrary constants. The rest of the equations of (16) become identity
due to (18) and the values of the coefficients C, from lemma 4 and the condition of theorem 1. The above con-
siderations imply the following statement.

Theorem 3. Ifin the Chazy equation (6) B, =0, k=1, ..., 6, then under the conditions of the Chazy system

(B* ) - (.7-' *) and A,, defined by theorem 1, the equation (6) is generally integrated in elliptic functions.
Proof If B, =0 and (B*)— (]—"*) hold then by lemma 1 D = 0 and F;, = 0. By the virtue of theorem 1, we

have two cases: h; # 0 and &, = 0 to define C,. In both cases, the polynomials P(w), O(w), R(w) are chosen
according to the formulas (12), (13), (15), (17), (18) which proves the statement of the theorem.
Note that lemmas 3 and 4, on which the proof of theorem 3 is based, are given in [15; 16], respectively.
Now consider the following example. 8
Leta,=1,a;,=-1,a,=2,a;=-2, a,=0. Then from (5) we find g, = 3 and from (4) we obtain the solu-
tion of the system (\A):

15 4 3 37 7
A= A= —— A =0, Ay=—=, Ac="0, A =—.
R A A A DA

. 12 .
In this case A = ? Therefore, setting B, =0, k=1, ..., 6, from the Chazy system we have D=0 and F,=0,
and from lemma 3

5 16 1
C=>C+—E&, C,=—(-19C. + 5&), C
37 s 2 12( 6 ) G

5 1
— E(C6 + 5), C,= 5(—4C6 + 55),

Cs= —%(86’6 +5E), Co=Cq, E=E.
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The coefficients Cg = Cg, E = £ are remain arbitrary, and the coefficients of the polynomials P(w) and Q(w),
respectively, have the following form:

4 7 4
p4=09 p3=_17 p2:_§’ p]zga poz_g,

28 16

4
:1, :O’ =—, =—, = ——
44 q; 9 5 9, 5 ‘D) 5

From (17) we find the coefficients of the polynomial R(w):

n=r=0, 1 ==& 1= <(5G =€), n=3(C;+£).
The general integral of the Chazy equation in this case has the form
(W)’ = by + byw + byw? + byw® + byw, (19)
where
2 7 28 5 7

by = E(6K1 + 24K, - 5C; - 5€), b= —gK1 - ?Kz - g(36 + ge,

4
b, =§(1<1 -K,))+&, b=k, b=-K,

and K, K, are the arbitrary constants. The third arbitrary constant appears from the separation of variables in
the equation (19) and its integration. Thus, for example, if K, =0, K, # 0, then
w=op(z)+p,
&

4 4 . _ : . o .
where o =—, f=——— - — and p(z) is the elliptic Weierstrass function satisfying the equation
K, 3K, 15

"2
(P) =4~ gp - g5,

242K} +125K,Cs — 95K,E +50&°

&2 600 ’
—8176K; — 500> + 75K,E(19€ — 25C; ) + 30K (100C; + 83€)
&7 108 000 '
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