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УДК 519.62

СТАБИЛИЗИРОВАННЫЕ ЯВНЫЕ МЕТОДЫ  
ТИПА АДАМСА ВЫСОКИХ ПОРЯДКОВ С ДЕМПФИРОВАНИЕМ

А. В. МОЙСА1), Б. В. ФАЛЕЙЧИК1), В. И. РЕПНИКОВ1)

1)Белорусский государственный университет, пр. Независимости, 4, 220030, г. Минск, Беларусь

Продолжается исследование явных методов типа Адамса с расширенным интервалом устойчивости, впервые 
представленных в предыдущей статье авторов в издании «Журнал Белорусского государственного университета. 
Математика. Информатика» (2021, № 2). Такие методы требуют только одного вычисления  f  на каждом шаге, 
но при этом имеют гораздо более длинные интервалы устойчивости, чем классические аналоги. Целью работы 
является построение демпфированных модификаций методов с расширенным интервалом устойчивости второго 
порядка и выше, а также тестирование их пригодности для решения жестких систем обыкновенных дифферен-
циальных уравнений. Для расширения области устойчивости вблизи действительной оси предлагается общая 
процедура оптимизации, основанная на поиске по сетке с последовательным увеличением демпфирующего па-
раметра. Строятся ряд методов второго, третьего и четвертого порядков, описывается реализация адаптивного 
выбора шага интегрирования и приводятся результаты сравнительных численных экспериментов.

Ключевые слова: жесткие системы; линейные многошаговые методы; методы типа Адамса; явные методы.
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HIGHER ORDER STABILISED EXPLICIT  
ADAMS-TYPE METHODS WITH DAMPING

A. V. MOISAa, B. V. FALEICHIK a, V. I. REPNIKOV a

aBelarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus
Corresponding author: A. V. Moisa (moysa@bsu.by)

In this paper we continue the study of explicit Adams-type methods with an extended stability interval represented for 
the first time in the previous article of the authors in «Journal of the Belarusian State University. Mathematics and Infor-
matics» (2021, No. 2). Such methods require only one calculation of  f  at each step, but at the same time, they have much 
longer stability intervals than their classical counterparts. The aim of this work is to construct damped modifications of the 
methods with an extended stability interval of second order and higher and to test their ability to solve stiff systems of ordi-
nary differential equations. In order to extend the stability regions along the real axis, we propose a general optimisation 
procedure based on grid search with a progressive increase in the damping parameter. We construct several methods of 
second, third and fourth orders, describe the realisation of the adaptive choice of the integration step, and represent the 
results of the comparative numerical experiments.

Keywords: stiff systems; linear multistep methods; Adams-type methods; explicit methods.

Introduction
Let us consider a system of ordinary differential equations

 ′ = ( ) ( ) = → × →y f t y y t y y fn n n
, , , : , : .0 0       (1)

Methods of the form

 y y f fm k m k m k m k+ + − − + −= + + … +( )1 0 1 1
t β β  (2)

with an increased length of the stability interval were considered in work [1]. Let p be the order of the me-
thod (2). The root locus curves [2, p. 241] of these methods have the form
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These curves for a sufficiently large k touch the real axis at several points (fig. 1). Damping of the me-
thod for the numerical solution of the initial value problem (1) [2, p. 32–33] is a qualitative modification 
of the method in order to increase the distance between the boundary of the stability region and the real 
axis (see also [3; 4]). This is necessary for the stability of the method in the case of slight deviations of the 
eigenvalues of the Jacobian matrix from the real axis. When constructing a damped method, we need to 
introduce a minimal change to the stability interval length while keeping an acceptable distance of the root 
locus curve from the real axis.

The paper is organised as follows. In section «Damped methods construction» we describe the approach 
which was used to construct the damped stabilised Adams-type methods of higher orders. The implementation 
details and the results of numerical experiments are presented in section «Implementation».

Fig. 1. Root locus curves (3) of the methods  
with an extended stability interval
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Damped methods construction
Problem statement. The optimisation problem for the unknown coefficients of the damped method can be 

stated as
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where ε is a parameter which determines a shift from the real axis, and γ is a small constant which eliminates 
inequalities in the conditions where sin ϕ is small. However, it is not possible to solve it in this form for a suf-
ficiently large k, so let’s try to get a simpler problem.

It was shown in work [1] that the imaginary part of root locus curve (3) of the method (2) has the form
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A way of damping of the first order methods was proposed in work [1]. It is based on the representation of 
^Q j( ) of the damped method as
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where C is a scaling constant to be determined from only one order condition. The coefficients ^β j and ^δ j  are 
related to âj in the same way as βj and δj relate to aj in formula (5). Thus, ^β j  can be found from âj  as
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This approach is not applicable in the case when there are more than one order condition ( p > 1), therefore 
to construct a higher order damped method we put

 â C aj j j j= + +( )εδ n , (7)

where νj are constants,  p – 1 of which are determined from the order conditions, and the rest can be set in such a way 
that the stability interval of the obtained method is the largest possible, but at the same time the imaginary part of the 
root locus curve is greater than ε on the segment γ π γ, .−[ ]  Let’s write the corresponding optimisation problem as
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Problem (8) is much easier to handle than problem (4) because, firstly, the functions from the admissible set 
directly depend on the sought coefficients, and, secondly, it turns out that to obtain an acceptable result, it is 
enough to immediately fix νq = νq + 1 = … = νk = 0, p – 1 ≤ q ≤ k, thus reducing the dimension of the problem. 
We chose ε = 0.05, γ = 0.15 in our implementation.
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The damped methods construction algorithm. The algorithm below is based on a combination of a brute-
force grid search with a successive increase of ε.

The required input values are:
 • the coefficients β j{ } of an original stabilised Adams-type method constructed in work [1];
 • the search grid step h, the empirically defined range of values is h ∈  

− −
10 10

4 3
, ;

 • the required root locus curve shift from the real axis ε > 0.
The output of the algorithm is the scalar variable sc and the vector variable nu which store the computed va-

lues of C and n n= { }j  respectively. The sought coefficients of the damped method ^β j{ }^β j{ } are then derived from C 
and ν using formulas (7) and (6).

Algorithm: damping of the higher order stabilised explicit Adams-type method.
Require: β εj j k h, , , , .= − > >0 1 0 0

1: Calculate a j kj j, , , ,δ = −0 1  from βj by (5)
2: q p k p← + −{ }min ,2

3: o o j q pj← = = −{ }0 0, ,

4: nu nu j kj← = = −{ }0 0 1, ,

5: eps h←
5

6: while eps ≤ ε do
7:  ← 0
8: N o h o o h o h o o h o h o o hq p q p q p← − +[ ] × − +[ ] × … × − + − − −0 0 0 1 1 1, , , , , ,

9: for every unique node n in N do
10: n n0 0, , , , q p q pn n− −{ } ← { }
11: n nq k, , , , −{ } ← { }1 0 0

12: Express â C a epsj j j j← + ⋅ +( )δ n , see (7)
13: Express ^βj from âj as in (6)

14: Find C j q p qj, , ,n = − + −1 1 from the order conditions p (4)
15: Calculate values of  ^βj

16: if Imµ j γ π γβ
j

^ e epsi( ) ≥ ∀ ∈ −[ ],

17: and Imµ j π γ πβ
j

^ ei( ) ≥ ∀ ∈ −[ ]0 ,

18: and µβ
π

^ ei( ) > µβ
π

^ ei( ) >  then

19: sc ← C
20: nu ← ν
21: 

← ( )µβ
π

^ ei← ( )µβ
π

^ ei

22: else
23: continue
24: end if
25: end for
26: if  > 0 then
27: o ← nu
28: if eps = ε then
29: break
30: else
31: eps eps h

← +







min ,
5

ε
32: end if
33: else
34: q ← q + 1
35: Append nuq – p + 1 to vector o
36: end if
37: end while
38: return sc, nu
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The non-linear system of equations which needs to be solved in row 14 is transformed to a linear one by 
replacing C ⋅ νj with xj – q + p.

The inequalities in rows 16 and 17 can be checked for every local minimum of function Imµ β
j

^ ei( ), taking 
into account the specific shape of this function (fig. 2).

It is necessary to manually check the shape of the root locus curve of the damped method, because some-
times the algorithm can produce an unsatisfactory result (although it formally satisfies all the requirements). 
In order for the root locus curve to have a more regular shape, it is necessary to increase the parameter q in 
row 2 and repeat the algorithm.

Examples of the root locus curves of the damped method for p = 4, k = 21 and different values of ε are pre-
sented in fig. 3, graphs of Q j( ) and ^Q j( ) of these methods are given in fig. 2. Stability regions of the second 
order methods with an extended stability interval and their damped versions (ε = 0.05) for k = 4, …, 13 are 
presented in fig. 4.

Implementation
Implementation of methods (2) with a constant step size is straightforward. To implement a variable step 

size, it is necessary to solve the following main tasks:
1) error estimation;
2) increasing the grid step size;
3) decreasing the grid step size.
Error estimation. We use two methods of orders p (main method) and p – 1 (assistant method) to estimate 

the error. The values ym + 1 calculated by these methods in formula (2) we denote as ym k
p
+

[ ]  and ym k
p
+
−[ ]1  respectively. 

Then the absolute error estimate of the ym k
p
+

[ ]  can be found from the well-known formula

 aerr y ym k
p

m k
p= −+

[ ]
+
−[ ]

∞

1
.  (9)

Fig. 2. Graphs of Q j( ) and ^Q j( ) of the damped methods with p = 4, k = 21

Fig. 3. Root locus curves (3) of the damped methods with p = 4, k = 21
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Fig. 4. Stability regions of the second order methods with an extended stability interval  
and their damped versions (ε = 0.05) for k = 4, …, 13
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The relative error estimation is defined as
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where atol is the value of the required absolute error. It is added to the absolute value of the vector components 
to avoid close to zero values in the denominator.

If the inequalities
 aerr ≤ atol,  rerr ≤ rtol, (11)

where rtol is the required relative error, are satisfied, then the value ym k
p
+

[ ]  is considered as accurate enough.
Formulas (9) – (11) can be easily generalised for the case when atol and rtol are vector values. To do this, in 

expressions (9) and (10) it is necessary to replace the norm by the vector of the absolute values of the compo-
nents, and the inequalities (11) should be generalised to the case of the vector values.

We mainly used the damped version of the method with p = 4, k = 21 as the main method in our implemen-
tation (see fig. 2 and 3). This method is quite simple to obtain and damp and it has 20 times larger stability 
interval than the classical fourth order Adams method. If it is necessary to get a larger stability interval, it might 
be better to reduce the order p instead of increasing k. The coefficients of this method are presented in table 1. 
The error constants of some fourth order methods are given in table 2.

Initially, it seems natural to choose an assistant method with approximately the same stability interval as the 
main method, for example, p = 3, k = 14 (see fig. 1). But in practice, better results were obtained using the classi-
cal explicit Adams method of order p – 1 as an assistant one. This can be explained by the fact that the result of 
the assistant method is not used in the next step, so its instability does not affect the process too much.

Ta b l e  1
Coefficients of method with an extended stability interval  

and its damped version with p == 4, k == 21

β
C; ν

Initial method Damped method

‒ 0.014 543 302 409 352 176
‒ 0.037 372 767 456 907 95

‒ 0.043 406 196 086 467 105
‒ 0.027 486 149 404 601 503
0.008 252 769 527 671 221
0.054 537 413 741 972 81
0.097 209 195 621 928 01
0.121 058 627 899 381 7
0.114 285 854 014 006 83
0.072 422 109 196 496 3

0.000 623 683 164 529 862 5
‒ 0.086 396 278 848 252 68
‒ 0.166 978 077 073 466 46

‒ 0.217 219 080 029 73
‒ 0.216 768 383 496 507 5
‒ 0.154 368 955 636 348 4

‒ 0.031 766 972 270 760 77
0.135 099 815 930 591 2
0.318 153 574 581 982 3
0.482 259 056 075 009 85
0.592 404 062 958 824 4

‒ 0.012 505 757 070 276 544
‒ 0.032 789 411 451 952 875
‒ 0.039 488 125 649 616 054
‒ 0.027 107 568 402 238 53

0.003 642 176 786 235 481 7
0.045 478 507 054 112 57
0.086 121 595 255 923 64
0.111 500 997 408 773 63
0.109 820 665 237 236 78
0.074 196 216 563 922 67
0.009 440 996 312 261 642
‒ 0.070 033 943 854 504 19
‒ 0.147 429 638 898 536 27
‒ 0.202 674 306 764 101 2
‒ 0.212 396 132 756 734 38
‒ 0.163 055 764 045 559 94
‒ 0.049 724 157 172 647 37
0.114 121 239 098 021 19

0.305 707 490 985 957
0.483 881 120 483 082 2
0.613 293 800 880 640 2

0.835 1;

0.038 4
0.050 7
0.044

0.015 4
0.007 5

‒ 0.004 1
‒ 0.001 6
‒ 0.001 8
0.002 1
0.001 5

‒ 0.001 8
‒ 0.002 9

0
⁝
0
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Ta b l e  2
Error constants of the fourth order methods  

with an extended stability interval  
and their damped versions

k Initial method Damped method
21 94.211 3 88.203 6
17 41.462 4 39.133 3
13 14.899 8 14.196
9 3.878 8 3.730 3

Increasing the grid step size. In the cases of sufficiently small errors aerr and rerr it makes sense to 
increase the step size t of method (2). In contrast to one-step methods [5, chapter II, section II.4], changing 
the step size t by an arbitrary factor causes serious computational difficulties (see also [3; 4; 6]). To simplify the 
process of updating the grid, we introduce the constant

irate =
t

t
new
,

where tnew is the step size after the increasing (fig. 5).

After increasing the grid step size, the density of nodes decreases, but their number must still be at least k 
to calculate the next value of the solution by the formula (2). We will store a grid of nodes of size

gsize irate k= −( ) + 1 1

to avoid extrapolation. It allows to calculate k nodes of the increased grid by the interpolation polynomial and 
continue solving using the formula (2) with the new step size tnew .

We used the Hermite interpolation polynomial in our implementation. For methods with p ≤ 3, the well-
known formula

y
y y

f f l m k j j k
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is enough to find the values of the missing nodes in the case irate = 3
2
. For higher order methods we used the 

more accurate formula

y
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f f f
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Naturally, we have to completely fill the grid with solution values before the next increment. It is reaso-
nable to choose a method with irate k⋅ −( ) ∈1   to reduce the computational costs when grid values with an 
increased step size are calculated.

Fig. 5. Increasing the grid step size in the cases 

irate = 2 (top), irate =
3

2
 (middle) and irate =

4

3
 (bottom)
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Suppose that the value irate is chosen. If at some moment the number of stored solution values is less than 
gsize (for example, at the very beginning or immediately after increasing the grid step size) then it is not possible 
to increase the grid step size. If the entire grid is completely filled, in addition to inequalities (11) the condition

aerr atol
irate

rtol rtol
iratep p≤ ≤ < <w w w, , ,0 1

should also be checked. If it is satisfied, we calculate the missing grid nodes with an increased step size tnew 
and store them into a separate array. Then we find the next value of the solution using formula (2) and check 
its accuracy using inequalities (11). If they are satisfied, we change the old grid with step size t to the new one 
with step size tnew and continue calculating with this step. If inequalities (11) are not satisfied, we discard the so-
lution value obtained with step size tnew and continue applying the method with step size t.

In our implementation we take irate = 3
2
, ω = 0.9.

This implementation already works quite well, but it can be further improved. Consider the situation when 
the errors aerrm + k and rerrm + k of ym k

p
+
−[ ]1  still satisfy conditions (11) but at least one of them have become larger 

than aerrm + k – 1 and rerr m + k – 1 respectively. This could happen for three reasons:
1) the error of integration of the function  f  has increased;
2) one or more eigenvalues of the Jacobian matrix went out of the stability region;
3) there were roundoff errors while calculating aerr and rerr.
In the first two cases, we should avoid the step increase during the next iprhb steps. In practice, it turned out 

that in the case of double precision numbers, a simple check

 aerr aerr rerr rerrm k m k m k m k+ + −
−

+ + −
−− ≤ ⋅ − ≤ ⋅1

15

1

15
3 10 3 10,  (12)

is sufficient to handle the third case. If at least one inequality in formula (12) is not satisfied, we disallow the 
step size increase for the next iprhb = 13 steps.

Decreasing the grid step size. If at some moment at least one inequality in formula (11) is not satisfied, 
then the grid step size must be reduced. As in the case of increase, we introduce the constant

drate = t
tnew

,

which is presented in fig. 6.

In our implementation we take drate = 3
2
.

The values at the missing nodes can be found using the formula
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Implementation details. The proposed damped explicit multistep methods were implemented in C. The main 
features of the implementation have already been described, so here we add only a few details.

The first k – 1 grid values were found using the one-step method RADAU5 (see the Internet page www.uni
ge.ch/~hairer/software.html ). Grid values ym and  fm of length gsize are stored in a circular queue. Pointers 

Fig. 6. Decreasing the grid step size in the cases drate = 2 (top), drate =
3

2
 (bottom)
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to the oldest element in the queue (begin), to the element from which the calculation begins according to 
formula (2) (front), and to the last added element (back) are stored separately. There are always exactly 
k elements between the front (inclusive) and back (inclusive) elements. Between the begin (inclusive) 
and back (inclusive) elements there can be from k (at the very beginning or immediately after increasing the 
step size) to gsize elements (the grid is completely filled). Elements are never completely removed from this 
queue, currently unnecessary elements are simply moved to the end of the queue (after the back element). 
Elements from the outside are never added to this queue, the usage of free (located between back and begin) 
elements is always enough. The projects are compiled with Intel Fortran Compiler Classic 2021.4.0 and Intel 
C++ Compiler 19.2.

Numerical experiments
All methods implementations to compare with our method were taken from the Internet page www.uni 

ge.ch/~hai rer/software.html. The damped method with p = 4, k = 21 will be denoted as SA4-21. The parameters 
rtol and atol are equal in all cases. The following tables will provide the statistical data about the performance 
of the considered methods. We use the following notation:

 • rerrfin is the final relative error compared to a more accurate model solution;
 • aerrfin is the final absolute error compared to a more accurate model solution;
 • fcn is the number of function evaluations;
 • step is the number of the computed steps;
 • accpt is the number of the accepted steps;
 • rejct is the number of the rejected steps;
 • time is the elapsed time (ms).

DOPRI5 is an explicit one-step Dormand – Prince method of fifth order [7]. Initially this method was not 
intended for solving stiff problems. But in work [2, chapter IV, section IV.10] it was shown that it can be suc-
cessfully applied to middly-stiff systems.

ROCK4 is an explicit one-step fourth order Chebyshev method [4]. This method was created for stiff prob-
lems which possess a Jacobian matrix with (possibly large) eigenvalues close to the real negative axis.

RADAU5 is an implicit (unlike all the others) one-step method RadauIIA [2, p. 74]. It is impossible to directly 
compare the statistics of explicit methods with it, it is listed as a classical method for solving stiff systems.

HIRES. This is a classical midly stiff test system of dimension 8 describing a chemical reaction [8]. The in-
terval of integration is 0 321 812 2, .[ ] (table 3) and 0 421 812 2, .[ ] (table 4).

Ta b l e  3
Numerical experiment results for the HIRES problem, tmax == 321.812 2

Method atol rerrfin aerrfin fcn step accpt rejct time

SA4-21

1 ⋅ 10– 6 7.16 ⋅ 10– 6 4.47 ⋅ 10–8 13 766 12 774 12 745 29 3

1 ⋅ 10–8 7.03 ⋅ 10–8 4.38 ⋅ 10–10 19 080 17 132 17 069 63 4

1 ⋅ 10–10 2.51 ⋅ 10–9 1.57 ⋅ 10–11 22 517 20 811 20 756 55 4

1 ⋅ 10–12 2.46 ⋅ 10–10 1.54 ⋅ 10–12 41 523 40 359 40 302 57 8

DOPRI5

1 ⋅ 10– 6 2.37 ⋅ 10–3 1.48 ⋅ 10–7 62 504 10 417 10 416 1 2

1 ⋅ 10–8 8.17 ⋅ 10–7 2.33 ⋅ 10–9 62 840 10 473 10 473 0 2

1 ⋅ 10–10 1.02 ⋅ 10–8 2.9 ⋅ 10–11 65 366 10 894 10 894 0 2

1 ⋅ 10–12 1.07 ⋅ 10–10 3.05 ⋅ 10–13 79 340 13 233 13 233 0 3

ROCK4

1 ⋅ 10– 6 3.23 ⋅ 10–3 2.01 ⋅ 10–7 11 628 873 812 61 1

1 ⋅ 10–8 9.24 ⋅ 10– 6 2.63 ⋅ 10–8 19 931 2071 1928 143 1

1 ⋅ 10–10 7.82 ⋅ 10– 9 3.09 ⋅ 10–11 35 410 4842 4632 210 1

1 ⋅ 10–12 3.28 ⋅ 10–11 1.59 ⋅ 10–13 69 873 11 253 11 102 151 2

RADAU5

1 ⋅ 10– 6 1.01 ⋅ 10–3 1.48 ⋅ 10–7 491 60 53 7 <1

1 ⋅ 10–8 1.10 ⋅ 10–5 6.89 ⋅ 10–8 820 100 97 3 1

1 ⋅ 10–10 5.89 ⋅ 10–8 3.68 ⋅ 10–10 1655 197 197 0 1

1 ⋅ 10–12 4.88 ⋅ 10– 9 1.8 ⋅ 10–11 3291 414 414 0 1
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Ta b l e  4
Numerical experiment results for the HIRES problem, tmax == 421.812 2

Method atol rerrfin aerrfin fcn step accpt rejct time

SA4-21

1 ⋅ 10– 6 1.08 ⋅ 10–10 1.52 ⋅ 10–13 14 290 13 288 13 259 29 3

1 ⋅ 10–8 1.28 ⋅ 10– 9 1.64 ⋅ 10–12 19 962 17 916 17 851 65 4

1 ⋅ 10–10 2.01 ⋅ 10–10 2.58 ⋅ 10–13 24 602 22 816 22 761 55 5

1 ⋅ 10–12 7.19 ⋅ 10–12 9.23 ⋅ 10–15 47 226 45 953 45 895 58 9

DOPRI5

1 ⋅ 10– 6 4.01 ⋅ 10–3 1.98 ⋅ 10–7 64 406 10 734 10 733 1 2

1 ⋅ 10–8 2.92 ⋅ 10–5 1.45 ⋅ 10– 9 64 736 10 789 10 789 0 2

1 ⋅ 10–10 2.88 ⋅ 10–7 1.42 ⋅ 10–11 67 436 11 239 11 238 1 3

1 ⋅ 10–12 8.4 ⋅ 10– 9 4.16 ⋅ 10–13 82 142 13 690 13 689 1 3

1 ⋅ 10–14 9.08 ⋅ 10–11 4.49 ⋅ 10–15 149 588 24 931 24 930 1 5

ROCK4

1 ⋅ 10– 6 5.52 ⋅ 10–5 6.22 ⋅ 10–8 11 967 909 844 65 1

1 ⋅ 10–8 1.58 ⋅ 10– 6 2.07 ⋅ 10– 9 20 312 2110 1966 144 1

1 ⋅ 10–10 1.57 ⋅ 10–8 2.04 ⋅ 10–11 36 251 4958 4748 210 1

1 ⋅ 10–12 2.06 ⋅ 10–10 2.64 ⋅ 10–13 72 180 11 617 11 466 151 2

1 ⋅ 10–14 3.82 ⋅ 10–12 4.9 ⋅ 10–15 168 592 28 285 27 083 1202 6

RADAU5

1 ⋅ 10– 6 6.65 ⋅ 10–7 8.54 ⋅ 10–10 542 66 59 7 <1

1 ⋅ 10–8 2.78 ⋅ 10–7 3.57 ⋅ 10–10 915 111 108 3 1

1 ⋅ 10–10 4.93 ⋅ 10– 9 6.32 ⋅ 10–12 1839 219 219 0 1

1 ⋅ 10–12 1.81 ⋅ 10– 9 2.33 ⋅ 10–12 3661 460 460 0 1

1 ⋅ 10–14 3.02 ⋅ 10–10 3.87 ⋅ 10–13 7271 977 977 0 2

It should be noted that the required and actually obtained errors for some methods are very different. This 
fact should be taken into account when comparing statistics.

Unlike one-step methods, reducing the grid step size always causes a rejected step, so in some cases the 
number of the rejected steps is quite large.

Burgers’ equation. The second problem is taken from work [4]. The spatial derivatives are approximated 

by standard central finite differences, the discretisation step is D =x 1

501
, so the dimension of the resulting or-

dinary differential equation is 500. We took µ = 0.005 and the integration interval is equal to 0 2 5, .[ ] (table 5).

Ta b l e  5
Numerical experiment results for the Burgers’ equation

Method atol rerrfin aerrfin fcn step accpt rejct time

SA4-21

1 ⋅ 10– 6 2.82 ⋅ 10–10 6.08 ⋅ 10–11 4912 4744 4741 3 29

1 ⋅ 10–8 2.54 ⋅ 10–10 5.65 ⋅ 10–11 4713 4544 4542 2 28

1 ⋅ 10–10 2.69 ⋅ 10–10 4.55 ⋅ 10–11 4996 4826 4825 1 30

1 ⋅ 10–12 5.88 ⋅ 10–11 9.16 ⋅ 10–12 9273 9036 9032 4 54

SA3-21
1 ⋅ 10– 6 4.09 ⋅ 10–7 6.72 ⋅ 10–8 3204 3045 3043 2 17

1 ⋅ 10–8 1.59 ⋅ 10–7 2.44 ⋅ 10–8 4305 4144 4144 0 23

DOPRI5

1 ⋅ 10– 6 1.1 ⋅ 10– 6 1.84 ⋅ 10–7 22 784 3797 3794 1 25

1 ⋅ 10–8 1.1 ⋅ 10–8 1.84 ⋅ 10– 9 22 790 3798 3795 1 25

1 ⋅ 10–10 5.75 ⋅ 10–10 9.62 ⋅ 10–11 22 814 3802 3798 2 25

1 ⋅ 10–12 3.94 ⋅ 10–12 6.42 ⋅ 10–13 22 868 3811 3807 2 25
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Method atol rerrfin aerrfin fcn step accpt rejct time

ROCK4

1 ⋅ 10– 6 1.48 ⋅ 10–3 7.59 ⋅ 10–5 1748 76 71 5 2

1 ⋅ 10–8 2.96 ⋅ 10–5 1.38 ⋅ 10– 6 2059 105 104 1 2

1 ⋅ 10–10 1.85 ⋅ 10–8 6.62 ⋅ 10–10 3407 231 231 0 3

1 ⋅ 10–12 4.33 ⋅ 10–11 2.31 ⋅ 10–12 7537 835 835 0 7

RADAU5

1 ⋅ 10– 6 2.7 ⋅ 10– 6 3.14 ⋅ 10–7 145 22 22 0 2

1 ⋅ 10–8 1.28 ⋅ 10–7 1.42 ⋅ 10–8 255 39 39 0 3

1 ⋅ 10–10 2.69 ⋅ 10– 9 3.18 ⋅ 10–10 520 76 76 0 5

1 ⋅ 10–12 8.07 ⋅ 10–11 1.19 ⋅ 10–11 1104 159 159 0 9

The stability region of the SA4-21 method is not enough in the case of low required accuracy. The SA3-21 
method has a 1.5 time larger stability interval and works slightly better in these cases.

Conclusions
Based on the experimental results obtained, we can conclude that the stabilised explicit Adams-type methods 

of  higher orders with damping can be useful in solving middly-stiff differential systems with real (or close to real) 
eigenvalues of the Jacobian matrix. If it is possible to improve the algorithm by adding to it an adaptive choice of 
parameters p and k, in some cases it can become the optimal variant, due to the smaller number of the right-hand 
side evaluations.
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