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PaccMOTpeHBI OCHOBHBIC 3JIEMEHTBI MaTeMaTHuecKux Mozeseit JIMY, dhyHKIHOHUPYIONMX Ha 0a3e MepeUnCIICHHBIX aareop.
Onucanbl 0COOCHHOCTH TIPOTPAMMHOM peaji3auy CUMYJISITOpa CUCTEMBI Ha OCHOBE B3anMmozencTByronmx /MY, a takxke
MpeCTaBICHBI PE3yNBTaThl HCIOIB30BaHKS pa3pad0TaHHOTO HHCTPYMEHTAIBHOTO CPEICTBA ISt aHAIN3a JUHAMHUKH POIIECCOB
B paccMmarpuBaeMoii cucteme. B3anmHoe oOydeHne 1 0OMeH JaHHBIMU BBINTONHEHB! 11 ABYyX IMY Ha ocHOBe MpoToKoa
yHOpaBiIeHHs nepenadeil JaHHbsIX U MexcereBoro mporoxona (TCP/IP). HactyrieHue cOCTOSHUS CHHXPOHM3AIIUH CeTel
OTIpEIETISIETCS] PABEHCTBOM XeIlIei, KOTOpBhIe KayKasi U3 CTOPOH BBIYHUCISIET Ha 6a3e anroputMa 0e30MacHOT0 XEIINPOBAHUS.
Xermu pazmepoM 512 OuT reHepupyroTcs mpeodpa3oBaHUEM CTPOKOBOTO IPEICTABICHHS TEKYIIIET0 BXOTHOTO BEKTOpa BECOB
HelpoHoB. [IpuBeneHa oLeHKa yCTOWYMBOCTH ITpoliecca CMHXpoHu3auu JIMY k reoMeTpruuecKum arakaMm TPETbE CTOPOHBI.

Knouesvie cnosa: ueiipokpunrorpadus; ApeBOBHIHBIC MAIIMHBI Y€THOCTH; TUIIEPKOMIUIEKCHBIE YUCIIA; B3AUMHOE
0o0y4cHHUE ceTe.

bnazooapruocms. ABTOPBI BBIPAXKAIOT OJArofapHOCTh JUpekTopy MHCTHTYTa MareMaThky, HH()OPMATHKN U JIaH[-
madTHOTO Mu3aitHa JIFoOIMHCKOTO Karomudeckoro yHuBepcutera nMeHn Moanna [TaBna 11 gokropy Hayk M. IInoHkoB-
CKOMY 3a IPEIOCTaBICHHYIO UM HH(OPMALINIO, KOTOpast O3BOJIIIIA YITyUIINTh COIEPKAHUE CTATHH.
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Abstract. We analyse the features of the structural and functional organisation of two interacting neural networks based
on the known architecture in the form of a tree parity machine (TPM) using algebras of real and hypercomplex numbers.
Such machines are used as an alternative to the Diffie — Hellman algorithm to generate a shared secret cryptographic key
between two parties. The main elements of mathematical models of TPMs, operating on the basis of the listed algebras, are
considered. The features of the software implementation of a system simulator based on interacting TPMs are described,
and the results of using the developed tool for analysing the dynamics of processes in the system under consideration are
presented. Mutual learning and data exchange of two TPMs are realised based on the transmission control and Internet
protocols (TCP/IP). The synchronisation state of the networks is determined by the equality of the hashes that each party
calculates based on the secure hash algorithm. A hash size of 512 bits are generated by transforming the string representa-
tion of the current input vector of neuron weights. The effectiveness of possible attempts by a third party to synchronise
with two legitimate TPMs operating on the basis of algebras of hypercomplex numbers is assessed.

Keywords: neural cryptography; tree parity machines; hypercomplex numbers; networks mutual learning.
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Introduction

Two major problems associated with symmetric cryptography (storage and transport or agreement of keys
secret to a third party) stimulated the search for a new solution. A solution was found in the form of the famous
Diffie — Hellman (D-H) algorithm, which laid the foundation for public key cryptosystems [1]. But the mentioned
protocol, when used to agree on a shared secret key between two users, A and B, also has weaknesses associated
with certain types of attacks. As an alternative to the D-H-protocol, I. Kanter and W. Kinzel in 2002 proposed
solving the problem of generating and transmitting a shared key using two interacting neural networks (NNs),
called a tree parity machine (TPM) [2]. Mutual learning of networks means that the synaptic weights of two
TPMs (A and B: W and W*®) adapt to input (output) pairs according to certain rules. After the mutual learning
procedure, the networks form identical sets of weight parameters, which are accepted as a joint secret key.

However, as it turned out, when implementing the networks based on two TPMs, there is a multiplicity of
approaches, solutions and problems. All this is considered and analysed in an increasing stream of publica-
tions, the subject area of which combines cryptography and NNs — neural cryptography [3—9] — a relatively
new scientific direction, the name of which probably first appeared in paper [10], dedicated to the cryptanalysis
of data encryption standard (DES).

82



TeopeTuyeckne 0ocHOBBI HH(pOpMATHKH
Theoretical Foundations of Computer Science

TPM is a one-way three-layer network, the architecture of which is described by two parameters (fig. 1): the
number of neurons in the hidden layer (at level 2) K (K € N), and the number of input signals for each neuron N
(N eN) [2-9; 11-13]. Each hidden unit works as a perceptron with independent receptive fields, including N input
neurons and one output neuron.

Level 3

Level 2

A

Level 1
Fig. 1. TPM network architecture

At each step ¢ of mutual learning, two TPMs, A and B, use a common input vector X = {xw} (15u<skK
and 1<v< N, Xe{-1,1}""
€ {—L, -L+1,..., L}) in accordance with certain learning rules after exchanging the output signals (para-
meters) generated at this step: * and t®, or A8, A8 ¢ {—1, 1} and calculated in accordance with the formula

K
=[] 0., (1)
u=1

) and change (or not change) the eigenvector of weights W ={w,} (w,, €

where 6, € {-1, 1} and

o, =sign(a, )= sign((ﬁjil W, X, ], ()

taking into account that when a, = 0 the function sign (c,, ) can take one of two values: —1 or +1 (in accordance

with the accepted rule for training TPMs); in [5] a similar signum function is called «modified signum functiony.

The used rules and the duration of TPM synchronisation to obtain the same vector of weights (W* = W'®)
influence the security of this process, due to the possibility of implementing various types of attacks from the
third network (E) with a similar architecture. The goal of such attacks is to synchronise the weights of the at-
tacking network (W*) with the weights of one of the legitimate parties of the system (for example, network A)
[3; 5; 6; 11-17] to ultimately obtain the secret key generated by networks A and B.

The fundamental model of the TPM is based on the use of the algebra of real integers. At the same time, when
solving a number of applied problems, various extensions of real numbers are used — hypercomplex numbers,
which make it possible to describe the position of a point in a multidimensional space based on operations on the
vectors [18]. As is known, the simplest examples of hypercomplex numbers are imaginary and double numbers,
as well as quaternions. All arithmetic operations are performed on these numbers, on the basis of which the TPM
model is created. Taking this circumstance into account, in [5; 6; 12] the usage of complex and double complex
numbers was justified and analysed to quantitatively determine the parameters of the network synchronisation
process based on the TPM architecture. Such architectures are called a tree parity complex machine (TPCM) and
TP split-complex machine (TPSCM). In [19] the usage of quaternions (TP quaternion machine (TPQM)) is ana-
lysed. The TPM architecture based on complex numbers in [20] is called complex-valued TPM (CVTPM), and
the architecture based on quaternions in [21] is called quaternion-valued TPM (QVTPM).

The definitions of the signum function for TPCM and TPQM are justified and described in [5; 19-21].

There is a number of applied tasks that are solved based on NNs using octonion algebra [22-24]. Many
properties of octonions are similar to the properties of quaternions and complex numbers. But there is one
significant difference between these systems: while the multiplication of complex numbers and quaternions
has an associative property, this law does not hold for the multiplication of octonions. If we apply a weakened
version of the associativity of multiplication [18, p. 45], then octonions can also be used to TPM modelling.
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Similarity of the formal representation of hypercomplex numbers is presented in the form of expression
ay + ajiy + ayiy + ...+ ayi, 3)
where q, a,, ..., a, are arbitrary real numbers; i, i,, ..., i, are imaginary units and b € N, as well as the com-
monality of mathematical operations on complex numbers (b = 1), quaternions (b = 3) and octonions (b = 7),
make it possible to supplement the known TPCM and TPQM models with the TP octonion machine (TPOM) model
based on a common methodological position.

The presented paper describes the TPOM model, obtained on the basis of a generalisation of the known
results of using hypercomplex numbers for modelling a system of two TPMs, and also presents new results re-
garding the simulation of the TPMs interaction based on hypercomplex numbers and the transmission control
and Internet protocols (TCP/IP protocol).

Materials and research methods

Some features of the TPM models development based on hypercomplex numbers. The TPM architec-
ture, operating on the basis of a hypercomplex system of dimension (b + 1) in accordance with (3), is similar to
the architecture based on real numbers (see fig. 1). The changes are related to the methods for applying the lear-
ning rule for networks A and B and the signum function modifying. These changes are due to the fact that all
parameters of the network model (input and output quantities on fig. 1) are complex numbers (two-dimensional
system), quaternions (four-dimensional, R*) and octonions (eight-dimensional, R®). The indicated dimensions
correspond to the number of parts (1 — real plus  — imaginary) in the input vector X, the values of the weight
vector W, the hidden layer neuron output ¢ and the network output 7.

For example, when using the complex number C (we will represent the number C in the canonical form, slightly

modifying (3): C = a, + ia,) the perceptrons input consists of K N-element vectors X = {x Xyas ooes Xy } c

ul> us
(xMV )C = |:(a0 )x,uv + i(al )x, uvj| ?

c
often identified with a single KN-element vector X, = {xl, Xyy ey Xgy } ¢ of tetravalent complex numbers cho-
sen from the set {(1, 1), (-1,1), (-1, -1), (1, —1)}. And elements of the levels 1 and 2 (see fig. 1) are percept-

rons having N-element weights W, = {wul, W,ns ooes Wy } o

(4o =[ (@), + (@), | -

c
where 1 <u<K; (a,) o (@), €{-L, L+1,..., L =1, L}. These elements are limited by the range [-L, L]x

x[-L, L] or [-L, L]Z, which is a natural extension of the [-L, L]-range associated with classical TPM.

Following the above reasoning, we can write down the remaining mathematical expressions that fully de-

scribe the architecture of the TPCM, as well as the modification of weights (WA/B )C in the process of the A and B

uv

networks mutual learning. Using this approach, we shall now proceed to consider the TROM model.

TPOM architecture model. By analogy with a complex number, we write the octonion O in the canonical
form:

O=ay+aji+a,j+ ak+ al+ asm+ agn + a,p, “)
here a;, — a; e R.

Note that an octonion of form (4) is formally the sum of a real number a,, with a vector (imaginary part):
aji + a,j+ ask + a,l + asm + agn + a; p. From the algebraic point of view, the Cayley — Dickson numbers are
a set of eight-dimensional linear space over the field of real numbers. It follows that they can be represented as
eight-element vectors with real coefficients.

The elements of the input vector of the TPOM network, like the elements of the weight vector, are octo-
nions X, W48 0:

('xuv )0 = |:(a0 )x, uv + i(al )x,uv + j(a2 )x, uv + k(a3 )x, uv +

+ l(a4)x,uv + m(as )x,uv + n(a6 )x,uv + p((l7 )x,uv:|0’ (5)

(W”V )0 = |:(a0 )w, uy + i(al )w, uv + j(a2 )w, uv + k(a3 )w, uv +
v1(ay), ,, +mlas), .+ n(ag), ,,+ plar )W] . (6)

o
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In (5) (ao )x’uv, (a] )x,uv, (a2 )X,W, (a3 )x’w, (a4 )x’w, (a5 )x’w, (a6 )x’uv, (a7 )x’ w € {—1, 1}. Each of the KN-
elements of the input vector X, is an element of a set consisting of 28 different quantities:
{(1, LLLLLLL), (-LLLLLLLL), ., (1, -1,-1,-1,-1,-1,-1,-1), (-1, -1, -1, =1, =1, =1, -1, —1)}.
The constraint imposed on the values of the weight vector W, will be expanded to a set from the space
[-L, L] andin (6): (ap) ...

due to the fact that there is a one-to-one mapping between octonions and points of the space R®. The signum
function divides the plane into 16 disjoint subsets.

The normalised value (au ) o> corresponding to the inputs of the neurons u of the hidden layer, is calculated
by the formula (see formula (2) above, as well as [21, p. 2-3]):

o= | Sl M)l .. )

=1

(AN AN EYS 5 AN SN0 ) 0

o

(a,) e[-L, L]. This representation is similar to the previous constructions
7w, uv

The input of the neuron u of the hidden layer (Gu )0 determined via {1, -Li,—i, j,—j, k,—k, I, =1, m,—m,
n,—n, p, — p}:

(CHM =[(a0 )(su + (o )Gui +(a, )Guj + (a3 )Guk + (ay )G“l + (as )Gum + (a )Gu” +(a; )GMP} : ®)

o

In (8) (a, )G,, = sign(Re(ocu )0) = sign(R(ocu )o ); (a )Gu = sign(l(ocu )o ), v (g )c,, = sign(P(ocu )0) are
seven imaginary parts; all of the listed functions are defined in the same way as similar functions are defined
for the TPQM (QVTPM) architecture [21].

Following the reasoning used in [5; 20] for the analysis of TPM based on complex numbers (TPCM) and on
quaternions (TRQM), we conclude that the signum function for TPOM will divide the space R® of possible values
into 16 (2 - 8) disjoint subspaces. So, the function is defined in an eight-dimensional space, where only 16 (8 - 2)
finite quantities occur. These quantities play the role of attractors, attracting the closest points to them. And this
function can be defined like this:

(1,0,0,0,0,0,0,0), a, =max({aq;:0<i<7}) A a,20,
(-1,0,0,0,0,0,0,0), a=max({a,:0<i<7}) A a, <0,
(0,1,0,0,0,0,0,0), g =max({a;:0<i<7}) A a >0,
(0, 1000000) y =max ({a,:0<i<7})A <0,
(0,0,1,0,0,0,0,0), a2_max({a :0<i<T})Aa, 20,
(0,0,-1,0,0,0,0,0), @, =max({a, :0<i<7}) A a, <0,
(00010000) =max ({g;:0<i<7})Aa;20,
(0,0,0,-1,0,0,0,0), a3—max({a 0<i<T})Ara;<0,
(0,0,0,0,1,0,0,0), a, =max({a;:0<i<7}) A a, 20,
(0,0,0,0,-1,0,0,0), a, =max({a, :0<i<7}) A a,<0,
(0,0,0,0,0,1,0,0), a; =max({q;:0<i < 7}) A a5 > 0,
(0,0,0,0,0,-1,0,0), a5=max({ai:OSiS7})/\a5<0,
(0,0,0,0,0,0,1,0), ag =max({a,:0<i<7}) A a5 20,
(0,0,0,0,0,0,-1,0), a =max({g,:0<i<7}) A a5 <0,
(0,0,0,0,0,0,0,1), @ =max({g;:0<i<7}) A a; 20,
(0,0,0,0,0,0,0,-1), @, =max({a,:0<i<7}) A a, < 0.
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Taking this into account, the output of each of the perceptrons (level 2 in fig. 1) can be one of 16 Cayley
numbers:

{(1, 0,0,0,0,0,0,0),(-10,0,0,0,0,0,0), ..., (0,0,0,0,0,0,0,1), (0,0, 0, 0, 0, 0, 0, —1)}.
The output (‘CA/ B )0 of the TPOM networks is the result of using a formula that is an extension of (1) and (2)
and is based on the TPQM (QVTPM) model [21, p. 3]:

A/B A/B A/B b A/B = A/B
(), = {1 Rlelo®) 1ol (ol ool Trlelo) |
The limitation of the elements of the weights (WA/ B )0 occurs separately for each part of the octonion. For

example,

so() 1

( A/B )o otherwise,
(

o )

uv
( A/B )0 otherwise.

R((x®), > 2

R(w;;‘v“’ )O = (10)

) )

(11)

If, for example, the Hebbian rule is used for mutual learning of TPOM networks [4; 5; 11; 20], then the
modification of the weights at the step (t + 1), taking into account (4)—(11), will occur according to the follo-

wing expressions separately for the real and imaginary parts. In particular, to change the real part and the first
imaginary part of the weight, one should seize the expressions

R(Wl(lrvn))o g[ (ng)) + R(xwr(’) )0 ®(R(r(’) )OR(GuA(t)/B(r))O)®(R(TA(t))OR(TB(t))O)} (12)
1 (Wfff ) )0 = g[l (w,(,’v) )O + I(xwr(’) )0 @([(T(t) )Ol(cs;‘(’)“‘(’) )0 )@(I(r“(’> )OI(TB(’) )O ﬂ (13)

In (12) and (13), @(x) is the Heaviside function, which takes the value 0 for x < 0 and the value 1 in other
cases, g(x) is defined in the standard way (see (10) and (11)):

—L,if x<-L,
g(x)z L,if x>1L,
x, if |x|SL.

It is clear that with (a,) = (as )W = (ag )w = (a, )W ., =0(in (6)) and (ay )x " = (as )x = (ag )x "=
= (a7 )X » =0 (in (5)) the model and architecture TPOM turns into the TPQM, if additionally (az) =

= (a )W =0 and (ay )x = (a5 ))C » =0, then we get the TPCM model. ’

Results and discussion

Simulation of the NNs process synchronisation. To implement the considered mathematical models of
TPMs, operating on the basis of algebras of real and hypercomplex numbers, as well as to analyse and compare
the dynamic characteristics of the weights synchronising process of the corresponding NNs, a software tool
(RCQOv2) has been developed. The tool is based on the classes Simple, Complex, Quaternion and Octonion,
each of which implements the template class NumberSystemBase<T> and allows to perform mathematical
operations on the corresponding numbers. In turn, the basic structural component of each model is the Percep-
tron. It corresponds to the template class PerceptronBase<T>, which inherits the classes SimpleArithmeticPer-
ceptron, ComplexPerceptron, QuaternionPerceptron, OctonionPerceptron, the distinctive feature of which is its
own implementation of the weights normalisation method.

Unlike well-known TPM interaction simulators, the version we developed is focused on the exchange

of output data (rA ~-P®or®-1t ), as well as initialisation of the input message X' (at the synchronisation
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step #) via the TCP/IP protocol. This makes it possible to bring the simulated process closer to reality: two
subscribers agree on a common secret cryptographic key while being far away from each other. If the used
NN training rule at a certain synchronisation step ¢ allows us to conclude that the weights of both TPMs have
reached a state of equality (W™ = W®), then hash sums are formed from the string representation of W* and
W® using the SHA-512 algorithm, the exchange and comparison of which on each side provides for decision
making an unambiguous decision on the equality (inequality) of the generated weights.

Results of computer modelling and their analysis. The RCQOv2 application along with performing sin-
gle simulations of the TPM synchronisation procedure allows us to accumulate and process data obtained
from a series of experiments. Figure 2 shows an example (application window) with the results of 1000 ex-
periments — distribution of the number of successful synchronisations (represented in histograms by columns)
according to numbers of the required steps ¢ (vertical axis in the fig. 2), for the TPCM architecture with pa-
rameters: K =5, N=15, L = 5 (left side of the window); for comparison the normal distribution for networks
with the same architecture in relation to the same scale of the steps number until the moment comes when
WA =w?&, is presented (right side of the window).

55 Complex: K-N=5-5; W=-5,...,0, ..., +5 — (m] X
Data from research Data from approximation:
462 — 476 y 462 — 476 1
448 — 4627 448 — 462
434 — 448 il 434 — 448 ]
420 — 434 420 — 434 ]
406 — 420 ] 406 — 420 ]
391 — 406 ] 391 — 406
377 - 391 3 377 - 391 ]
3493630007 3 34936300 77
335-349 3 335-34910
321-335 = 321-1335 B
307 - 3213 307 - 3212
293 - 307 = 293 — 307 =
279 - 293 =2 279 - 293 ==
265 — 279 = | 265 — 279 = |
250 — 265 ] 250 — 265 E—
236 — 250 = a 236 — 250 2 |
222 — 236 222 — 236
208 — 222 5 — 208 —_ 222 4 e ——
180 194194—208_—— 194 — 208 ——
— i —————— 180 — 194 -
166 — 180 —————] 166 — 180
152 — 166 —————— 152 — 166 I _
138 — 152 138 — 152
124 =138, 09 1247 L R—
95-109 - 95— 109 1
81-95_ 81 — 95 ]
67 — 81 = 67 - 81 =
53-67 3 | | 53 - 67 == |
0 50 100 150 100

Statistic info
Average: 176.20511000709698
Standard deviation: 64.3147429991841
X + 3c: 369.14933900464928
Values in range (x — 3o; x + 35): 98.72
Approximated to: Normal (n = 176.205110007097, ¢ = 64.3147429991841)
Fig. 2. Experimentally obtained (left) and theoretical (normal, right) distributions

of the number of TPCMs to the number of steps until the moment comes
when W* = w® for 1000 simulations

In the lower part of the window at fig. 2 the calculated statistical parameters of the experimentally obtained
distribution are given. These statistical data as well as a simple visual comparison of the distributions at fig. 2,
indicate a fairly high degree of their similarity. It should be noted that 98.72 % of the observed data lies within
three standard deviations from the mean (three-sigma rule). The resulting distribution was approximated using
the method of moments by the Pearson criterion, provided that the experimental and theoretical values of the
mean and variance (indicated at the bottom of the screen on fig. 2) are the same.

To further evaluate the degree of similarity of the resulting distribution to the normal one, an estimate in the
form of distance or Bray — Curtis dissimilarity [25] was used. This characteristic is a statistic used to quantify
the dissimilarity between two different samples, and ranges from 0 to 1 (0 means complete agreement (simila-
rity), 1 means complete dissimilarity).
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Tables 1 and 2 contain some statistical results obtained by simulating the synchronisation process TPCMs
and TPQMs, respectively.

Table 1
Statistical results of simulations of the TPCMs synchronisation process
v || e | S | ot | g | S| B o
synchronisations

5 5 5 1668 1409 176.2 64.3 0.204

5 6 5 1000 944 186.1 65.2 0.185

6 5 5 1000 925 149.2 55.5 0.200

5 5 6 1546 1285 230.4 80.7 0.182

6 6 6 1079 1061 212.1 73.4 0.185

6 7 6 1000 993 227.4 76.2 0.180

7 6 6 1000 929 211.1 68.6 0.175

6 6 7 1000 972 318.6 162.0 0.254

7 7 7 1011 970 280.8 91.6 0.174

Table 2
Statistical results of simulations of the TPQMs synchronisation process
v || e | S | ot | g | St | B o
synchronisations

5 5 5 1357 1354 445.2 212.3 0.25

6 6 6 1070 1068 417.1 147.7 0.18

7 6 6 1000 1000 498.2 209.8 0.22

7 7 6 1000 1000 529.5 209.6 0.20

6 6 7 1000 999 656.5 272.1 0.21

6 7 7 1000 1000 708.9 273.1 0.19

7 6 7 1000 1000 858.5 385.8 0.23

7 7 7 1000 997 735.7 284.9 0.20

8 8 8 1000 999 780.7 273.6 0.19

9 9 9 1000 1000 1550.6 605.6 0.20

Similar results in the form of a histogram (fig. 3) and table form (table 3) are presented for TPM based on
octonion algebra.

Simulation of the TPOMs (N = 6, K = 6, L = £6) synchronisation procedure revealed the following: the
minimum number of steps until the moment of equality of weights vectors comes was approximately less than
1000 (in several dozen experiments), and the maximum number of steps was more than 15 000 (also in several
dozen experiments). For better visibility each scale number (t') on the horizontal axis in fig. 3 corresponds to
a range of width 450. Moreover, the starting point for the number of steps is 1122 (¢ =1122). Therefore, ¢t'=1
corresponds to the range ¢ =[1122,1571], ' =2 — ¢ =[1572, 2021], ..., £'=30 — 1 =[14192, 14 641].
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Table 3
Statistical results of simulations of the TPOMs synchronisation process
. . Number .
N | K | £L Simulations of successful t (average) Standard Bray — Curtis
number S deviation similarity index
synchronisations
5 5 5 1233 1231 1258.2 607.7 0.25
5 6 5 1000 1000 1760.5 827.1 0.22
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Ending of the table 3

Wl K [a | Smisons | orGiS | svergey | Sundond | By Curts
synchronisations
6 5 5 1000 1000 674.6 201.4 0.23
6 6 5 1000 1000 733.4 305.5 0.22
7 5 5 1000 1000 568.2 254.9 0.23
6 6 6 1168 1167 1604.6 711.7 0.23
5 5 7 1000 1000 12 698.3 6471.3 0.25
5 7 7 1000 997 12 923.6 5753.7 0.24
7 7 7 1000 996 5825.1 2779.1 0.23

o w & W o
S S S S S
T T T T T =

Number of successful synchronisations

—_
S
T

1 2345678 91011121314151617 1819 20 2122 23 24 2526 27 28 29 30

Number of steps

Fig. 3. Main part of the distribution of the number of TPOM (N = 6, K = 6, L = +6) in accordance
with the number of steps (¢') until the moment comes when W =w?" for 1168 simulations

We have received practical confirmation of an intuitive and expected pattern: with approximately compa-
rable parameters of the TPM networks (I, K, L), the transition from real numbers to quaternions is characte-

rised by an increase in the average process time until the equality of weights is established: W* = W5,

Probably the most important characteristic of the TPMs synchronisation process based on various algeb-
ras is the efficiency or success of third network (E) attacks, the peculiarity of which we noted above. Tab-

le 4 shows the parameter A =

tsynch / tleam’

equal to the ratio of the average synchronisation time of networks
A and B (¢, to the average synchronisation time of E and A (¢,,,,) with the same parameters N, K, L for

each network architecture when implementing a geometric attack, the features of which are described, for exam-

ple, in [3; 11; 13; 21].

Table 4
Parameter A for TPMs
using different algebras
Architecture Parameter A
TPM 0.33553
TPCM 0.10752
TPQM 0.01193
TPOM 0.00022
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As can be seen from the above data, the greatest influence on the duration of the synchronisation process has
synaptic depth L. However, we probably cannot conclude that with approximately the same parameters N, K, L,
the time characteristics of the interaction of NNs are in the same numerical range.

The latest results (see table 4) also mean that, the complexity of the used algebra provides a higher level
of system security. This is due to the fact that one of the main factors influencing the security of TPMs is the
dimension and number of possible states of network outputs (t). For example, in the classical TPM architecture
with parameter K = 3, for each output value there are four internal possible output values of the perceptrons (for

example, (1,1, 1), (-1, =1, 1), (1, =1, =1), (=1, 1, —1) for T = 1). In the TPCM architecture, the number of pos-
sible internal perceptron values per output value increases quadratically. For example, for K = 3 there are alrea-
dy 16 possible options (for example, (1, 1, 1), (-1, -1, 1), (1, =1, =1), (=1, 1, =1), (i, i, =1), (i, =1, i), (=1, i, i),

(=i, 0, 1), (=i, 1, 0), (i, 1, =), (i, =i, 1), (1, &, =i), (1, =i, @), (—i, =i, 1), (=i, =1, =i), (=1, =i, —i) fort=1 (for
simplicity, we used the canonical notation of complex numbers)).

Conclusions

The article discusses the most important features of mathematical modelling and computer simulation of
a secret information exchange system based on two interacting NN, the architecture of which is named as the
tree parity machine. The mathematical basis for the description and analysis of the processes in such a system
are hypercomplex numbers. On the basis of generalisation of TPM models for real and complex numbers, as
well as quaternions, a TPM model based on octonions has been developed (TPOM).

A feature of the presented research is the implementation of the simulator on different machines interacting
based on the TCP/IP protocol. The second distinctive feature is associated with determining the moment and
confirming the fact: the state of synchronisation of the two networks has arrived. After this, in the last steps of
mutual training of networks (based on the corresponding rule), each side calculates the hash of the current vec-
tor of weights and transmits this hash to the other side. Next, each party, by comparing the two hashes, makes
a final decision about the end and result of synchronisation. Hash equality means that the parties have achieved
an unconditional state of weights equality, which can be used as a joint secret cryptographic key.
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