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PaccmarpuBaercs akTyanbHasi MaTeMaTHUecKas 3a/1aua KOMIIbIOTEPHOIO aHaJIM3a AAHHBIX — 3a/1a4a CTaTUCTUYECKON
MTOCIIETOBATEIEHON TIPOBEPKHU MPOCTHIX THUIIOTE3 O MapaMeTpax pacIipeesieHIsI BEPOSTHOCTEH HAOMOMaeMbIX OMHAPHBIX
JMAHHBIX. DTa 3a/1a4a PEeIracTcst st IBYX MOJIe/ICH HAOIFOMCHUIT: CXeMbI HE3aBUCHUMBIX UCIBITAHUN U OXHOPOIHON ICTH
MapkoBa. BbIBeIeHBI JICTKO HHTEPIIPETUPYEMBbIC M YIOOHBIC ISl KOMITBFOTCPHOM peajn3alilii BHbIC BBIPAKCHHS CTATHC-
THK MOCJIEJIOBATEIIBHBIX TECTOB (CTATUCTHYCCKUX KPUTEPHUEB). Pa3zpaboTaH mOaXo/ [isl BEIYUCICHHS XapaKTEPUCTUK
3 PEKTUBHOCTH PEMIAOIINX TPABHI — BEPOATHOCTEH OMMOOYHBIX PEIICHUI W MAaTEMAaTHYCCKUX OXKHIAHWUN CITy4aifHOTO
yrca HaOMIONeHNH, HEOOXOIMMBIX I obecreueHns TpedyeMoil TouHOCTH. [1omydeHbl acCHMIITOTHYECKHIE Pas3TIOKeHIUS
JUTS yKa3aHHBIX XapaKTePUCTHK APPEKTHBHOCTH MPHU «3aCOPSHUSIX pacIIpEAeICHIUs BEPOSTHOCTEH HAOIIOAAEMBIX TaHHBIX.
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STATISTICAL SEQUENTIAL HYPOTHESES TESTING

ON PARAMETERS OF PROBABILITY DISTRIBUTIONS
OF RANDOM BINARY DATA
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An important mathematical problem of computer data analysis — the problem of statistical sequential testing of simple
hypotheses on parameters of probability distributions of observed binary data — is considered in the paper. This problem
is being solved for two models of observation: for independent observations and for homogeneous Markov chains. Ex-
plicit expressions of the sequential tests statistics are derived, transparent for interpretation and convenient for computer
realisation. An approach is developed to calculate the performance characteristics — error probabilities and mathematical
expectations of the random number of observations required to guarantee the requested accuracy for decision rules. As-
ymptotic expansions for the mentioned performance characteristics are constructed under «contamination» of the proba-
bility distributions of observed data.

Keywords: random binary data; simple hypotheses; statistical sequential test; error probability; mathematical expec-
tation of the random number of observations; «contamination»; asymptotic expansions.
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Introduction

Data become one of the active drivers of the world economy, and computer data analysis becomes an essen-
tial part of the modern life. Efficiency of data analysis defines the success in a growing spectrum of fields. Bi-
nary data is a very important class of data for several reasons: 1) binary data is natural for computer processing;
2) binary data describes many situations in terms of «presence — absence», «positive — negativey, etc.; 3) binary
data can be used for description of a significantly rich family of observations, if considered by groups. Classi-
cal methods of statistical analysis are often not applied to such data, as those methods assumptions are usually
not satisfied for the binary data models, or they are not effective.

As deterministic approach has a limited potential to describe the processes, real-life data is usually conside-
red to be random, and probabilistic models are used. In these models, an important problem that often appears,
is a problem of discrimination between two typical situations on the probability distributions of random data.
These two typical situations can be formulated in terms of simple hypotheses on parameters of the probability
distribution, and the problem turns to the problem of statistical testing of two simple hypotheses [1].

In many cases, especially in statistical quality control, in automatic warning systems, in personalised medi-
cine, in financial decision making, it is important to use the minimal number of observations that guarantee the
requested accuracy [2]. Sequential statistical tests [3] follow this principle with the assumption that the number
of observations to be used is defined through the observation process, depend on observations themselves,
and thus is a random variable. Due to the complex structure of sequential decision rules, usually theoretical
analysis of their performance characteristics — error probabilities and mathematical expectations of the random
number of required observations — is problematic [4].

In the paper we develop an approach to calculate and analyse the performance characteristics of sequential
tests for binary data. In practice the factual probability distribution of data often deviates from the hypothetical
one — the hypothetical probability distribution is «contaminated» [5; 6], so we also consider this situation here,
and analyse deviations of the performance characteristics under distortion.

Results for the model
of independent binary random observations

Denote by N, Z, R correspondently sets of: positive integer, integer, and real numbers; Z, = N U {0} Let
independent identically distributed K-dimensional binary random vectors

U
xtz(xﬁ)eUz{ul,...,uZK}z LueB={0,1},i=1,... K} reN, (1)
Ug
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be observed in a probability space (2, F, P) with independent components. The probability distribution of

b
random vectors (1) depends on the unknown value of the parameters vector 6=| : |[e@= {90, 91}, where
Pk
p pi
6,=| : [0,=| * |,0,#0,. Suchamodelis often used in practice to decide in favour of two possible alter-
Pk Pk

native typical situations. The components of the vector of parameters p, € { plp , p}}, p?, pi1 € (O, 1), mean the
probabilities of the random event {xﬁ = 1}, teN,i=1, ..., K
Suppose the following assumption is satisfied for the probability distribution of binary random vectors (1):

P(u; 9)=Pe{xt=u}=a_‘/(";e), teN, uel, (2)

where a € R, a > 1; with J (u; 6): U x ©® — Z, being a function that satisfies the following condition:

3 a0 =1, 3)

uelU
There are two simple hypotheses considered on the parameters vector value 0 of probability distribution (2):

Hy0=0,H:0=60, 4
Denote the accumulated log-likelihood ratio test statistic:
A=A (x, o, x,)= 0, )
=1

where

Plx,; 0
444% (6)

}\‘t = k(xt)zloga(P(x - eo)

is the log-likelihood ratio for the binary observation vector x,.
Theorem 1. For the model (1)—(3) the sequence of statistics (5) for hypotheses (4) is a homogeneous
Markov chain with discrete time, and it has the form
K

An:An(xl, e xn): 2z’nk(J(uk; 90)—J<uk; 91)) €Z, neN, (7

where n,, denotes the number of the vectors that equal u* observed within n binary random vectors {x1 y e X, }

21(
S ne=n.
k=1

Proof. The Markov property [7] of the random sequence (5) follows from the independence of its incre-
ments (6) due to the independence of random observations (1). Expression (7) is derived by equivalent trans-
formations of (5), (6) under the assumption (2), (3).

Corollary 1. If under theorem 1 conditions K = 1, then test statistic (5) is

An=An(x1, ...,xn):no(J(O; po)—J(O; pl))+(n—n0)(J(1; po)—J(l; pl)), neN,

where n, denotes the number of the observations equal to 0.
Using statistics (7), the sequential probability ratio test [1] for hypotheses (4) is constructed as follows: the
decision after n observations made (n=1, 2, ...) is

d=d(n)= I, +w)(A,,) +2- 1 C+)(An), ®)

where 1,(-) denotes the indicator function of a set D. Decisions d = 0 and d = 1 mean the observation process

termination and acceptance of correspondently H,, or H, after n binary random vectors observed; d = 2 means
that the (n + 1) vector should be observed; C , C, € Z, C_< C, are parameters of the decision rule (8) called
thresholds; in practice they are often calculated according to [3]:
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where o, 3, are the admissible values of error type I (to accept H,, when H,, is true) and error type II (H, is

true, H, is accepted) probabilities; [-] means the integer part of an argument. With thresholds (9) the factual values
of error probabilities of type I and II may differ from o, B, and the problem of the factual values calculation of
the performance characteristics is open for the sequential tests.

Introduce the notation: §; ; for the Kronecker delta; I, for the identity matrix of size k; 0, , for the zero-matrix

of size (m X n); () for the umt step function; 1, for the k-vector column with components equal 1. Denote
by ") the expected value of the random number of observations (sample size) provided the true hypothesis
isH, ke {0, 1}, and by o, B the factual values of error type I and II probabilities for test (8); N=C, — C ; let

— YWV

12 O2><N
P(")=(p,§-"))= ——— i ——— |be the matrix of size (N + 2) x (N + 2), with blocks %, 0 defined by
R® 1 oW
ZUSJ(u;GO)—J(u;GI),j_jp(u; ek)a i;je (C_, C+),
Pi(].k): D 1( —i+J(u;0,)—J(u; 60))P(u; 6,) ie(C_,C,), j=C,
uelU
> 1(J (8- J (:8,)) +i = C, ) P(u: 8,), ie(C. C,), j=C,.
uelU

Denote

e =(ngk))’ = 8 s(us0) a0y, P8 ) i€ {C+1, .., C =1,

uelU

ZC Z 8 J(u;00) = J(u; 6,), ( ;ek)’ TC(CI‘(,) = z 2 SJ(M;GO)—J(M;Gl),iP(u; ek)’

uelU i<C.uelU

-1
S(k) =1, - Q(k), B(k) _ (S(k)) R(k),
let W(l.) means the i column of the matrix W.

Theorem 2. [f under the model (1)—(6), ‘S(k)‘ 20, ke {0, 1}, then the performance characteristics of se-

quential decision rule (8) are calculated in the explicit form:

9= () (59) 1y 1, = (00 B0+ 10, = (a0 B4 0.

Proofis based on the theory of finite homogeneous Markov chains with discrete time. The sequence
¢, =C_ - 1(_00,07](1\") +C, e, +m)(An) +A,- 1(C7,C+)(An)

is a homogeneous Markov chain with N + 2 states, and C , C, are the absorbing states.
The situation, where the probability distribution of data is «contaminated» is considered in the next section
for a more general model, where the observed binary data form a Markov chain instead of being independent.

Results for the model of observations
forming a homogeneous binary Markov chain
Suppose binary random vectors x,, x,, ... forming a homogeneous Markov chain are being observed, taking
U
values in the set U = {ul, ut } =4 ¢+ |, u;eB={0,1}, i=1, ..., K ;. To simplify notation, introduce the
Uk
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set V= {0, L....M-— 1}, M=2% one-to-one corresponding to the set U. Denote for the observed Markov chain

the initial probabilities vector 1t = (ni ), i € V, and the one-step transition probabilities matrix P = ( Dy ), i,jel:
P{x=i}=m, P{x,=jlx, \=i}=p;. i.jeV.

As in the case of independent binary random vectors, consider two simple alternative hypotheses on the
parameter values of the Markov chain:

Hy:n=n", P=P"; H:n=xl, p=PY, (10)

where 10 = (ngo) ), ) = (71:51)) are two given values for initial probabilities vector, PO = ( éo)) # pl z( ,.5.1))

are given matrices of one-step transition probabilities for the correspondent hypotheses.
For construction of the sequential test for this model of data, denote

(1) p(l) n
klzlognT)g), kk=log%, k>1, An:];xk, neN. (11)

X Xk —15 Xk

The sequential test for the considered model and hypotheses (10) is constructed according to the decision
rule (8), with replacing (5)—(7) by (11). According to this test, for defined thresholds (see, e. g., (9)) C, C, € R,
C <0, C, >0, hypothesis H,, is accepted after n observations, if A, < C_, hypothesis H, is accepted, if A, > C,,

n—

the test is stopped in both those cases, otherwise the test is proceeded, and the (n + 1) binary random vector

should be observed. The sequence of (K + 1) dimensional random vectors (An, X, ),, n € N, is a Markov chain
by the definition:

P{An, xn|An_1, A, s A X, s Xy gy s xl}:P{An, xn|An_1, xn_l}.

Suppose n(o), P(O), TE(I), PY be satisfying the following assumption:
(1) pl
JaeR, m, myeZ, i, jeV: 1og$:mia, log—2-=m_a. (12)
T bPjj
Without loss of generality, suppose for test (5), (8), (11) the thresholds C , C, € Z, and denote that ") is the
expected sample size till one of the hypotheses is accepted, provided H, is true, k € {O, 1};

Lo 0
k k .
W():(Wg)): SR
R(k) : Q(k)
is the matrix of the size (MN + 2)(MN + 2), with blocks R(k), Q(k) defined by their elements (s, € V):
(k)

k) . .
WMi+ij+t:8mS/,j—ip£t)7 l,]G(C_, C+):

Y(i+m,-C,), j=C,,ie(C_,C,),

rev
Wil iy = Y1(C.~i-my) j=C,ie(C.,C,); (1
rev
as in the case of independent observations, denote the matrices
sW_g, —o® gk ( S(k))‘l RY, kefo,1);
the vectors
o) = (mﬁ")), ie{MC_+1,..,MC, -1} o), =5, a9 ie(C.,C,), (14)
and the two prior probabilities of absorption
co%_ =Y 1(C_- ms)n(sk), (;3(1{2:+ = > 1(m, - C+)n£k). (15)

seV seV
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Theorem 3. For the observation model of a homogeneous binary vector Markov chain described above, if
‘S (k)‘ #0, ke {0, 1}, and (12) holds, then the performance characteristics of sequential test (5), (8), (11) are

calculated in the explicit form:

’ ’

9 =(] (O] 141, o= (0] B+ 00, B=(00) 5 + 0l

Proof. Introduce the random sequence

&_,n :MC_ . 1(700’ C,] (jtlnj + MC+ . 1[C+,+oo) [%) + [1:}1 M+ xn) . I(C,C+)(/:n j, ne N,

that is a homogeneous Markov chain with MN + 2 states; two of them (§,= MC and £, = MC,) are absorbing.
The one-step transition probabilities matrix is defined by (13), the vector of transient states initial probabilities
is (14), and the initial probabilities of absorbing states are calculated in (15).

Consider now the situation that is often in practice, when the hypothetical model described above is «con-
taminated» in terms of the probability distribution of observations via «contamination» of the initial probabi-
lities vector and of the one-step transition probabilities matrix. Suppose instead of the hypothetical values, the
factual (distorted) vector of the initial probabilities and the factual one-step transition probabilities matrix are

ah=(1—e)n® + ex®, PH = (1-¢)PW 4 &PV, £ =0,1, (16)

where #*) and P are the initial probabilities vector and the one-step transition probabilities matrix for the

- 1
«contaminating» Markov chain, pk) # P(k), k=0,1,and €€ [0, 5] is the probability of «contamination» (also

called «contamination» level).

Denote for the «contaminated» model (16): W(k), Q(k), f?(k), GJ(k), 6)5(23 , k=0,1, analogously to the
hypothetical case, replacing the hypothetical probability distribution by the «céntaminating» one. Denote that
Sk — I, — Q(k) _ a(Q(k) _ Q(k))_

Theorem 4. If the hypothetical model of binary vector homogeneous Markov chain observations described
above is distorted according to (16), and assumption (12) is satisfied also for the distorted model, then the er-
ror type I and Il probabilities Q., B and the conditional mathematical expectations of the observation number

f(k), k=0, 1, deviate from the hypothetical performance characteristics by the values of order 0(8):

- o= 8[((Dm) ) (( 5(0) )*‘ ((Qw) _ Q(o))( 5(0) )*‘ RO 4 30 _ R(O)D 4

)

0, o) mggg] Lole?)

B_p= 8[(0)(1) | (( s ((Qa) = 0)(s0) RO+ R - R(I)D N
O

B0+ . —af) j +o(2),

’ ’

(05 (- 0)fs") s 0l

Proof. Under «contaminationy» (16) the initial probabilities vector and the one-step transition probabilities
matrix of the random sequence &, have the correspondent mixture form, and the rest of the proof is derived by
equivalent transformations.

0 _ ) _ 8((@@) ~ o)

Conclusion

An approach to calculate and analyse the performance characteristics of sequential tests for binary data for
two models is proposed: for the independent binary vectors, and for the homogeneous binary vector Markov
chains. The situation, where the factual model of data deviates from the hypothetical assumptions, is considered
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in the paper, and correspondent differences in performance characteristics of the sequential tests are analysed
asymptotically with respect to the «contamination» level. The results can be applied to construct robust se-
quential tests for binary random data [8], for the model of random sequences with a trend [9]. The results are
also potentially applicable to the case of more than two hypotheses [10], complex hypotheses [11] and to the
analysis of truncated sequential tests [12].
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