
72

Журнал Белорусского государственного университета. Математика. Информатика. 2023;1:64–75
Journal of the Belarusian State University. Mathematics and Informatics. 2023;1:64–75

Suppose that the value irate is chosen. If at some moment the number of stored solution values is less than
gsize (for example, at the very beginning or immediately after increasing the grid step size) then it is not possible
to increase the grid step size. If the entire grid is completely filled, in addition to inequalities (11) the condition

aerr atol
irate

rtol rtol
iratep p≤ ≤ < <w w w, , ,0 1

should also be checked. If it is satisfied, we calculate the missing grid nodes with an increased step size τnew
and store them into a separate array. Then we find the next value of the solution using formula (2) and check
its accuracy using inequalities (11). If they are satisfied, we change the old grid with step size τ to the new one
with step size τnew and continue calculating with this step. If inequalities (11) are not satisfied, we discard the so
lution value obtained with step size τnew and continue applying the method with step size τ.

In our implementation we take irate = 3
2
, ω = 0.9.

This implementation already works quite well, but it can be further improved. Consider the situation when
the errors aerrm + k and rerrm + k of ym k

p
+
−[]1 still satisfy conditions (11) but at least one of them have become larger

than aerrm + k – 1 and rerr m + k – 1 respectively. This could happen for three reasons:
1) the error of integration of the function  f  has increased;
2) one or more eigenvalues of the Jacobian matrix went out of the stability region;
3) there were roundoff errors while calculating aerr and rerr.
In the first two cases, we should avoid the step increase during the next iprhb steps. In practice, it turned out

that in the case of double precision numbers, a simple check

	 aerr aerr rerr rerrm k m k m k m k+ + −
−

+ + −
−− ≤ ⋅ − ≤ ⋅1

15

1

15
3 10 3 10, 	 (12)

is sufficient to handle the third case. If at least one inequality in formula (12) is not satisfied, we disallow the
step size increase for the next iprhb = 13 steps.

Decreasing the grid step size. If at some moment at least one inequality in formula (11) is not satisfied,
then the grid step size must be reduced. As in the case of increase, we introduce the constant

drate = t
tnew

,

which is presented in fig. 6.

In our implementation we take drate = 3
2
.

The values at the missing nodes can be found using the formula

y y y y f f f

y

l l l l l l l

l

− − − − −

−

= + + + + −()

=

2

3

2 1 2 1

4

3

5

81

64

81

4

27 243
4 64 8

t
,

44

27

64

81

5

81 243
8 64 4

2

2 1 2 1y y y f f f

l m k j j

l l l l l l− − − −+ + + − −()

= + − =

t
,

, 00 1
2

, , , .… 




k

Implementation details. The proposed damped explicit multistep methods were implemented in C. The main
features of the implementation have already been described, so here we add only a few details.

The first k – 1 grid values were found using the one-step method RADAU5 (see the Internet page www.uni­
ge.ch/~hairer/software.html ). Grid values ym and  fm of length gsize are stored in a circular queue. Pointers

Fig. 6. Decreasing the grid step size in the cases drate = 2 (top), drate =
3

2
 (bottom)

