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G-CETb KAK CTOXACTNYECKAS MOAEAD
CETHU ITEPEAAYUN AAHHBIX

T. B. PYCHJIKO"

DI poonencruii 2ocyoapemeennviii yrusepcumem um. Auxu Kynano,
yn. Oocewiro, 22, 230023, 2. I poono, benapyce

HCJ’ILIO CTaTbU ABIISICTCA MATEMATHYCCKOC MOACIUPOBAHUC CCTU NIEpeAainu NaHHBIX, COCTO?[H.[Cﬁ N3 OKOHCYHBIX
YCTpOﬁCTB, COCIMHCHHBIX YCTpOﬁCTBaMH MapaipyTu3aliui U KaHaJlaMU Mepeaadn JaHHbIX. B kagecTBe cTOoXacTHueckoit
MOZCIN MpeAjiaracTcs UCIoJb30BaATh 3daMKHYTYHO 3KCIIOHCHIINAJIBbHYHO G-ceTh MaccoBOro O6C.]'Iy)KI/IBaHI/IiI C O,I[HOHHHCﬁ-
HBIMHU Yy3JlIaMHU, B KOTOpOﬁ HUPKYIIUPYIOT NOJIOKUTCIIBHBIC 3aIBKA U CUT'HAJIBI. MOZ[CJ'IL HcCIeAyeTCs B aCUMIITOTUYCCKOM
cjry4dac 1npu OOJIBIIIOM YHCIIE 06pa6aTLIBaCMLIX 3asBOK. HpI/IMeHHeMHﬁ MaTeMaTH4deCKUA noaAXod MO3BOJIACT paCCYUTATh
OCHOBHBIC CTATUCTUYICCKUC XaPAKTCPUCTUKN MAPKOBCKOIO IMIPOIIECCa, ONMUCHIBAIOIICTO COCTOSIHUC MOACIIH, 4 TAKIKE aHAJIN-
THUYCCKU BOCCTAHOBUTL €0 HOPMAJIbHYIO q)yHKLII/IIO TIJIOTHOCTH pACIPEACICHUA BepOﬂTHOCTef/‘I Ha OCHOBC METOAA rayccoBa
HpI/I6JII/I)K6HI/I$[. PCSyJ'IBTaTBI Hucciea0BaHusaA MOIryT OBITh ITOJIE3HBI JUIA pacdeTa IoKa3arelei MIPOU3BOAUTCIBHOCTU CETU
nepeaain IaHHbIX KaK B IEPEXOAHOM, TaK U B CTAHUOHAPHOM PCIKUME, 4 TAKIKC AJI MPOCKTUPOBAHUA U ONTUMHU3AIIUN
cereit nepeaain 1aHHbIX.

Knrwouesvie cnosa: G-cetp; ceTh nepeiadn JaHHBIX; CETh MACCOBOTO OOCITY>KHBAHUS;, aCHMIITOTHIECKUI aHAIN3; rayc-
COBO MIPHUOTIKEHUE; MaTEMaTHIECKOE MOJICTTUPOBAHUE.
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The primary objective of this paper is the mathematical modelling of a data network consisting of terminal devices
connected by routing devices and data links. A closed exponential G-network of single-server queueing nodes with posi-
tive requests and signals is used as a stochastic model. The model is studied in the asymptotic case of a large number of
requests being processed. The mathematical approach used makes it possible to calculate the main statistical characteris-
tics of a Markov process describing the model state, as well as to reconstruct analytically its normal probability density
function based on the Gaussian approximation method. The results of the study allow us to analyse the data network
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Introduction

To date, the development of technology has led to the widespread use of systems that provide parallel and
decentralised data processing. Examples of such systems are multiprocessor devices, distributed databases, grid
systems and data networks. A characteristic feature of these systems is the set of incoming tasks that are quite
simple to process. These tasks come to the system nodes, requesting resources for processing. The required
transformations are performed using resources, after which the task is considered completed and the resources
are released. Due to the peculiarities of such systems, it is necessary to create new and modify existing methods
for their analysis and for solving the problems of increasing their efficiency.

The transfer and processing of data is the field of activity of a large number of companies. Network systems
and data processing applications are ubiquitous, so the study of the functioning of these systems is relevant.
Various mathematical models can be used for research, including models belonging to the queueing theory.
Queueing networks are effective mathematical models for studying discrete probabilistic systems with a net-
work-like structure. A queueing network is a collection of interdependent queueing systems (nodes) that pro-
vides transfer and processing of requests. The object of investigation in this paper is a stochastic data network
model in the form of a G-network.

G-networks are generalised queueing networks of queueing nodes with several types of requests: positive
requests, negative requests and, in some cases, triggers. Negative requests and triggers are not serviced, so
they are identified as signals. When a negative request arrives at a node, one or a group of positive requests
is removed or «killed» in a non-empty queue, while the queued trigger displaces requests and moves positive
requests from one node to some other node. G-networks were first introduced by E. Gelenbe and have been
studied in a steady state since the 1990s [1-3]. Their field of application is modelling computing systems and
networks, evaluating their performance, modelling biophysical neural networks, pattern recognition tasks
and etc. [4—7]. More details on the practical use of G-networks with signals are described in work [8].

The purpose of this paper is the mathematical modelling and efficiency analysis of the data network using
a closed exponential G-network with signals. An asymptotic analysis of the model is carried out, which implies
an approximation method of the queueing network study under the assumption of a large but limited number
of requests [9—11]. The mathematical approach used in this article is based on a discrete model of a continuous
Markov process and the theory of diffusion approximation of a Markov process [12; 13].

Model description. Formulation of the problem

The focus of this paper is the data network consisting of terminal devices, connected by routing devices and
communication channels (data links). The function of terminal devices is the transfer and reception of data, as they
are communication endpoints. Each terminal or routing device has many inputs and outputs. Each of the commu-
nication channels has one input and one output, which are connected to the inputs and outputs of the devices:
they provide data transfer. Data are transmitted over the network in the form of discrete packets. The bandwidth
of data links is limited. Network devices and channels process data packets at a limited rate.

In general, a payload (information useful to the user), a malicious code (malware) and a service information
can be transmitted over data networks. By service information we mean commands that provide load balancing
between devices. The load balancing is the process of distributing a set of packets over a set of network units,
with the aim of making their overall processing more efficient and avoiding overloading some units.

The problem of mathematical modelling of such a data network can be solved using a G-network with
signals. As a model of a data network, we will use a closed exponential G-network, consisting of n queueing
nodes S, i =1, n, and a fictitious request source S,. The node S, plays the role of an external environment.
Requests in the G-network correspond to data packets transmitted over the data network, positive requests are
assigned to payload, signals are assigned to malware and service information. Assume that K homogeneous
requests circulate in the G-network. Exponential single-server nodes S;, i =1, n, correspond to the terminal and
routing devices, as well as network data links. The fictitious system S, has K servers.

Each data packet can be in one of the following states corresponding to G-network nodes with the same
number:

o S, — the data packet is in an external environment outside the data network;

o S, — the data packet is in one of the devices or data links, i =1, ».

The transition of a request from the node S, to the node S;, i =1, n, corresponds to the arrival of a packet in
the network. The arrival request flow is divided into a flow of positive requests and signals. Requests arrive
from the outside following a Poisson process with the rate Ak, A, is the parameter, &, is the number of requests

in the node S,,. The probability of payload packet arriving at the time interval [t, t+ At] is Aoko po; AL + o(At),
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the arrival probability of packet containing malicious code or service information is A ko po;At +0(At), i=1, n,

Z ( Doi + Do; ) =1. A payload packet transfers from S; to S; without modification with the probability p; , trans-
i=1
fers from §; to S, as a packet containing malicious code or service information with the probability p;;, or leaves

n _
. oy + - . .
the network with the probability p,, =1—- Z ( P + Dy ), i, j=1, n
- J=1
All queueing nodes S, i =1, n, are single-server, the waiting buffer is unlimited. The service time of posi-
tive requests is exponentially distributed with the service rate ,, i =1, n. Requests are served according to the
FIFO rule (first in first out). Signals arriving at a node are not served by the node servers. A signal arriving at
the node §; either instantly moves a positive request from the system S; to the system S; with the probability g,;,

note that in this case the signal is called a trigger, or destroys a positive request located at the same node S; with
n

the probability g,,=1- Z g; and immediately leaves the network.

. j=1 . .
The state of this G-network at the time ¢ is represented by a random process

k(1)=(k (1), ky(1), ... K, (1)),

where £; (t) is the number of requests (data packets) in the node S; at the time 7, 0 < k; (t) <K,i=1n,te [0, +oo).

It is obvious that the number of requests serving in the G-network at the time 7is »_k,(¢)= K — k,(t). The al-
i=1

location of data packets according to possible states at the time ¢ fully describes the state of the data network

at that time. Accordingly, the allocation of requests by queueing nodes completely determines the state of the

G-network used as the data network model. Taking into account the above-described, the process k& (t) is a con-
tinuous-time Markov process on the finite state space.
Using the technique described in works [9—16], it is possible to derive a set of differential equations for the

main statistical characteristics of a random process k(t) in the asymptotic case of a large number of requests.

Asymptotic analysis of the network model

The discrete (discontinuous-state) Markov process & (t) is used to determine the state of the G-network
under study. In this paper, the passage to the limit from a Markov chain & (t) to a continuous-state Markov pro-
cess E_,(t) is considered. In contrast to discontinuous processes, continuous processes in any small time interval

At — 0 have some small change in the state Ax — 0. The mathematical approach used in this paper is based on
a discrete model of a continuous Markov process described in many books on the theory of diffusion Markov
processes (see, for example, [13]).
Theorem. In the asymptotic case of a large number of requests K the probability density function p (x, t) of
k(l) = [k] (t), kz(t), . k"(t)J provides that it is differentiable with respect to t
K K K K

the random process é;(t) =

: . . . . 1 .
and twice continuously differentiable with respect to x,, i =1, n, satisfies up to 0(82 ) where € = I the multi-
dimensional Fokker — Planck — Kolmogorov equation

ap(xa t) u 6 & 4 62
0 = —;a—%(/li (x, t)p(x, t)) + Ei,jzgl—ax,-axj (Bij(x, t)p(x, t)) (1)
with drift coefficients

A z)=xo(1 i z]x,)(pa,- i)+ [1— zxi]poj.qji _
i= j=

i=1

— w;min(x;, S)Zn:pi} (1 - G(xj )) + i 1 min(xj) 8)(19;- —Dji Sji) +
i

=1

+ Zn: ujrnin(xj, 8)]?;}%;‘

Jys=1
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and diffusion coefficients

yonfi-$ i)+ S £ e

i=1

1. min xl,g g ( ( )) ij rmn( 8)(pj+i+P];+5ﬁ)+

+ Z W min(xj, 8)p];'qsi’

Jys=1

B,(x, t)=—w,min(x, &) p; — [ Zx ]Po; q; +
+ uimin(xi, s)p,;qjo + Himin(xi’ 8)191‘;2‘1./3 -
s=1

p,; min Z Py — Z o min(x,, €) pj gy, i # J,

where §; is the Kronecker delta, i, j = I,_n
Proof. First of all, we consider all possible ways of changing the state of the Markov random process k (t)

i

. . . f_/% . .
in a small time Az. Let us introduce a n-vector of the form 7, =0,0,...,0,1,0,0, ..., 0 | and the Heaviside

function
1, x>0,
6(x)=1""
0, x<0.

As mentioned above, the process k (t) is a continuous-time Markov process on the finite state space. The as-

sumptions made in the model description determine that in the short time Az the Markov process k(¢) = (k, 1)
can make one of the following transitions:

e from the state (k -1, t) to the state (k, t+ At) with the probability

xO(K ~S k() + 1} P+ o(A),
i=1

that corresponds to a payload packet arrival from the node S, to the node S,, . |;
o from the state (k +1,, t) to the state (k, t+ At) with the probability

(K Zk ]pOIqIOAtJr

+pymin (k(6) + 1,1)( o + j (1= 8(; (1))t + o(A0),

which is possible when a packet containing malicious code arrives from the external environment S,, when
a payload packet is routed from S, to the external environment S, or when a payload packet is transmitted

as a signal from §; to the empty node S, i, j =1, n;
o from the state (k +1, -1, t) to the state (k, 7 + Ar) with the probability

[uimin(ki(t) +1,1)p; + xO[K - Zn:ki(t)JpaiqijJAt +o(At),
i=1

which is possible when a payload packet is transferred from the system S; to the system §; without modification
or when a signal (trigger) arrives from the external environment S, to S; and this trigger moves the payload

packet from S; to Sj, i, j=1L m
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e from the state (k +1,+1, t) to the state (, ¢ + Ar) with the probability

uimin(ki(t) +1, l)pl.;qjoAt +0(Ar),
which corresponds to the transfer of a payload packet from the node S, to the node Sj, i, j= I,_n, as malware;
e from the state (k +1+ 1 -1, t) to the state (&, 7 + At) with the probability

pimin(ki(t) +1, 1)171']_' q;, At + o(At),
when a payload packet moves from the node S, to the node S; as a signal (trigger) that moves the packet from S;
toS,, i, j, s=1,n;
o from the state (, t) to the state (k, 7 + Ar) with the probability

_{XO[K—ZIC J+Zplmm( )[1—1— Zpy ( ( ))]JAH— O(At)
i=1 i=1
which corresponds to no packets transfer;
e from other states to the state (k, t+ At) with the probability O(At).
With regard to the transitions listed above in the short time A¢, using the law of total probability, the follo-
wing set of equations is valid for the probability P (k t) =P (k(l) = k):

P(k—1;,1)=P(k, 1))+

det ul

Zx [K Zk

it
+Zxop0, (k—1,,1)+ [Z ( Zl )]po,q,o
(k+1;, ) = P(k, 1)) +
D) (20 + 25 (1- e(kj(l))))J x

P(k+1,,1) Zu,mm( ) ) py (P(k+1 =1, 1) = P(k, 1)) +

i,j=1

Z; mln( )(P;o +py (1 G(kj(t))))](
[Zkopol%o + Z W, (mm(k (1) +1,1) = min(k;(1),

i,j=1

+ Z w;(min (k;(¢) +1,1) = min (k;(¢), 1)) py P(k +1, = I, t ) +

ij=1

+ Z Ao [K—Zn:k,-(t)Jpa,-qy-(P(kui -1, ;) - P(k, t))+

2 ( )pqujo( (k+1,.+1j,t)—P(k,t))+

i, 1

Z: u, (min (K, (1) +1,1) - min(ki(t),1))p,;.qj0P(k+1,.+1j,z)+

+ Z w,min (& (1), 1) py g, (P(k+ 1+ 1= 1, 1) = P(k, 1)) +

i, j,s=1

+ z w; (min (k;(¢) +1, 1) = min(k,(2), 1)) pj g, P(k + 1, + 1~ 1, 1) 2)

i, j,s=1
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Data networks typically handle a large number of data packets. In connection with this, we proceed to the limit

-0 (40 50, 50

from the Markov chain k(t) to the continuous-state Markov process (¢ , s e
K K K K

-2

when K tends to be very large number. The state space of the relative vector &(# 1S

X:{ :(xl, Xy, ...,xn):x,.ZO, i=1, n, Zn:xiﬁl}.
i=1

The increment of &,(¢) in the short time Ar — 0 is Ax, = €, where & = 1 Ask— o, the increment of &,()
decreases, and in any small time interval Az — 0 the process &; (t) has some small change in the state Ax; — 0.
We can assume that the limiting distribution of ii(t) is continuous. The vector é(t) will be continuous-time

continuous-state Markov processes with a probability density function p(x, t). The probability density func-
tion satisfies the asymptotic relation

K”P(k, t)=K”P(xK, t) K—_}@)p(x, t), xeX. 3)

. - . . 1 1 .
Realising the passage to limit (3) for equation (2), assuming, ¢ =— and e, = ;¢ = —, we obtain the follo-
wing partial differential equation: K K

apr KZK {1—21‘]1’0:( x=ept)=p(x 1))+

i=1

+ Y Mopgip(x—e, )+ K[Zlo(l— inJpOiin +
i=1 i=1

Z; mln X, l (pl.o+pl].(1—9(xj)))J(p(x+ei, l)—p(x, t))+

2 9min(x;, s)(

+ Z%opolq,o +

i,j=1 i

Dio + Py (1 - O(xj )))p(x + e, t) +

+K Zn: w;min (x;, 1) p; (p(x+ e —e, t) - p(x, t))+

ij=1

anl 6m1nlx S)pyp(X+e )+KZX [I—ZxJpolqy( (x+e J,t)—p(x,t))+

i,j=1

u omin(x;, €
+ H; 8)(6. )

i,j=1 i

pl.;qjop(x +e +e, t) +

+K Zn: uimin(xi,l)pl;qjs(p(x+ei +te —e, t)—p(x, t)) +

i,j=1
omin (x; 8)

+Zpl

i,j,s=1 i

p,»jqjsp(x+ei +ej—es, t), 4

If p(x, t) is a twice continuously differentiable function with respect to x, then we can use the second
degree Taylor series of functions p(x te, t), p(x +te e, t), p(x +e+e, t) and p(x tet+e —e, t) at
apointx [9; 11]. Substituting the above-mentioned Taylor series into equation (4), having grouped the terms in
the resulting equation, we conclude that compact mathematical expression (1) is valid. The theorem is proven.
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Equation (1) is known as the multidimensional Fokker — Planck — Kolmogorov equation. The drift coef-
ficients Ai(x, t) characterise the rate of change of random process é(t) The diffusion coefficients Bij(x, t)

characterise the rate of change in the variance of the considered process &(t). Note that the drift and diffusion
coefficients depend linearly on x.

The main statistical characteristics
of a Markov process describing the model state

The probability distribution of the vector é(t) given by the probability density function p(x, t) is a com-

plete and exhaustive characteristic of the G-network state at the time 7. However, such an exhaustive charac-
teristic cannot be found, since equation (1) is not explicitly solvable. Therefore, instead of the probability

density function p(x, ), we will use an incomplete approximate description of a random process &(#) using
its moments. The probability distribution of a random process is usually characterised by a small number of pa-
rameters, which also have a practical interpretation. It is often enough to know what «average value» of i(t) is,
how far from this average value the values of &(z‘) typically are, and how the statistical relationship between
its components &,(¢) and & (¢) is characterised.

The minimum set of parameters by which an n-dimensional random process can be characterised is as follows.

1. The expected values E€, ()= vgl)(t), EE,(1)= v (1), ..., EE, (1) = vg)(t). Expectations are non-random
functions of the time that characterise the mean trajectories of the process components around which they are

grouped.
2. The variances D, (t), D&, (1), ..., DE,(¢). Variances are non-random functions of the time that charac-

terise the spread or dispersion of process realisations relative to the expectations.
3. The correlation moments

Ky(1)=E((& (1) - E&: (1)) (5, (1) - 2, (1)) =
= E(&(1)&;(r) - £&; (1) ME, (1) = v (1) v (1) v ().

They characterise the pairwise correlation of the components included in the vector &(t). The notation

vg.jl’ 1)(t) = E(ii (t)&,j(t)) is the mixed raw moment of the second order, i, j =1, n.
It was found [16] that the set of ordinary differential equations for the first-order and second-order raw
moments of the state vector elements &, (7) is

dv\W(r) dM (& (1 1
dt( ) _ (d;( ) ~4 (W)

v(.l’l) t \7)G; (1
d Udt( ): dM(ézfﬁ)‘i/( )) :M(E_,,»(I)Aj(i(f))) n (5)

+ M (2, (0)4,(5(0) + 2B, (VO (1)) i, =T

. . . 1
It is proven that the moments are determined with an accuracy of 0(82), where €= e from the set of

ordinary differential equations (5). The solution of set (5) with a certain initial condition, firstly, makes it pos-
sible to predict the mean and the dispersion of the number of data packets at each model state with time, and,
secondly, draw a conclusion about the correlation of the number of packets at different data network units with
time. These results are useful in decision making and network load analysis. They are applicable with a speci-
fied accuracy in both transient and steady state, this is a fundamental advantage of the used asymptotic method.

In this paper, we restrict ourselves to considering only the set of differential equations for expected values

vgl)(t), i =1, n, of the defined form
M)

T:ko Ll—ZvSl)(t)](p&- —P&) + 27‘0[1_
i=1 J=1 !

n

Vgl)(t)Jpoj‘qj‘i -
1

_ uimin(vgl)(t), a) ilpij(l - e(vf(‘l)(t))) i
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+ zn: b min(vj(.l)(t), s)(p; —Dji — 5,-;) + Zn: W, min("j('l)(t)’ S)PJ; 9si-
i jis=1

In the asymptotic case of large K, the Gaussian approximation method [13; 17] can be used to analytically
reconstruct the normal probability density function

P, )= (2n) 3 (det K (1)) 2 exp[—%(x V() K1) - v(l)(t))}

from the found moments of the process é(t) and to analyse this process using the normal density properties,

K'(t) being the inverse covariance matrix [18].

Numerical example

Consider the data network with a router to which two terminal devices are connected via two data links.
The mathematical model of this network will be the above-described G-network of four nodes (n = 4). Nodes
S, and S, are data links, nodes S; and S, are terminal devices, the external environment S, is a router. The struc-

ture of the G-network is set by the following non-zero elements of the transition matrices: pg; = 0.6, py; = 0.2,
Por =0.19, py, =0.01, p3 = 0.65, p;; = 0.01, p,, = 0.34, p;, = 0.02, p5, = 0.7, p,, =0.28, p3; =0.99, p;, = 0.01,
P, =0.01, ppy =0.99, g, = 0.97, ¢,y = 0.03, g5, = 0.95, g5, = 0.05, g3y =1, g, = 1.

Let the number of data packets not exceed K =100 000, and the network operation be specified by the
following parameters: the arrival rate is A, = 0.001; the number of node servers are m; =1, m, =1, my =1,
m, = 1; the service rates are p, = 10, p, = 10, py = 100, p, = 100; the initial placement of packets is vgl)(t) =0,

vW(0)=0,i,j=1,4.

Let us solve set (5) by numerical methods under the above initial condition. The figure shows a graphical
solution of set (5) for vgl)(t) and vgl)(t) + /DE (), which allows us to observe the dynamics of the average
relative number of packets at the node S, ant its variation.

The figure demonstrates that the process does not reach the steady state in the considered time interval.
At time ¢ = 30 000, the average number of packets at the node S, is KVEI)(I) =100 000 - 0.457 5=45 750.
It can be concluded that the efficiency of the data network is limited by the data link capacity modelled by the
queueing system S,. It is recommended to expand this data link, which is the network bottleneck. Similarly, we
can get the results for the rest of the network nodes.

0.2

v (), v(2) = JDE (1)

0.1

1 1 1 1 1 P

O 1 1 1 -
10 000 20 000 30 000 40 000
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The second-order moments found from set (5) allow us to investigate the correlation between the number
of requests in different network nodes with time:

IORAONAD
Vi () =i () vy (¢
(1) =r(& (7). &() =~ <
\/Dat(’)\/ng(t)
Thus, the calculation results can be useful in analysing and making decisions regarding the operation of the

data network with different parameters. Data network performance indicators and some revenues can be found
using mathematical methods for calculating the nodal characteristics of queueing networks [19; 20].

i, j=1n

Conclusions

In this paper, the queueing G-network with signals was presented as a stochastic data network model. Obvious-
ly, both payload and malware, as well as service information, can be transmitted over a data network. Thus,
a closed Markov queueing G-network is an appropriate mathematical model for a data network. Requests in
the G-network correspond to data packets transmitted over the data network, positive requests are assigned to
payload, signals are assigned to malware and service information. The model was studied in the asymptotic
case of a large number of requests. As a result, the main statistical characteristics of the number of requests
at each network unit were found in both transient and steady state. In particular, it is possible to investigate
the correlation between the number of requests in different network nodes with time. The presented technique

allows us to reconstruct the normal probability density function of the state process &,(1) based on the Gaussian

approximation method. These results allow us to analyse the network efficiency and load balancing, i. e. dis-
tribute incoming traffic between several devices to improve the stability of their operation.
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