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Abstract. Blind accumulators collect private keys of eligible entities in a decentralised manner not getting information
about the keys. Once the accumulation is complete, an entity processes the resulting accumulator and derives a public key
which refers to a private key previously added by this entity. We extend the blind accumulator scheme with the context
functionality so that the derived key is bound to a specific context and this key is computationally hard to associate with
public keys of other contexts. Blind accumulators with contexts are useful in various e-voting scenarios, for example in
revoting. We provide an instantiation of the extended blind accumulator scheme and justify its security.

Keywords: e-voting; revoting; cryptographic accumulator; blind accumulator; decisional Diffie — Hellman problem.
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Introduction

A blind accumulator is a cryptographic container that collects private keys and outputs (derives) the corre-
sponding public keys. A private key is added to the accumulator in a provably correct manner while remaining
secret, that is, known only to its owner. The derived public key is accompanied by a proof that it refers to some
of the collected private keys while it is computationally hard to determine which one. In addition, blind accu-
mulators are managed in the decentralised manner.

Blind accumulators are introduced in [1] as a tool for organising decentralised electronic voting (e-voting).
Voters use the accumulated private keys to sign ballots, the derived public keys are used to verify signatures.
The voter’s public key acts as an immutable pseudonym, which can be used to prevent double voting or, con-
versely, allow multiple ballots to be cast with only the last one to be counted.

The last possibility, the so-called revoting, is an important feature of modern e-voting systems. The direct
revoting based on blind accumulators have the following drawback: an adversary can track the change in the
opinions of voters (while not violating their anonymity) by observing ballots. It is desirable to organise revo-
ting in such a way that it is difficult to relate the original and subsequent ballots of the same voter.

This motivates us to extend the functionality of blind accumulators. In section «Contexts», we enrich inter-
faces of the blind accumulator algorithms by adding to some of them a parameter that describes a target con-
text: regular voting, revoting, second round voting, etc. To ensure that voter’s object in different contexts are
hard to associate with each other, we introduce an additional security requirement called severance. In section
«Instantiation», we propose an instantiation of the extended blind accumulator scheme. In section «Security»,
we justify the security of the proposed instantiation.

Contexts

Cryptographic accumulators are special encodings of tuples of objects. We write a = [S] to denote that an
accumulator a encodes a tuple S. We interpret tuples as ordered multisets bringing standard set notations such as
the curly braces, the membership (€) and union (L) symbols.

A blind accumulator scheme introduced in [1] is a tuple of polynomial-time algorithms BAcc = (Init,
Add, PrvAdd, VfyAdd, Der, PrvDer, VfyDer) that are defined as follows.

1. The probabilistic algorithm Init: 1> a, takes a security level / € N (in the unary form) and outputs an
initial accumulator a, =[&].

We assume that a,, implicitly refers to / and public parameters (such as a description of an elliptic curve) and
that these parameters implicitly define a set of private keys SKeys and a set of public keys PKeys.

2. The deterministic algorithm Add: (a, sk) > a’ takes an accumulator a = [S ] and a private key sk, and

outputs an updated accumulator a’ = [S U {sk}].
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We assume that a is an output of either Init or some previous call to Add. This ensures the consistency
of a, 1. e. that it is constructed as

a eAdd(...Add(Add(Add(aO, sky). sky ). ) skn), a, (—Init(ll), sk, € SKeys,

and, therefore, is an incrementally built encoding [S] of the multiset S = {skl, sky, ..., sk, }

We also assume that the public parameters referenced in the initial accumulator a, are passed to all accu-
mulators incrementally built from it.

3. The probabilistic algorithm PrvAdd: (a, a, sk) > o takes accumulators a, a’ and a private key sk, and
generates a proof a that a'= Add (a, sk).

4. The deterministic algorithm VfyAdd: (a, a, oc) > b takes accumulators a, a’ and a proof o that
a'= Add(a, sk) for some private key sk. The algorithm verifies the proof and outputs either b = 1 for accep-

tance or b = 0 for rejection.
5. The deterministic algorithm Der: (a, sk) = pk| 1 takes an accumulator a and a private key sk, and either

derives a public key pk or outputs the error symbol L.
We require that for a consistent a =[S], Der(a, sk)=L if and only if sk ¢ S.

6. The probabilistic algorithm PrvDer: (a, Pk, sk) > O takes an accumulator a, a private key sk and a public
key pk, and generates a proof 6 that pk < Der(a, sk).

7. The deterministic algorithm VfyDer: (a, pk, 6) > b takes an accumulator a, a public key pk and a proof &
that pk = Der(a, sk) for some private key sk. The algorithm verifies the proof and outputs either » = 1 for ac-

ceptance or b = 0 for rejection.

Further details on the algorithms and additional requirements are presented in [1].

To support contexts, we extend the interfaces of the last three algorithms. We describe a context with
a non-empty binary word (string) ¢ and use it as an additional input parameter of Der, PrvDer and VfyDer.
Denote the resulting extension of BAcc by BAccl.

The algorithm Der of BAcc1 takes a triple (a, sk, ¢) and outputs a public key pk bound to the context c.

We require that if sk & SKeys, ske S and a= [S ], then pk <—Der(a, sk) has a fixed distribution D over

PKeys regardless of S and c.

Hereinafter we write 7;, 7, ... <& R to denote that 7y, Iy, ... are chosen independently at random from a set R
according to a probability distribution Z and denote by $ the uniform distribution.

The paper [1] defines four security requirements for blind accumulators, namely, consistency, soundness,
blindness, and unlinkability. To extend these notions to BAcc1, we modify the last three requirements as fol-
lows:

e in the definition of soundness, the algorithms A and € take the additional input ¢ that is transferred to
VfyDer and Der, respectively;

e in the definition of blindness, the algorithms S, takes the additional input ¢ that is transferred to Der and
PrvDer;

e in the definition of unlinkability, the game G takes the additional input ¢ that is repeated when calling
Der.

The consistency, soundness, blindness, and unlinkability do not guarantee that the public keys derived in
different contexts are hard to associate with each other. To ensure such guarantees, we introduce an additional
requirement called severance.

Consider an algorithm A that takes a consistent accumulator a = [S ] of security level /, different context

strings ¢, ¢’ and public keys pk, pk’. The first public key is derived from a using sk € S in the context c. The al-
gorithm 4 guesses if the second public key is also derived from a using sk but in the context ¢’ The algorithm
returns 1 (true) or 0 (false). We allow all elements of S except sk to be predefined and thus known to A. There-
fore, it is enough to consider only the simplest case S ={sk}.

Definition 1. A scheme BAcc1 provides severance if for any different context strings ¢, ¢’ and for any pro-
babilistic polynomial-time algorithm A described above it holds that

a, <—Init(11), sk SKeys, a(—Add(aO, Sk)

Adv(A)=PiA(a, ¢, ¢, pk, pk')=1:
v(4) (2. ¢ ¢ ph, pk) pk < Der(a, sk, ¢), pk' < Der(a, sk, ¢')
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a, <—Init(1’), sk <& sKevys, a « Add(a,, sk)
-p | pk, pk')=1:
A(a, ©CPEP ) pk <—Der(a, sk, c), pk' ¢ PReys

is negligible in /.

Instantiation

In [1], an instantiation of the BAcc scheme, called BAcc—-DH, is proposed. We modify BAcc-DH to sup-
port the BAcc1 functionality. The resulting instantiation is called BAcc1-DH.

In BAcc1-DH, a cyclic group G, of large prime order g is used. We write this group additively and denote
by G; the set of nonzero elements of G,. We also use the ring Z , of residues of integers modulo ¢ and the set
Z: of nonzero (invertible) residues. The group G, is constructed in the algorithm BAcc1-DH. Init. Aninput
security level / determines the bit length of g. Once G, is constructed, the set of private keys SKeys and the
set of public keys PKeys are defined as Z; and G;, respectively. We use hash functions / and H, that map to
these sets.

The initial accumulator a, and all subsequent accumulators are words in the alphabet G;. The set of

non-empty words in an alphabet ¥ is denoted by £*. An empty word is denoted by L. The notation (G; )+ is

shortened to Gf. For a word w, let |w| be its length and most(w) be the word obtained from w by dropping
its last symbol. For V'€ G, and u € Z, let uV denote the u-multiple of V. A word that obtained from w € G;"
by replacing each symbol by its u-multiple is denoted as uw. Two words in (G; can be added symbol-wise to
obtain a word in G,,.

In BAcc1-DH, the algorithms Add, PrvAdd and VfyAdd are the same as in BAcc—DH. The remaining
algorithms are updated, the corrections are highlighted in frames in the listings below.

Algorithm BAccl-DH.Init

Input: 1' (security level).

Output: a, G; (initial accumulator).

Steps:

1. Construct a group G, of prime order g such that C 121 <g< C22l, where C,, C, are some constants.

2.|Construct hash functions H : {O, 1}*—> Zq, H,: {O, 1}+ U {J_} — (G;.

3.|G < H,(L).

4.a,«< G.

5. Return a,,

The descriptions of G, and G can be interpreted as additional outputs of the algorithm. We allow H to pro-
cess arbitrary input data assuming they are pre-encoded into a binary word.

Algorithm BAcc1-DH.Der

Input: ac G;+ (accumulator), u € Z; (private key), |c € {0, 1}+ (context)|.

Output: V € G (public key).
Steps:
1. Parse a= G,G,...G,.

2.Findie{l,2,..., n} such that uG, = G,. If such i does not exist, return L.
3.1C « Hl(c).

4.[Return uC]|

Algorithm BAcc1-DH.PrvDer

Input: a € G;" (accumulator), u € Z; (private key), ¥ € G (public key), |c € {0, 1}" (context),.
Output: 5 € Z, x Z, (proof).

82



Kparkue cooduienust
Short Communications

Steps:
1. Parse a= G,G, ... G,.

2.Findie{l, 2, ..., n} such that uG, = G,. If such i does not exist, return (0, 0).
3. C(—Hl(c).
4. Forj=1,2,...,n,j#i

a)h, s, <L
b)|r; « 5,(G, Gy ) + h,(CV).
5.k< 2,

6.1, < k;(G,G,).

7. h <—{H(a, nr,..r, V) - Zthmodq.

J#i
8. s; < (k; — uh;)modg.
9.8« (Ihy...h,, s;5,...5,).
10. Return 9.

Algorithm BAccl1-DH.VfyDer

Input: ac G;" (accumulator), V' € G, (public key), 8 € Z; x Z, (proof),|c € {0, 1}” (context).
Output: 1 (accept) or O (reject).

Steps:

1. Parse 8 « (h, s). If |h| = s| or [a] = |h| + 1, return 0.

2.Parsea=G,G,...G,h=hh,...h,and s =s;5,...5,.
3.|C« H\(c).

4. Forj=1,2,..., n

a)lr, < 5;(G;Gy ) + h,(CV).
IfH(a,nx,...r,, V)= h+h + ...+ h,(modg), return 0.
6. Return 1.

9,

Security

In this section, we justify the security of BAcc1-DH examining five security requirements stated in [1] and
section «Contexts».

The security definitions in [1] allow runtime environments to be managed. We use this to replace the hash
functions H and H, with random oracles [2] and permit these oracles to be programmed. Technically, this is
achieved by manipulating the random tape of the algorithm BAcc1-DH. Init which constructs /H and H,.
The random oracle responds to a fresh input u with a random output / and repeats a previous output when an
input is repeated. Programming the oracle consists in assigning a given random output / to a given input p.
Conflicts can potentially occur when programming, namely, the input u may already be associated with an
output 4" # h. Fortunately, we avoid conflicts.

To justify the unlinkability and severance, we use the well-known DDH (decisional Diffie — Hellman) prob-
lem [3]. This problem is specified with respect to a cyclic group G, with a generator G and consists in deciding

for a given tuple (G, uG, va, WG), u, v, we Z;, ifw= uv(modq). The algorithm B that solves DDH guesses

if this is indeed the case and outputs either 1 (true) or O (false).
Definition 2. Let G be an algorithm that constructs a cyclic group G, and its generator G given an input I
The DDH problem is hard with respect to G if for any polynomial-time algorithm B operating on G, and G

constructed by calling G (11 ) it holds that the advantage

Adv(B):‘P{B(G, uG, vG, uG)=1:u, V&Z’;}— P{B(G, uG,vG, wG)=1:u,v, W&Z’;}

is negligible in /. The probabilities here are over a random tape of 3 and G and over a random choice of u, v and w.
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Theorem. The BAcc1-DH instantiation of the BAccl scheme satisfies the requirements of consistency,
soundness, blindness, unlinkability, and severance in the programmable random oracle model provided that
DDH is hard with respect to BAcc1-DH. Init.

Proof. Let us examine security requirements each time switching to the scope of the corresponding secu-
rity definition. For full details of the first four security definitions we refer the reader to [1].

Consistency. Let € control a random tape of the algorithm A and be able to restart (rewind) the algorithm
with the tape repeating. This is possible since € is allowed to manage the runtime environment of A. Let A re-

turn a proof (r, s) with s = (k - hu)modq on the first run. On the second run, the random tape is repeated and,

therefore, the word r as well as the input (a, a’, r) to the oracle H are also repeated. The oracle is programmed

to return a fresh random output /" on this input. Since 4" differs from the first output /4 with probability qT_l,

q
q _.
& determines

after

1 .
7 =1+ O(?) restarts on average € gets 4’ # h and the corresponding s’ = (k - h'u)mod g. After that

u=(s—s)(h- h)_lmodq.
We use here the standard arguments for Z-protocols [4; 5].
Soundness. It is justified similarly to the consistency. A private key u is determined by two different outputs
of H on the same input (a, ir,...r,, V).
Blindness. The algorithm S, generates h, s < Z 4> constructs r <~ sa+hmost(a’) and programs H, that
is, assigns the output 4 to the input (a, a’, r). The algorithm S, returns a pair (r, s) as a proof a. This proof is

accepted by BAcc-DH.VfyAdd and is statistically indistinguishable from the standard proof generated by
BAcc-DH. PrvAdd provided that H is a random oracle.

The algorithm §, is constructed similarly.

Unlinkability. Let us construct an algorithm B that solves an instance (G, uG,vG, wG) of DDH by playing

the game G(ll, n, m, c) for the role of V.

The algorithm B acts as follows.
1. Programs the runtime environment when calling BAcc1-DH. Init in step 1 of the game:
e uses Gq from the instance of DDH,;

e assigns H,(L)=G and H,(c)=vG.

2. Generates j < {1,2,..., m}.
3. Processes BAcc1-DH.Add and BAccl-DH.PrvAdd calls made by A and determines used private
keys. To do this, B restarts .4 several times and extracts private keys from the provided proofs acting as the

algorithm €& that justifies the consistency. It takes m + 0[2—”0 restarts on average to determine all the keys.

4. Makes its own calls to BAcc1-DH.Add (the order of calls is determined by A) numbered 1, ..., j — 1,
J+ 1. musingkeysu, ..., u;_y, U;y, .5 Uy, & Z’; generated by itself. The calls are accompanied by proofs
constructed using BAcc1-DH. PrvAdd.

5. Makes the j call to BAcc1-DH.Add in a non-standard way embedding the private key u hidden in the

instance (G, uG, vG, wG). To do this, performs transitions G, - uG,, using the knowledge of d; = log; G, and

determining uG, as di(uG). The discrete logarithms d; are indeed known to B, since they are products of its
own private keys and A private keys extracted from the proofs.

6. Accompanies the j call to BAcc1-DH.Add with the a proof of consistency indistinguishable from the
real one and obtained by programming the oracle H. Here B3 acts as the algorithm S, that justifies the blindness.
Note that the inputs of H when constructing proofs of consistency at different steps of accumulator manage-
ment are certainly different since the length of the accumulators as words increases. Therefore, there are no
conflicts when programming.

7. Processes the final accumulator a = GG, ... G, and generates public keys. The public keys V,, i # j, are

constructed using BAccl-DH.Der as uiHl(c) =u;vG. The public key V; is constructed by the instance of

DDH as wG. This is the correct public key with w = uvmod g and a random public key with a random w. Let b
be the indicator of the correctness of V. The bit b is unknown to 5 and is not used by it (unlike V).

8. Passes A the public keys (Vl, 290 Vm), waits the guess b and outputs it as its own guess to
DDH(G, uG,va, WG).
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The algorithm B requires m + 0(2—’7) restarts of A on average and additional time polynomial in /. Thus,

if A is polynomial, then B is expected polynomial. At the same time,
Adv(B)=[P{B=1]b=1} - P{B=1|b=0}|=|P{b=1]b=1} - P{b=1]b =0} = Adv(A).

This means that if DDH is hard, i. e. Adv(.A) is negligible, then Adv(B ) is also negligible and the unlink-
ability is ensured.
Severance. Let us construct an algorithm B that solves an instance (P, uP, vP, wP) of DDH using an al-

gorithm A from definition 1. The algorithm A takes an accumulator a of capacity 1, different context strings
¢, ¢'e{0,1}" and public keys V, V'".

The algorithm B acts as follows.

1. Generates r < Z; and calculates G «<— rP.

2. Simulates the call a, <~ BAccl-DH. Init(ll ) using G, from the instance of DDH and assigning
H,(L1)=G so that a, = G. Additionally assigns H,(c)= P, H,(c") = vP.

3. Simulates the call a <~ BAcc1-DH. Add(ao, u) assigning a = G'G, where G'=uG = r(uP). Accompa-
nies a with a proof of consistency indistinguishable from the real one and obtained by programming the ora-

cle H. Here B acts as the algorithm S, that justifies the blindness.
4. Using the instance of DDH, constructs public keys V= uP = uH,(c) and V' = wP. Note that V' is the cor-

rect public key derived from a using u in the context c. If w =uvmodg, then V'=u(vP) =uH,(c') is the correct

public key derived from a using u in the context ¢’. If w is random, then V' is a random public key. Let b be the
indicator of the correctness of V'. The bit b is unknown to B and has to be guessed by it.
5.Passes Athetuple (a, ¢, ¢, V, V'), waits the guess b and outputs it as its own guess to DDH (P, uP, vP, wP).
If A is polynomial, then B is also polynomial. At the same time, repeating the computations above,
AdV(B ) = AdV(.A). This means that if DDH is hard, i. e. Adv(B ) is negligible, then Adv (.A) is also negligible
and the severance is ensured.
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