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In 2020 F. Arzikulov and N. Umrzaqov introduced the concept of a (linear) local multiplier. They proved that every
local left (right) multiplier on the matrix ring over a division ring is a left (right, respectively) multiplier. This paper is
devoted to (linear) local weak left (right) multipliers on 5-dimensional naturally graded 2-filiform non-split associative
algebras. An algorithm for obtaining a common form of the matrices of the weak left (right) multipliers on the 5-dimen-
sional naturally graded 2-filiform non-split associative algebras A; and A3, constructed by I. Karimjanov and M. Ladra,
is developed. An algorithm for obtaining a general form of the matrices of the local weak left (right) multipliers on the
algebras A; and A; is also developed. It turns out that the associative algebras A, and A} have a local weak left (right)
multiplier that is not a weak left (right, respectively) multiplier.

Keywords: associative algebra; left (right) multiplier; derivation; local derivation; local left (right) multiplier.

Introduction

Associative algebras are classical algebras widely studied by specialists. Associative algebras turned out to be
related to other classical algebras, i. e. Lie algebras and Jordan algebras. The classification of finite-dimensional
associative algebras is one of the primary areas of modern algebra and, as is known, was first studied by B. Peirce.
The classification theorems for 4- and 5-dimensional associative algebras were proved by P. Gabriel [1] and
G. Mazzola [2]. The case of associative algebras of dimension <4 was discussed by O. Hazlett [3]. The most
classification problems for finite-dimensional associative algebras are studied to establish some properties of
associative algebras, while the complete classification of associative algebras is still an open problem.

The present article is devoted to weak left and right multipliers and their characterisation. Every derivation
is a sum of one weak left and one weak right multipliers. The results of the present paper allow us to study
derivation, in particular, to compute the dimension of the space of derivations of an associative algebra. The di-
mension of the space of derivations of an algebra is an important invariant in the geometric classification of
algebras and it has many applications in a number of scientific areas.

In this article, we also study local weak left and right multipliers of finite-dimensional associative algeb-
ras introduced in the work [4]. The notion of a weak left (right) multiplier is closely related to the notion of
a local derivation. The concept of local derivations goes back to the Gleason — Kahane — Zelazko theorem,
which is a fundamental contribution to the theory of Banach algebras. This theorem states that every unital
linear functional /" on a complex unital Banach algebra 4 such that F' (a) belongs to the spectrum G(a) of the
element a for every a € 4, is multiplicative (cf. [5; 6]). In view of the modern terminology, this is equivalent to
the following condition: any unital linear local homomorphism from an unital complex Banach algebra 4 to the
field C of complex numbers is multiplicative. Recall that a linear mapping 7 from a Banach algebra 4 to a Ba-
nach algebra B is called a local homomorphism, if for every a in A4 there exists a homomorphism ®,: 4 — B,
depending on a such that T (a) = d)a(a).

A similar notion was introduced and studied to characterise derivations on operator algebras. Namely, the

notion of local derivations was introduced by R. Kadison [7] and D. Larson, A. Sourour [8] independently of
each other in 1990. Recall that a linear mapping V of an algebra A4 into itself is a local derivation, if for each a

in A4, there exists a derivation D, on 4 such that D, (a)=V(a). R. Kadison proves that any continuous local

derivation of a von Neumann algebra into its dual Banach bimodule is a derivation. B. Johnson [9] generalises
the above result to prove that every local derivation of a C*-algebra into its Banach bimodule is a derivation.
Based on these achievements, many authors have studied the local derivations on operator algebras.

The work is structured as follows. In the introduction, we substantiate the problem discussed in this article,
present some previously obtained results and bring some basic notions necessary for explaining the results of
this paper. Further, in section «Materials and methods» we propose an algorithm for obtaining a common form
of the matrix of weak left multipliers on five-dimensional associative algebras lls and k; constructed in propo-
sition 4.3 of the work [10]. Then, in section «Results and discussion», we develop an algorithm for obtaining
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a common form of the matrix of local weak left multipliers on 5-dimensional associative algebras XS and XS
By the results, we conclude that the common form of the matrix of a weak left (right) multiplier on the asso-
ciative algebras l and k does not coincide with the common form of the matrlx of a local weak left (right,
respectively) rnultlpher on these algebras. Therefore, the associative algebras k and XS have a local weak
left (right) multiplier that is not a weak left (right, respectively) multiplier.

Materials and methods

Let 4 be an associative algebra. Let ¢: 4 — A be a linear mapping. If, for any x, y € 4, (p(xy) = (p(x) y
(9(»x) =yo(x)), then ¢ is called a weak left (right, respectively) multiplier. Let L: 4 — 4 be a mapping.
If there exists a € A such that L(x) = ax for any x € 4, then L is a weak left multiplier, i. e. every left multiplier
is a weak left multiplier. Such weak left multiplier we denote as L,,.

Theorem 1 [4]. Let A be a unital associative algebra, and let ¢: A — A be a weak left multiplier. Then ¢ is
a left multiplier.

Example 1. Let X (H ) be the C*-algebra of all compact operators on a separable infinite-dimensional Hil-
bert space H. For a€ B(H ), put L,(x)=ax(xe K (H)). Then L, is a weak left multiplier on K (H). But it is
not a left multiplier if @ does not belong to K (H )

Similar to a weak left multiplier we get the appropriate statements for a weak right multiplier. Let R: 4 — 4
be a mapping. If there exists a € 4 such that R(x)=xa for any x € 4, then R is a weak right multiplier, i. e.
every right multiplier is a weak right multiplier. Such weak right multiplier we denote as R,,.

It is clear that, every derivation D : A — A on an associative algebra 4 is a subtraction of the weak left multi-
plier D (x) y and the weak right multiplier yD (x) Similarly, every inner derivation D, : 4 — 4 on an associa-
tive algebra A is a subtraction of the left multiplier L, and the right multiplier R,. In this case L, (¢) = R, (e) for
the identity element e € 4. The following theorem is valid.

Recall that a linear map D : 4 — A is called an inner derivation, if there exists a € A such that D(x) = ax — xa
for any element x € 4.

Theorem 2 [4]. Let A be a unital associative algebra, and let D: A— A be a derivation. Then D is an
inner derivation if and only if there exist a weak left multiplier ¢ and a weak right multiplication \y such that
D=0¢-y. p(e)=y(e).

In the present article, a pure algebraic approach to the investigation of multiplier operators and local multi-
pliers on associative algebras is developed. For this propose we use a notion of local left multiplier on an associa-
tive algebra as follows: given an associative algebra A4, a linear map A: 4 — A is called a local left multiplier, if
for every x € A there exists an element @ in 4 depending on x such that A(x) =ax.

Theorem 3 [4]. Let A be an associative division algebra, and let \y be a local left multiplier on Mn(A).
Then vy is a left multiplier.

A linear map V: A — A is called a local inner derivation, if for any element x € 4 there exists an element
a € A depending on x such that V (x) =ax — xa.

Theorem 4 [4]. Let A be a unital division associative algebra, and let A : M, (A) — M, (A) be a local inner
derivation on M, (A) Suppose that there exists a local left multiplier ¢ and a local right multiplier \y such that
A(x)=¢(x) — y(x), xe M, (A). Then A is an inner derivation on M, (A4).

Proposition 5 [10]. Let 4 be a 5-dimensional naturally graded 2-filiform non-split associative algebras
of type u(l, 2) over an algebraically closed field F of characteristic zero. Then A is isomorphic to one of the
following pairwise non-isomorphic algebras, where the omitted products vanish:

€6 =&,
€€ = 6,
A dee,=ee =6, A ae=aa= %
e = es,
e,e = e,
e,e, = ese; = e;.

Results and discussion

Description of weak left multipliers of the algebras kf , k;. Let’s consider the following theorem.

Theorem 6. 4 linear operator on the associative algebra 7\,15 is a weak left multiplier if and only if the matrix
of this linear operator has the following matrix form:
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a, 0 0 0 0
a, a0 ay 0
31 a1 Gy G3g Gy | (1
a, 0 0 a, O

asy ag; 0 asy ayy

Proof. Let a=o,e + a,e, + ... + ases be an element of A;. Then we write @ =

s
Let L:A] —A; be a weak left multiplier on Aj, i. e. L is linear and L(xy)=L(x)y for any x, y €A{, and

5
M= (%) be the matrix of L. Then
=

L (a) =Ma.
We compute the components of the matrix M. By the multiplication table for kf and the definition of a weak

left multiplier, we have:

1) from L(elel)z L(e1 )e1 = L(ez) it follows that a,,e, + a, e, + a3 ,6; + a4 ,e, + as yes = ay e, + ay e +
+ ay,es,and, hence, a;, =0, a; | =a,,, ay 1 = a3,, 4, =0, ay; = as,;

2) from L(ee,)=L(e )e, = L(ey) it follows that a ;e, + a, 3¢, + as ze; + a, 3¢, + as ses = a; je;, and, hence,
a;=0, ay3= 0, dy3= 0, as3= 0, a1 =4dszz;

3) from L(eye;)=L(e,)e =L(ey) it follows that a ;e +a, e, +as 365 +ay 3¢, +asze5 = a1, +a ,e5 +
+ay 65, and, hence, @, 3;=0, a3 =a,,, a33=ay,, a;3=0, a;, = a5 ;=0;

4) from L(eze2 ) = L(€2 )e2 =ay,¢; =0 it follows that a; , = 0;

5) from L(ese; ) = L(ey )¢ it follows that a, ze, + a, 35 + a,3es = 0, and, hence, @, 3 =0, a,; =0, a,5 = 0;

6) from L(ee;, )

7) from L(ese;)=L(e,)e = L(es) it follows that a, se; + a, se, + a5 se; + ay s, + asses = ay 4€;, + ay 43 +

=L(ey)e, = 0it follows that @, 5e; = 0, and, hence, g, ; = 0;

+ ay 465, and, hence, a5=0,a,,=a,5, a4 =035, a4 5=0, ay 4= as35;
8) from L(e,e,) = L(e, )e, it follows that a, 4e; = 0, and, hence, g, , = 0;
9) from L(ese; ) = L(es )¢ =0 it follows that g, se, + a, se; + a, ses =0, and, hence, a,5=0, 4, 5=0, a, 5 =0,
a1 4=Y;
10) from L(ese, ) = L(es )e, =0 it follows that a, se; = 0, and, hence, g, 5 = 0.
As the result we get the following matrix:

>

This matrix coincides with matrix (1).
Now we prove that the matrix M defines 2 weak left multiplier on A;. Let a=a,e + a,e, +... + oses,

b=B,e + B,e, + ... + Bses be an element of A;. Then
a, 0 0 O 0 0
G a; 0 ay 0 By

L(ab) = Mab = a3,1 a2,1 al,l a3,4 a2’4 (X,IBZ + (1,2[31
a, 0 0 a, O 0

s dy 0 sy Ayy a4B
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0
a4
=1 ayo04P; + al,](G'lBZ + azBl) + a, 40P,
0
ay 40P + a 04B,
At the same time,
a1

Oy 10 + @y 10y + 4 40y

L(a)=| 3,04 + @y 0, + a0 + a3 40 + d; 40
Ay 10 + Ay 40y

Qs 0+ Ay 0y + A5 4004 + Gy 4Os

0
a1,10‘1[31

L(a)b =| ay,04P; + al,l(a1[32 + a2[31) + ay 40P |.
0

ay 40Py + a, 048

From this it follows that L(ab) = L(a)b for any elements a and b in ;.. Therefore, this common form of a mat-
rix is sufficient to the linear operator on Xf , generated by the matrix M, be a weak left multiplier on Xf . This
ends the proof.

The following theorem is proven similar to the proof of theorem 6.

Theorem 7. A4 linear operator on the associative algebra X; is a weak left multiplier if and only if the matrix
of this linear operator has the following matrix form:

a 0 0 a4 0
@) 4, 0 a4 A4
a; a) a3 a3 4 as s . (2
a33— ap 0 0 33— Q14 0
0 33—y 0 35— Uyy 33— 0y

Description of local weak left multipliers of the algebras A, A}. In the present article, a pure algebraic
approach to the investigation of multiplier operators and local multipliers on associative algebras is developed.
For this propose we use a notion of a local weak left multiplier on an associative algebra as follows: given
an associative algebra A4, a linear map A: 4 — A is called a local weak left multiplier, if for every x € 4 there

exists a weak left multiplier L on 4, depending on x such that A(x) = L(x).

Theorem 8. A linear operator on the associative algebra ?\.15 is a local weak left multiplier if and only if the
matrix of this linear operator has the following matrix form:

bl’l 0 0 0 0
b, bz,z 0 by O
by, b3,2 b3,3 b

, 54 Dys . (3)
by O 0 by, O
bs; bsy 0 bsy bss

5
Proof. Let V be a local weak left multiplier on kf , let B= (b. ) - be the matrix, defining the linear
i, j=

l’ ]
operator V. By the definition, for any element x € kls there exists a weak left multiplier operator L, such that
\% (x) =L, (x) Then, for the appropriate matrix 4, of the operator L, we have
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L(x)=Bt =A% A,=(a,) 4)

B =t

By form (1) of the matrix of a weak left multiplier on A, using equalities V (e, ) = L, (¢)=Be,i=1,2,3,4,5,
we get

b1,1 = aﬁlp b2,1 = a?,p b3,1 = a;fla b4,1 = a?,l) b5,1 = a§fp
bl,z =0, bz,z = aizla b3,2 = aiﬁa b4,2 =0, bs,z = a:?l’
b1,3 =0, b2,3 =0, b3,3 = ale,31’ b4,3 =0, b5,3 =0,
b1,4 =0, b2,4 = a§f4, b3,4 = a§f4s b4,4 = ":‘,14’ b5,4 = a§f4,
bis=0,by5=0,bs5=a5y, bys=0, bss = aj,.
Thus, according to (4) we get the following system of linear equations:
xlal)fl = xlaill’
X\ )+ Xl + Xyl 4 = xay, + xzafj + x4a§f4,
X\ 1+ Xyl | + X31) + Xyl 4+ Xs@y 4 = X105+ X0 + Xz + X054 + Xs5a5y, (5)

X x € ey
XQy )+ Xgly 4 = XAy )+ X4044,

X X X X _ e e e, es
Xids )+ Xoly g+ XyQs 4 + XsQy 4 = X005 ) + XpQy) + X454 + Xsyy.
If for each element x € A} there exists a matrix 4, of form (1) such that

Bx = A.x,

then the linear operator, defined by the matrix B is a local weak left multiplier. In other words, if for each ele-
ment x € XIS system of linear equations (5) has a solution with respect to the variables

X X X pe X X X X X
A Q15 A 45 Q315 A3 45 Ay 15 Ay 45 Q515 sy,

then the linear operator, defined by the matrix B is a local weak left multiplier. Note that, if the left part of any
equation of system (5) is equal to zero, then the right part of this equation is also equal to zero. We show that
for each element x € Xf , system of linear equations (5) has a solution.

Now, suppose that x; # 0. Then, from (5) it follows that

X el
an = a
x X _ e e ey ¢
XAyt X405 4 = X051 + Xoa1 1 + X457, — X4y,
x x x X _ e e e ey es e
XAz + Xl + X434+ XsQy 4 = XAz + X0y + X301 + X057 + XsGy'y — X34,

x X _ 2 ey
XjQyq+ X0y 4 = XAy1 + X404 4,

X X X x 2 e ey es
XiQs )+ XoQyy + X4ds 4 + XsQy 4 = Xids ) + Xplg ) + Xglsy + X5y y.

It is not hard to see that the last system of linear equations has solution for each x, # 0 from the field F.
Now, suppose that x, = 0, x, # 0. Then we have

0=0,

X x e ey
Xody | T X405 4 = Xpa1 1+ XyQyy,

x X x x e e ey es
XoQy 1+ X311+ XG5 4 + XsOh 4 = Xy Gy + X301 + X4Q574 + XsAyy,

x ey
XgQy 4 = X404 4,

x x x e ey es
Xoy) T Xgls 4 + X5y 4 = XoQy ) + Xylsy + XsQy g

By virtue of distinct variables aj 4, a3 4, a; , and a5 , with the nonzero coefficient x, this system of linear
equations always has a solution. If x, = 0, x, = 0, then we have the following system of linear equations:
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0=0,

X 6'2
a1 = X1,

X X X _ e e es
Xolh 1+ X301+ Xs@y 4 = XpQy + X3ay ] + X505y,
0=0,

X x e es
Xoly )+ XsQy 4 = XpQy) + Xsyy.

It is clear that, if x, # 0, then the last system of linear equations always has a solution.
Now, suppose that x; = 0, x, = 0, x, = 0. Then

0=0,
0=0,

X x e es
X311+ X5y 4 = X307 + XsQy'y,
0=0,

x es
X5y 4 = XsAyy.

It is clear that, for any x, and x; the last system of linear equations has a solution. Thus, system of linear equa-
tions (5) always has a solution, i. e. the linear operator, generated by the matrix

al 0 0 0 0
e e, ey
Sy 4] 0 a4 0
=)

_ e e ey es
B= as) Ay Ay Gzy dyy

e €4
ahb 0 0 afy O

as ) aiﬁ 0 asef4 a§f4
is a local weak left multiplier. Since the local weak left multiplier was chosen arbitrarily we can the matrix B
rewrite in the following form:

by 0 0 0 0

byy by 0 by, 0

B=|by by, bz by, by |
bs; bsy 0 by, bss
This matrix coincides with matrix (3). The proof is completed.

Theorem 9. 4 linear operator on the associative algebra x; is a weak left multiplier if and only if the matrix
of this linear operator has the following matrix form:

b, 0 0 by O

byy by, 0 by by

by, by, by by, by (6)
by, O 0 by, O

bs; bs, 0 b5, bss

5
Proof. Let V be a local weak left multiplier on K;, let B= (by) X be the matrix, generating the linear
U =
operator V. By the definition, for any element x € x; there exists a weak left multiplier operator L, such that
\% (x) =L, (x) Then for the appropriate matrix A, of the operator L, we have

L(x)=Bx=A% A.=(a} ;)

i j=1

(7

By form (2) of the matrix of a weak left multiplier on 13, using equalities V (e, ) = L, (¢)=Be,i=1,2,3,4,5,
we get
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b1,1 = ale,]p b2,1 = a?,l) b3,1 = C’;Il» b4,1 = a3ej3 - ale,]l’ bS,l =0,
bl,z =0, bz,z = afﬁa b3,2 = a;?l’ b =0, bs 2= al 1
b3=0,0;=0,by;= a3ef3a by3=0,b55=0,
b1,4 = a:?l’ b2,4 = a§f4, b3,4 = a3ef4a b4,4 = a3gf3 - ale,ib b5,4 = afs - a?}m
b1,5 =0, bz,s = aifla b3,5 = 036,55: b =0, bs 5= a3 3 a1E,54-
Thus, according to (7) we get the following system of linear equations:
X, + X405, = a0 + x,a0,
X\ + Xy + Xyl 4 + X5y 4 = xlaS"l + xzaf?1 + x4a§f4 + xsaﬁ,
X\ 1+ Xyl | + X3y 3 + X405 4 + X535 = Xy 05 + Xoa5) + X055 + X,a5Y + Xs5a5s, (8)
xl(a;S - al)fl) + x4(a§’3 - al)i4): xl(a§fs - ale,ll) + x4(a§j‘3 - ale,44)a

x o x x X x x|\ _ e o ey ey es __es
xz(a3,3 a1,1)+x4(a3,5 92,4)"')‘5(”3,3 a1,4)—x2(a3,3 a1,1)+x4(a3,5 92,4)+x5(a3,3 a1,4)-

If for each element x € A] there exists a matrix 4, of form (2) such that

Bx = A.Xx,
then the linear operator, defined by the matrix B is a local weak left multiplier. In other words, if for each ele-
ment x € 7»15 system of linear equations (8) has a solution with respect to the variables

al)fb ag,l? a§,4, a;,lﬂ a§’4, C’f,lv 02,47 agc,l’ a§,4, )
then the linear operator, defined by the matrix B is a local weak left multiplier Note that, if the left part of any
equation of system (8) is equal to zero, then the right part of this equation is also equal to zero. We show that
for each element x € k system of linear equations (8) has a solution.

Now, suppose that x, # 0. System of linear equations (8) is equivalent to the following system of linear
equations:

XA+ X4a 4 = X000+ XAy
X X X x 2 e ey es
X+ X011+ X4Qh 4+ X5 4 = X0y + Xp017 + X057y + XsApy,
x X x x X _ e e e ey es
X3y + Xplhy + X305 3 + X403 4 XsTy 5 = X103 + X057 + X303 + X4a3ly + X505, (10)

X _ e ey
(% +xy ) a3 = xa3'5 + xyass,

X X X X X X _ X X X X X X
xz(%,s - al,l) + x4(a3,5 - 92,4) +Xs (%,3 - 5’1,4)— xz(as,s - al,l) + x4(”3,5 - 92,4) + x5(a353 - a1,4)-
The order of computation of the values of variables (9) is the following:

x x _ e ey
X1a1 + X404 = X071 + XAy,

x x x x e ey ey es
Xy |+ Xo0y )+ X405 4 + XsOy 4 = X105 1 + X017 + X404 + X547y,

X _ e ey
(X +xy ) a33 = X055 + x,a5%,

x o x x X x ox \_ e e ey ey es  es
xz(az,a al,l) + x4(a3,5 a2,4) + xs(a3,3 01,4)—)52("3,3 al,l) + x4(a3,5 az,4) + xs(a3,3 5’1,4)’

x x X x X _ e e e ey es
X3+ Xply + X305 3 + X405 4 + XsQ3 5 = X303 | + X051 + X3a373 + XAy + XsA3s.

Note that the variables a;), a3, 33, a3, have a nonzero coefficient, if x, + x, # 0 and system of linear
equations (10) has a solution. If x, # 0 and x, + x, = 0, then x, = —x, and similar to the previous case system of
linear equations (10) has a solution. Thus, system of linear equations (8) has a solution for each x, # 0 from
the field F.

Now, suppose that x, = 0, x, # 0, then system of linear equations (8) is equivalent to the following system
of linear equations:
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x _ ey
Xqdy 4 = X4y 45

X X x _ e ey es
XoQy |+ X405 4 + XsOy 4 = X5017 + XG4 + X5a 3,

X X X x _ e e ey es
XoQy 1+ X33 3 + X405 4 + XsQ3 5 = Xy Ay + X3a373 + X057 + X557,

x €y
Xqd3 3 = Xyd3 3,

x X x X x o oox \_ e e ey ey es
xz(as,s al,l) + x4(a3,5 a2,4) + xs(a3,3 a1,4) = xz(a3,3 al,l) + x4(a3,5 a2,4) + xs(a3,3 ‘7‘1,4)'

In this case the variables a; 4, a3 4, a3 4, a3 3, d3 5 have a nonzero coefficient, and the order of computation of
the values of these variables is the following:

x ey
Xqdy 4 = X4y 45

x X X _ e ey es
XoQy 1+ X4 4+ XsOy 4 = Xp017 + Xg4Qy4 + X5A g,

x €y
X433 = Xyd3 3,

X X x X X _ox \_ ) ey ey e e
xz(a3,3 ”1,1) + x4(”3,5 a2,4) + xs(as,s a1,4) = xz(a3,3 al,l) + x4(a3,5 02,4) + xs(a3,3 a1,4)a

x X X X _ e e ey es
XoQh 1+ X303 3 + XG5 4 + XsQ3 5 = Xp0571 + X303 + XyQ37, + X50575.

As the result we have a solution of (10). Thus, system of linear equations (8) has a solution in the case of x, =0,
x,#0.

Now, suppose that x; = 0, x, = 0. Then system of linear equations (8) is equivalent to the following system
of linear equations:

0=0,

x X _ e es
Xoy |+ X5a) 4 = X017 + X5Q) 7y,

x x X _ e e es
Xody 1+ X3a3 3+ XsQ3 5 = Xy, + X3a373 + Xsas’s,
0=0,

x o x X x \_ e e es _es
xz(az,s al,l) + xs(as,s 31,4) —xz(a3,3 al,l) + xs(“3,3 a1,4)a

0=0,
x X _ e es
Xody |+ Xs@ 4 = X017 + Xs5Qy 7y,

x x x _ ey e es
Xo0h 1+ X3a3 3 + XsQ3 5 = Xy, + X3d373 + Xsds’s,

0=0,

X _ 62 65
(x2 + X5 )a3,3 = Xya3% + X503

Similar to the previous cases this system of linear equations also has a solution. Thus, system of linear equa-
tions (8) always has a solution, i. e. the linear operator, generated by the matrix

ai L 0 0 af’ 4 0
ag‘,1 016,21 0 a§f4 ale,54
B= a”j:l agfl ase,% a3ef4 a§f5 >
ashy - ay 0 0 a¥—a 0
0 a3e,23 - a1e,21 0 a§f5 - a§f4 a3e,53 - af:54

is a local weak left multiplier. Since the local weak left multiplier was chosen arbitrarily we can rewrite the
matrix B in the following form:
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by, 0 0 a4 0

b2,1 bz,z 0 b2,4 bz,s

B= b3,1 b3,2 b3,3 b3,4 3,5
b471 0 0 b4,4 0

0 bs,z 0 b5, bss

This matrix coincides with matrix (6). This completes the proof.

Conclusions

Note that the common form of the matrix of a local weak left (right) multiplier on an algebra includes the
common form of the matrix of a weak left (right, respectively) multiplier on this algebra. The coincidence of
these common forms denotes that every local weak left (right) multiplier of the considering algebra is a weak
left (right, respectively) multiplier. But the common form of the matrix of a weak left (right) multiplier on the
associative algebras Xf and k; does not coincide with the common form of the matrix of a local weak left (right,
respectively) multiplier on these algebras by theorems 6, 8 and 7, 9, respectively. Therefore, the associative
algebras Kf and x; have local weak left (right) multipliers that are not weak left (right, respectively) multipliers.

We note that local weak left (right) multipliers of an arbitrary low-dimension algebra can be similarly
described using a common form of the matrix of weak left (right, respectively) multipliers on this algebra.
A technique for constructing a local weak left (right) multiplier, which is not a weak left (right, respectively)
multiplier, developed by us, can be applied to an arbitrary low-dimension algebra, weak left (right) multipliers
of which have a matrix of a generalised form.
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