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CTABUAN3NPOBAHHBIE IBHBIE METOADBI
THUIIA AAAMCA BBICOKUX ITTOPSIAKOB C AEMITOMPOBAHMUEM
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[Iponomxaercs uccieq0BaHUE IBHBIX METOAOB THIA AlaMca ¢ PacIMPEHHBIM HHTEPBAJIOM YCTOWYMBOCTH, BIIEPBHIE
IIPEJCTABIEHHBIX B IPEbIAYIIEH CTaThe aBTOPOB B U3aHuU «KypHan benopycckoro rocy1apcTBEHHOTO YHUBEPCUTETA.
Maremaruka. Madopmaruka» (2021, Ne 2). Takue mMeToasl TpeOYIOT TOIBKO OJHOTO BEIYMCICHUS [ Ha Ka)KIIOM IIIare,
HO TIPH 3TOM MMEIOT TOpa3zio OoJiee AIMHHBIE HHTEPBAIbl yCTONYNBOCTH, YeM KJIacCHYecKue aHanoru. Lleapio paboTs
SBJIACTCS IOCTPOCHHE JeMII(PUPOBAHHBIX MOAU(DHKALIMI METOOB C PACIIMPEHHBIM HHTEPBAJIOM YCTOHYUBOCTH BTOPOTO
TOpsIJIKa M BBIIIE, & TAK)KE TECTHPOBAHUE MX MPUTOIHOCTH JUIS PELICHUS )KECTKHX CHCTEM OOBIKHOBEHHBIX AH(D(hepeH-
LUaJIbHBIX ypaBHeHUH. /sl paciuupeHnsi o0acTH yCTOMYMBOCTH BOJNW3M JCHCTBUTEIBHONW OCH Mpeiaraercst oomas
Ipoleaypa ONTHMHU3ALNHI, OCHOBaHHAsI HA ITIOMCKE TI0 CETKE C MOCIE0BaTeILHBIM YBEIHUCHUEM JIeMII(pUpyIoLIero na-
pametpa. CTpOSATCS psi/i METOJIOB BTOPOTO, TPETHEr0 M YETBEPTOTO MOPS/IKOB, OIUCHIBACTCS PEANn3alys aJaliTHBHOTO
BBIOOpA IIara HHTETPUPOBAHUS M IPUBOAATCS PE3yIbTaThl CPABHUTEIBHBIX YHCICHHBIX KCIIEPHUMEHTOB.
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HIGHER ORDER STABILISED EXPLICIT
ADAMS-TYPE METHODS WITH DAMPING
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In this paper we continue the study of explicit Adams-type methods with an extended stability interval represented for
the first time in the previous article of the authors in «Journal of the Belarusian State University. Mathematics and Infor-
matics» (2021, No. 2). Such methods require only one calculation of f at each step, but at the same time, they have much
longer stability intervals than their classical counterparts. The aim of this work is to construct damped modifications of the
methods with an extended stability interval of second order and higher and to test their ability to solve stiff systems of ordi-
nary differential equations. In order to extend the stability regions along the real axis, we propose a general optimisation
procedure based on grid search with a progressive increase in the damping parameter. We construct several methods of
second, third and fourth orders, describe the realisation of the adaptive choice of the integration step, and represent the
results of the comparative numerical experiments.

Keywords: stiff systems; linear multistep methods; Adams-type methods; explicit methods.

Introduction

Let us consider a system of ordinary differential equations

y'zf(t,y), y(to)zyo,y:R%R",f:RX]R"—)R". (1)
Methods of the form

ym+k=ym+k_1+T(Bofm+~-+Bk_1fm+k_1) (2)

with an increased length of the stability interval were considered in work [1]. Let p be the order of the me-
thod (2). The root locus curves [2, p. 241] of these methods have the form

p(E) ¢ -¢"
G(C) ZBJCJ

These curves for a sufficiently large & touch the real axis at several points (fig. 1). Damping of the me-
thod for the numerical solution of the initial value problem (1) [2, p. 32-33] is a qualitative modification
of the method in order to increase the distance between the boundary of the stability region and the real
axis (see also [3; 4]). This is necessary for the stability of the method in the case of slight deviations of the
eigenvalues of the Jacobian matrix from the real axis. When constructing a damped method, we need to
introduce a minimal change to the stability interval length while keeping an acceptable distance of the root
locus curve from the real axis.

The paper is organised as follows. In section «Damped methods construction» we describe the approach
which was used to construct the damped stabilised Adams-type methods of higher orders. The implementation
details and the results of numerical experiments are presented in section «Implementationy.

C={uy(*)]o <0, 2m)}. 1y 0)= G)

p=4, k=21

Fig. 1. Root locus curves (3) of the methods
with an extended stability interval
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Damped methods construction

Problem statement. The optimisation problem for the unknown coefficients of the damped method can be
stated as

B* = argmin py(-1),
BeFnT,

F={BeRr!|mp(c?)2e Voely, n-v]}

k-1 - 1
={B€Rk‘zoﬁj z 1_k+Jq 1Bj=a’q:27p}7
j= =

where ¢ is a parameter which determines a shift from the real axis, and y is a small constant which eliminates
inequalities in the conditions where sin is small. However, it is not possible to solve it in this form for a suf-
ficiently large £, so let’s try to get a simpler problem.
It was shown in work [1] that the imaginary part of root locus curve (3) of the method (2) has the form
k-1
2 a; cos j@
j=0

Impy () = O(p)sing, O(9)==——
Z Sj cos j@
j=0

“)

where

a .
ai_1 =2y, ak—j—lzsz_ak—j’ aO:Bk—l_El9 J=Lk=-2,

k-1 Jj
80 = 2 B]27 8] :2ZBIB.f+1’ ]:1, k-1
Jj=0 1=0

A way of damping of the first order methods was proposed in work [1]. It is based on the representation of
O(@) of the damped method as

®)

where C is a scaling constant to be determmed from only one order condition. The coefficients [3 and 8 are
related to @; in the same way as f3; and , relate to a; in formula (5). Thus, B can be found from &; as

A G N &t
BO_ 2 ’ Bj_ 2

This approach is not applicable in the case when there are more than one order condition (p > 1), therefore
to construct a higher order damped method we put

214=C(aj+88j+vj), (7)

J

» By 1—a0+— j=L k-2 (6)

where V. are constants, p — 1 of which are determined from the order conditions, and the rest can be set in such a way
that the stability interval of the obtained method is the largest possible, but at the same time the imaginary part of the

root locus curve is greater than ¢ on the segment [y, 7t — v]. Let’s write the corresponding optimisation problem as

C, v=argmin lig (—1),
(C‘A,v)ef,
Ppe?,
A (®)
]—":{CER, VGRk‘Q((p)Sin(pZS Voely, n—y]}.

Problem (8) is much easier to handle than problem (4) because, firstly, the functions from the admissible set
directly depend on the sought coefficients, and, secondly, it turns out that to obtain an acceptable result, it is
enough to immediately fix v, =v,; =... =v, =0, p— 1 < ¢ <k, thus reducing the dimension of the problem.
We chose € = 0.05, y = 0.15 in our implementation.
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The damped methods construction algorithm. The algorithm below is based on a combination of a brute-
force grid search with a successive increase of €.

The required input values are:

* the coefficients {Bj} of an original stabilised Adams-type method constructed in work [1];

* the search grid step /4, the empirically defined range of values is /1 € [10_4, 10_3];

* the required root locus curve shift from the real axis ¢ > 0.

The output of the algorithm is the scalar variable sc and the vector variable nu which store the computed va-
lues of Cand v = {Vj } respectively. The sought coefficients of the damped method {Bj} are then derived from C

and v using formulas (7) and (6).

Algorithm: damping of the higher order stabilised explicit Adams-type method.

Require: 3, =0, k-1,/72>0,e>0.

1:
2:

10:

11:
12:
13:

14:
15:
16:

17:

18:

19:
20:
21:

22:
23:
24:
25:
26:
27:
28:
29:
30:

31:

32:
33:
34.
35:
36:

. h
leps «— —

N N AN

Calculate a;, §,, j =0, k-1, from B; by (5)

> Vi

q(—min{2+p,k—p}
:oe{oj=0,j=0,q—p}
:nu(—{nuj=0,j=0,k—1}

5

: while eps < ¢ do

{0
N « [oo—h, 09> 0y + h] x [ol—h, 0, 0, + h] X ... X [0
for every unique node » in N do

ISR DI

{vq, . vk_l} <o, ..., 0}
Express d; « C(aj +eps- 9, + vj), see (7)

q-p

Express Bj from d; as in (6)

Find C, v;, j=q—p+1 g—1 from the order conditions P, (4)
Calculate values of Bj

if Imuﬁ(ei‘p) >eps Vo ey, m-7]

and Imuﬁ(ei“’) 20 Voe[n-v, n]

and ‘uﬁ(ei“)

sc <« C
nu < v

l ‘uﬁ(em)

> ( then

else
continue
end if
end for
if 7/ > 0 then
0 < nu
if eps = € then
break
else

eps ¢« min {eps + g, 8}
end if
else
q<—qg+1
Append nu,_, , | to vector o
end if

37: end while
38: return sc, nu
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The non-linear system of equations which needs to be solved in row 14 is transformed to a linear one by
replacing C - v, withx;_ .

The inequalities in rows 16 and 17 can be checked for every local minimum of function Im uB(ei(p ), taking
into account the specific shape of this function (fig. 2).

It is necessary to manually check the shape of the root locus curve of the damped method, because some-
times the algorithm can produce an unsatisfactory result (although it formally satisfies all the requirements).
In order for the root locus curve to have a more regular shape, it is necessary to increase the parameter ¢ in
row 2 and repeat the algorithm.

Examples of the root locus curves of the damped method for p =4, k= 21 and different values of € are pre-

sented in fig. 3, graphs of O(¢) and Q((p) of these methods are given in fig. 2. Stability regions of the second

order methods with an extended stability interval and their damped versions (¢ = 0.05) for k=4, ..., 13 are
presented in fig. 4.

1.0

0.8

0.6

0(¢) and O(0)

0.4

0.2

A

—0(9) —O0(9),£=0.05 —O(9),e=0.1

O||||I||

0.5 1.5 2.0 2.5 3.0

Fig. 2. Graphs of O(¢) and O(¢) of the damped methods with p = 4, k =21

e=0

e=0.1

£=0.05

Fig. 3. Root locus curves (3) of the damped methods with p =4, k=21

Implementation

Implementation of methods (2) with a constant step size is straightforward. To implement a variable step
size, it is necessary to solve the following main tasks:

1) error estimation;

2) increasing the grid step size;

3) decreasing the grid step size.

Error estimation. We use two methods of orders p (main method) and p — 1 (assistant method) to estimate

[»] [p-1]

the error. The values y,, , | calculated by these methods in formula (2) we denote as y,, . , and y,,_ - respectively.

Then the absolute error estimate of the y,[np J]r « can be found from the well-known formula

aerr=|ylrt, -l ©)

m
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el bdinln

|

Fig. 4. Stability regions of the second order methods with an extended stability interval
and their damped versions (¢ = 0.05) for k=4, ..., 13
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The relative error estimation is defined as

-1
{J’Enpl k }j - {yEanr k] }j
= : (10)
‘{ykplk} | + atol
J
where atol is the value of the required absolute error. It is added to the absolute value of the vector components

to avoid close to zero values in the denominator.
If the inequalities

rerr = ||r|

aerr < atol, rerr < rtol, (11)

where rtol is the required relative error, are satisfied, then the value y£np 1 « 1s considered as accurate enough.

Formulas (9)—(11) can be easily generalised for the case when ato/ and rtol are vector values. To do this, in
expressions (9) and (10) it is necessary to replace the norm by the vector of the absolute values of the compo-
nents, and the inequalities (11) should be generalised to the case of the vector values.

We mainly used the damped version of the method with p =4, k=21 as the main method in our implemen-
tation (see fig. 2 and 3). This method is quite simple to obtain and damp and it has 20 times larger stability
interval than the classical fourth order Adams method. If'it is necessary to get a larger stability interval, it might
be better to reduce the order p instead of increasing k. The coefficients of this method are presented in table 1.
The error constants of some fourth order methods are given in table 2.

Initially, it seems natural to choose an assistant method with approximately the same stability interval as the
main method, for example, p = 3, k = 14 (see fig. 1). But in practice, better results were obtained using the classi-
cal explicit Adams method of order p — 1 as an assistant one. This can be explained by the fact that the result of
the assistant method is not used in the next step, so its instability does not affect the process too much.

Table 1
Coefficients of method with an extended stability interval
and its damped version with p =4, k=21
B
C,v
Initial method Damped method
—0.014543302409352176 | —0.012505757070276 544
~0.03737276745690795 | —0.032789411451952875
~0.043406 196086467105 | —0.039488125649616054 | (g3,
—0.027486 149404601503 | —0.02710756840223853
0.008252769527671221 | 0.0036421767862354817 | 0-0384
0.05453741374197281 0045478507054 11257 0.0507
0.097209 19562192801 0.086 121595255923 64 0.044
0.121058 6278993817 0.111500997 408 773 63 0.0154
0.114285 854014006 83 0.10982066523723678 0.0075
0.072422109 1964963 0.07419621656392267 | —0-0041
0.000623683 1645298625 | 0.009440996312261642 | —0-0016
~0.08639627884825268 | —0.07003394385450419 | —0-0018
0.16697807707346646 | —0.14742963889853627 | 0-0021
~0.21721908002973 ~0.2026743067641012 0.0015
~0.2167683834965075 ~021239613275673438 | 00018
0.1543689556363484 ~0.16305576404555994 | —0-0029
~0.03176697227076077 | —0.049724157 17264737 0
0.135099815930591 2 0.114121239098021 19
0318153574 5819823 0.305707 490985957 0
0.482259056 075009 85 0.483 881120483 0822
0.592404062 958 8244 0.613293 8008806402
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Table 2

Error constants of the fourth order methods
with an extended stability interval
and their damped versions

k Initial method Damped method
21 942113 88.2036
17 41.4624 39.1333
13 14.8998 14.196
9 3.8788 3.7303

Increasing the grid step size. In the cases of sufficiently small errors aerr and rerr it makes sense to
increase the step size T of method (2). In contrast to one-step methods [5, chapter II, section 11.4], changing
the step size T by an arbitrary factor causes serious computational difficulties (see also [3; 4; 6]). To simplify the
process of updating the grid, we introduce the constant

CW

. T
irate = —r:c ,

where T, is the step size after the increasing (fig. 5).

new

- ° . ° - ° - ° £ . L 2 1 .-

@ o0& o S0 @ & o S0 @& o5& o S+ &

® Initial grid @ Grid after increasing the step size

Fig. 5. Increasing the grid step size in the cases

irate =2 (top), irate = % (middle) and irate = % (bottom)

After increasing the grid step size, the density of nodes decreases, but their number must still be at least &
to calculate the next value of the solution by the formula (2). We will store a grid of nodes of size

gsize = I_irate(k - 1) + 1_'

to avoid extrapolation. It allows to calculate £ nodes of the increased grid by the interpolation polynomial and
continue solving using the formula (2) with the new step size T, .

We used the Hermite interpolation polynomial in our implementation. For methods with p < 3, the well-
known formula
VitV o1

. k
+—(f1—z+ﬁ_1), l=m+ k-3], J:(),L‘”’{E_lJ’

5 2 8

N w

. . . . 3 .
is enough to find the values of the missing nodes in the case irate = =. For higher order methods we used the
more accurate formula 2

+ _—
512 512

y 3= (35 +81f_,-81f_,—3f),

N | W

I=m+k-3j, j=0,1,..., {%—IJ.
Naturally, we have to completely fill the grid with solution values before the next increment. It is reaso-

nable to choose a method with irate - (k—1)e N to reduce the computational costs when grid values with an
increased step size are calculated.
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Suppose that the value irate is chosen. If at some moment the number of stored solution values is less than
gsize (for example, at the very beginning or immediately after increasing the grid step size) then it is not possible
to increase the grid step size. If the entire grid is completely filled, in addition to inequalities (11) the condition

rtol

aerr < atol rtol <o
irate” irate”
should also be checked. If it is satisfied, we calculate the missing grid nodes with an increased step size T,
and store them into a separate array. Then we find the next value of the solution using formula (2) and check
its accuracy using inequalities (11). If they are satisfied, we change the old grid with step size T to the new one
with step size T,.,, and continue calculating with this step. If inequalities (11) are not satisfied, we discard the so-
lution value obtained with step size 7,..,, and continue applying the method with step size T.

, 0<o<l,

In our implementation we take irate = > o =0.9.

This implementation already works quite well, but it can be further improved. Consider the situation when
the errors aerr,, , , and rerr,, , of yEnp-;kl] still satisfy conditions (11) but at least one of them have become larger

than aerr,, , ., and rerr, . ., respectively. This could happen for three reasons:

1) the error of integration of the function f has increased;

2) one or more eigenvalues of the Jacobian matrix went out of the stability region;

3) there were roundoff errors while calculating aerr and rerr.

In the first two cases, we should avoid the step increase during the next iprhb steps. In practice, it turned out
that in the case of double precision numbers, a simple check

—15 —-15
aerr,,  , —aerr, ., _, <3-107°, rerr,  , —rerr, ,_,<3-10 (12)

is sufficient to handle the third case. If at least one inequality in formula (12) is not satisfied, we disallow the
step size increase for the next iprhb = 13 steps.

Decreasing the grid step size. If at some moment at least one inequality in formula (11) is not satisfied,
then the grid step size must be reduced. As in the case of increase, we introduce the constant

drate = ,
. . . new
which is presented in fig. 6.
— g . - @ - @ - = -
— g o @ .- &—o & @
® [nitial grid @ Grid after decreasing the step size

Fig. 6. Decreasing the grid step size in the cases drate = 2 (top), drate =§ (bottom)

. . 3
In our implementation we take drate = 5>

The values at the missing nodes can be found using the formula

5 64 4 T
=— +— +—y, +—|4 + 64 -8/,
);‘é 81)/172 81)’171 27)’1 243( Ji-a Jio fl)
4 64 5 T
=— + — +—y, +—|(8 — 64 —4f1),
)’l_g 27)*1—2 81J/1—1 81)’1 243( Jioa Ji- fl)

I=m+k—-2j, j=0, 1EJ

Implementation details. The proposed damped explicit multistep methods were implemented in C. The main
features of the implementation have already been described, so here we add only a few details.

The first £k — 1 grid values were found using the one-step method RADAUS (see the Internet page www.uni-
ge.ch/~hairer/sofiware.html). Grid values y,, and f,, of length gsize are stored in a circular queue. Pointers
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to the oldest element in the queue (begin), to the element from which the calculation begins according to
formula (2) (front), and to the last added element (back) are stored separately. There are always exactly
k elements between the front (inclusive) and back (inclusive) elements. Between the begin (inclusive)
and back (inclusive) elements there can be from k (at the very beginning or immediately after increasing the
step size) to gsize elements (the grid is completely filled). Elements are never completely removed from this
queue, currently unnecessary elements are simply moved to the end of the queue (after the back element).
Elements from the outside are never added to this queue, the usage of free (located between back and begin)
elements is always enough. The projects are compiled with Intel Fortran Compiler Classic 2021.4.0 and Intel
C++ Compiler 19.2.

Numerical experiments

All methods implementations to compare with our method were taken from the Internet page www.uni-
ge.ch/~hairer/software.html. The damped method with p =4, k=21 will be denoted as SA4-21. The parameters
rtol and atol are equal in all cases. The following tables will provide the statistical data about the performance
of the considered methods. We use the following notation:

* rerry, is the final relative error compared to a more accurate model solution;

s aerry, 1s the final absolute error compared to a more accurate model solution;

* fen is the number of function evaluations;

* step is the number of the computed steps;

* accpt is the number of the accepted steps;

* rejct 1s the number of the rejected steps;

* time is the elapsed time (ms).

DOPRIS is an explicit one-step Dormand — Prince method of fifth order [7]. Initially this method was not
intended for solving stiff problems. But in work [2, chapter IV, section IV.10] it was shown that it can be suc-
cessfully applied to middly-stiff systems.

ROCKA4 is an explicit one-step fourth order Chebyshev method [4]. This method was created for stiff prob-
lems which possess a Jacobian matrix with (possibly large) eigenvalues close to the real negative axis.

RADAUS is an implicit (unlike all the others) one-step method RadaullA [2, p. 74]. It is impossible to directly
compare the statistics of explicit methods with it, it is listed as a classical method for solving stiff systems.

HIRES. This is a classical midly stiff test system of dimension 8 describing a chemical reaction [§]. The in-

terval of integration is [0, 321.812 2] (table 3) and [0, 421.812 2] (table 4).

Table 3
Numerical experiment results for the HIRES problem, 7, =321.8122
Method atol rerry, aerrg, fen step acept rejct | time
1-10° | 7.16-10°° | 447-10° | 13766 12 774 12 745 29 3
1-10° | 7.03-10° | 438-10" | 19080 | 17132 | 17069 | 63 | 4
SA4-21 — - —
1-10 2.51-10 1.57 - 10 22517 20 811 20 756 55 4
1-10"2 | 246-107° | 1.54-107"2 | 41523 40 359 40 302 57 8
1-10°% | 237107 | 1.48-107 | 62504 10 417 10416 1 2
1-10% | 8.17-107 | 2.33-107 | 62840 10 473 10 473 0 2
DOPRI5 — —~ —
1-10 1.02-10 29-10 65 366 10 894 10 894 0 2
1-10" 1 1.07-10° | 3.05-10" | 79340 13 233 13 233 0 3
1-10° | 323-10° | 2.01-107 | 11628 873 812 61 1
1-10°% | 924-10° | 2.63-10° | 19931 2071 1928 143 1
ROCK4 — ~ —
1-10 7.82-107 | 3.09- 10 35410 4842 4632 210 1
1-1012 ] 328-10" | 1.59- 10 | 69873 11253 11102 | 151 2
1-10°% | 1.01-10° | 1.48-107 491 60 53 7 <1
1-10% | 1.10-10° | 6.89-10°8 820 100 97 3 1
RADAUS5 — —~ —
1-10 5.89-10° | 3.68 - 10 1655 197 197 0 1
1-10"2 | 488-107 | 1.8-10" 3291 414 414 0 1
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Table 4
Numerical experiment results for the HIRES problem, 7, = 421.8122

Method atol rerrg, aerry, fen step acept rejct | time
1-10° | 1.08-10" | 1.52-107" | 14290 13 288 13259 | 29 3
1-10° | 1.28-10° | 1.64-10"2 | 19962 | 17916 | 17851 | 65 4
sAdl 1-10"° [ 2.01-10"° | 25810 | 24602 | 22816 | 22761 55 5
1-10" [ 7.19-102 9231075 | 47226 | 45953 | 45895 | 58 9
1-10° | 401-107° | 1.98-107 | 64406 10 734 10 733 1 2
1-10% | 292-10° | 1.45-107° | 64736 10 789 10 789 0 2
DOPRI5S | 1-10" | 2.88-107 | 1.42-10" | 67436 | 11239 | 11238 1 3
1-10"2 | 84-10° |4.16-10"7 | 82142 13690 | 13689 1 3
1-10™ [ 9.08-10" | 449-107"° | 149588 | 24931 | 24930 1 5
1-10° | 552-10° | 6.22-10° | 11967 909 844 65 1
1-10% | 1.58-10°° | 2.07-10° | 20312 2110 1966 144 1
ROCK4 | 1-10" | 1.57-10° | 2.04-10" | 36251 4958 4748 210 1
1-10"]2.06-10" | 264-10" | 72180 | 11617 11466 | 151 2
1-10™ [ 3.82-10" | 49-10"° | 168592 | 28285 | 27083 | 1202 | 6
1-10° | 6.65-107 | 8.54-107" 542 66 59 7 <1
1-10° | 2.78-107 | 3.57-107" 915 111 108 3 1
RADAUS | 1-10" | 493-10° | 632-10"2 | 1839 219 219 0 1
1-10" | 1.81-107 | 23310 | 3661 460 460 0 1
1-10" [ 3.02-10"° | 3.87-10" | 7271 977 977 0 2

It should be noted that the required and actually obtained errors for some methods are very different. This
fact should be taken into account when comparing statistics.

Unlike one-step methods, reducing the grid step size always causes a rejected step, so in some cases the
number of the rejected steps is quite large.

Burgers’ equation. The second problem is taken from work [4]. The spatial derivatives are approximated

by standard central finite differences, the discretisation step is Ax = 00 so the dimension of the resulting or-

dinary differential equation is 500. We took p = 0.005 and the integration interval is equal to [0, 2.5] (table 5).

Table 5
Numerical experiment results for the Burgers’ equation
Method atol rerrg, aerry, fen step acept rejct | time
1-10° [ 2.82-10"° | 6.08- 107" | 4912 4744 4741 3 29
1-10°% | 2.54-10"° | 5.65- 107" 4713 4544 4542 2 28
SA4-21 10 10 11
1-10 2.69 - 10 4.55-10 4996 4826 4825 1 30
1-102 [ 588-10" | 9.16-10" | 9273 9036 9032 4 54
A3 1-10° | 409-107 | 6.72-107 3204 3045 3043 2 17
) 1-10° | 1.59-107 | 2.44-10° | 4305 4144 4144 0o | 23
1-10° | 1.1-10° | 1.84-107 | 22784 3797 3794 1 25
1-10% | 1.1-10° | 1.84-107 | 22790 3798 3795 1 25
DOPRIS —10 —10 —11
1-10 5.75-10 9.62 - 10 22 814 3802 3798 2 25
1-102 1394102 | 6.42-10" | 22868 3811 3807 2 25
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Ending table 5

Method atol rerry, aerrg, fen step acept rejct | time
1-10° | 1.48-103 | 7.59-10°° 1748 76 71 5 2

ROCKA 1-10% | 296-10° | 1.38-10° 2059 105 104 1 2
1-10° | 1.85-10° | 6.62-107° | 3407 231 231 0 3
1-10"% [ 433-10" | 231-101% | 7537 835 835 0 7
1-10% | 27-10° | 3.14-107 145 22 22 0 2

RADAUS 1-10° | 1.28-107 | 1.42-10°° 255 39 39 0 3
1-10° | 2.69-107° | 3.18-107"° 520 76 76 0 5
1-10"2 | 807-10" | 1.19-10" 1104 159 159 0 9

The stability region of the SA4-21 method is not enough in the case of low required accuracy. The SA3-21
method has a 1.5 time larger stability interval and works slightly better in these cases.

Conclusions

Based on the experimental results obtained, we can conclude that the stabilised explicit Adams-type methods
of higher orders with damping can be useful in solving middly-stiff differential systems with real (or close to real)
eigenvalues of the Jacobian matrix. If it is possible to improve the algorithm by adding to it an adaptive choice of
parameters p and 4, in some cases it can become the optimal variant, due to the smaller number of the right-hand
side evaluations.
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