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Abstract. The number of potential users of time-management in the world is steadily growing due to the emerging need
for remote work (in a home office), distance learning, teaching, service and, in general, the organisation of professional
activities and a private life with a minimum of personal contacts due to the spread of the coronavirus infection COVID-19
since 2020 and other dangerous infections. This will require the improvement of the time-management techniques and
the developments of new algorithms and software for them, which will take into account the peculiarities and needs of
new users of time-management. Such problems arise in time-management for optimally selecting jobs for a given time
interval and for constructing optimal schedules for processing jobs under conditions of uncertain operation durations. This
article presents sufficiency conditions, algorithms, and computational results for selecting and scheduling connected jobs
by two employees.
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Introduction

Time-management is used for optimally choosing and planning jobs with respect to personal goals and pro-
fessional activity. It includes choosing personal goals and objectives, long-term and short-term planning and
the operational management of person’s affairs.

Related works and research motivations. Article [1] examines the role of schedules in a social life. It brings
into focus the main principles underlying a schedule, namely a temporal regularity involving the standardisation
of the temporal locations of events and activities and their rates of recurrence and sequential. The discussion
includes the constraints and the conveniences involved in using a personal schedule. As S. Eilon [2] notes, the
use of time-management allows an employee to save up to 50 % of her (his) time on completing planned works,
spending no more than 10 % of her (his) time on analysing and planning works during a day. Effective planning
and scheduling can reduce the wasted time [3—5]. Article [3] suggests a structured approach based on the stra-
tegic and tactical time-management. The strategy is to write down a list of activities, establish priorities, and
eliminate inessentials. The tactic is how to carry out essential activities with time-efficiency. Time-management
is underpinned by the principle: there is no point in efficiently doing something that should not be done at all.
There is a Pareto principle as follows: find out what is required and the value of alternatives. It is founded that
80 % of the value can be achieved from 20 % of the effort (80/20 rule) [3].

As it is written in [4], managers can improve their managerial performance significantly through time-ma-
nagement, which is a process that has to be proposed and understood by a manager since the inception of the
managerial career. Prioritising tasks, preparing a to-do list, building a schedule and daily planning apart from
being a good listener lead to managers who practice effective time-management and are generally successful
in their profession and other domains. The 80/20 rule (a Pareto principle) is one of the most helpful of all con-
cepts of time-management. Understanding time-management habits and practicing effective time-management
techniques help in improving one’s personal and managerial effectiveness.

There are articles [6—8] that examine results of time-management, and in particular, the impact of time-mana-
gement on a student’s academic success. The hypothesis of study [6] was that efficient time-management, under
the guidance of an educational counselor, leads to significant increases in students’ academic performances and
so leads to academic success. Participants using time-management had above average or superior intellectual
abilities. The educational counselor elaborated individualised and flexible programmes for each participant in
the experimental condition according to students’ learning styles, circadian and eating rhythms and daily and
weekly effort curves. The results of the conducted experiments confirmed the hypothesis showing the efficiency
of time-management individualised programmes [6].

Descriptive study in [7] was conducted to determine nursing and midwifery students’ time-management
skills in terms of their age, gender, and anxiety levels. It was demonstrated that nursing and midwifery students’
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time-management skills are at a mid-level point; female students were able to manage time better than male
ones. The time-management skills of the students decreased as the anxiety level increased. The conclusion
in [7] was that students are required to learn to manage time so that they are able to apply the same degree of
efficiency in the profession they choose after completing their education.

Article [8] found that the indicator of a person’s creative abilities is significantly correlated with the use of
a time-management technology. Thus, time-management is a technique that almost any individual can use to in-
crease the effectiveness and efficiency of the working time including creative and scientific activities.

Selecting and scheduling most important jobs. People often strive to solve several problems at the same
time, combining complex tasks during working hours. Situations arise when a person puts off important and ur-
gent work, which may be unpleasant or unusual for her (him), and strives to perfectly complete unimportant and
even useless work. Such habits lead to a decrease in the likelihood of completing important tasks on time [9—11].
One of the valuable strategies often used for an effective implementation of time-management is the selection of
mostly important jobs and their optimal planning [1; 4-6; 9; 12].

The importance of helping employees to plan their work from the very beginning is widely stated in the litera-
ture [4—7; 9]. A supervisor should assist the supervisee to devise a proposed schedule for activities to be undertaken
and ensure that the schedule is followed. Such a plan will allow the structured and disciplined use of time of an
employer [5]. It is suggested that dividing the work into smaller and more manageable units, which can be
planned and controlled, makes a huge task more attainable. Identifying the expected dates for the completion of
each phase is important. When devising a schedule, it is helpful to start with the expected date of the completion
and work the phases from the deadline backwards [5]. Safety time can be built into the plan to allow for catch-up
periods. Though it may seem tedious to plan time in such a detailed way, the results will be worthwhile.

As written in [9], one of the key components of an organisation is maintaining an individual calendar. Many
employees let their schedules dictate them. The first step is to make a to-do list and prioritise each item. One
needs to be realistic about what one can achieve over the next day, week, or month. If the employee is (on one’s
own) going over schedule, she (he) will be disappointed when she (he) fails to complete every job. The to-do
list should be reviewed regularly, daily if possible, and revised as necessary. One needs to set aside time to plan,
either first thing each morning or last thing in the evening to plan for the next day. It is important to do this daily
or weekly as priorities may change over time [9].

Time-management makes it possible to more effectively select, plan and complete a significant number of
jobs of varying complexity, which has a positive effect on the timing of necessary job, educational achieve-
ments and an increase in the quality of life [13; 14]. Optimal planning is a complex process, which requires
time resources and human intellectual abilities. Organising the selected jobs can be a difficult task for the per-
former, requiring both additional time and certain skills. In addition, the user has to carry out the prioritisation
of the planned jobs, as well as the ordering of the still unfulfilled and newly received jobs, many times over the
entire planning horizon. It is advisable to use a personal computer (laptop or smartphone) as much as possible
to automate the process of scheduling the planned jobs.

A problem of minimising the total (average) weighted completion time of the planned jobs by one employee
is considered in [15] provided that only lower and upper bounds of the possible processing time of each job
are known before scheduling. Algorithms and software have been developed for constructing a permutation of
the chosen jobs with the largest relative semi-perimeter of the optimality parallelepiped. Computational expe-
riments on the computer showed the effectiveness of the developed algorithms for time-management.

We consider the problems of creating optimal schedules for two employees. It will be shown how schedu-
ling algorithms can be used to optimal time-management.

Optimal selection and scheduling jobs for two employees

The discussed publications [1; 3; 4; 6; 9; 12; 14; 15] include different techniques and procedures for time-
management, which are recommended to be used for planning the working time of a single employee. In our
paper, we develop scheduling algorithms for two employees having a set of common jobs, e. g., for a supervisor
and a subordinate. The aim of time-management is to create a job schedule for both employees during their
working hours.

Consider the main features of such scheduling. The entire set of jobs consists of jobs of four types. Jobs
that are performed firstly by a supervisor and then by a subordinate (e. g., a supervisor formalises a problem,
outlines possible ways for solving it and delegates it to a subordinate). Jobs that are performed first by the su-
bordinate and then by the supervisor (e. g., a supervisor checks the result of the job performed by a subordinate).
There are jobs that are completely performed by a supervisor and jobs that are completely performed by a su-
bordinate. It is naturally to assume that performing such a job consists of the execution of two or one opera-
tions. No repetition of the same concrete job is considered.
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The following key peculiarity is an uncertainty of the operation durations. Indeed, it is difficult to determine an
exact time, which will be required for processing a job by a human. On the other hand, one can determine a lower
bound and upper bound of the operation duration. In general, the duration of each operation may remain un-
known until the moment of completion of this job. At the moment of constructing an optimal schedule, a closed
interval is known, which definitely contains all the possible operation durations of the planned job.

As it is written in [11; 12] and in many other papers on time-management, interruptions should be avoided
while completing a job in progress (avoid unscheduled meetings, phone calls, and visitors). In addition to the
direct loss of time, such interruptions cause the need to spend additional time for re-preparing the interrupted job.

The selection of jobs to perform from the entire list of available tasks can be made in accordance with their
importance for the employee. The different levels of importance of the jobs can be represented in the form of
the weights of the jobs to be fulfilled in the planning horizon. The criterion for the effectiveness of time-ma-
nagement is not only to achieve the goals set by a person, but also to complete her (his) work in the minimum
possible time [16].

The constructed schedule must have a minimum length (it is the minimisation of makespan). Other criteria
are to maximise the total weight of the completed jobs and to maximise the number of jobs completed in time.
We use the terminology of the scheduling theory from [17] and the oc| [3|y classification from [18] for denoting
the scheduling problems, where o specifies machine environments, B — job characteristics, and y — objective
functions.

Setting of the scheduling problem. Let the set of jobs I=(J,, J,, ..., J, ) have to be processed by two
performers M ={M,, M, }. A weight (an importance) w; of the job J; € J is determined. The supervisor is the
first performer M,. The subordinate is the second performer M,. Jobs in the set I may have different (techno-
logical) routes. This processing system is called a job-shop. The number of stages (operations) #, in the route
of a job J; € 3 does not exceed two (since there are two employees). The duration of operation Oy is denoted
by p;, where J, €3, j € {1, 2}. The lower and upper bounds of possible duration p;; are denoted as a; and b,
respectively. Thus, the uncertain (interval) job-shop problem is considered, where possible duration p;; of the

i Yij
Remark. 1t is assumed that in the uncertain (interval) scheduling problem under consideration, all durations
of the jobs are unknown before scheduling, 1. e. the strict inequality a;; < b; holds for each job J; € I and each
machine M; e M.
Let C,; denote a moment of the completion of the job J; € 3. We consider the following three ordered criteria:

operation O, must belong to the closed interval [a' b]

minimising a schedule length, i. e. makespan C,,, = max {C; : J; € 3}, maximising a sum of the weights of the
completed jobs Z w; and maximising a total number of jobs ZUi that are completed before their due dates D,
where U, is equal to 1, if C; < D,, and U, is equal to 0, if C; > D,. Using the three-field notation 0L|[3 Y, the

problem with uncertain operation durations is denoted as follows: J Z‘al.j Spy<b;,m< 2‘Cmax, ZWI-, ZU,.,

where three criteria C the second crite-

max>
rion is Z w; and the third criterion is ZUZ

This paper continues the previous research works started in [15; 19-21] via extending the obtained results
to the job-shop problem with three ordered criteria. In [15], the time-management problem for a single em-
ployee was investigated with the single criterion of minimising the weighted sum of the job completion times.
The properties of optimal permutations existing for a flow-shop scheduling problem with the single criterion of
the minimisation of a schedule length were investigated in [20; 21]. A similar properties of optimal permutations
existing for a job-shop scheduling problem were investigated in [19]. It should be noted that papers [19-21]
were devoted to the uncertain shop scheduling problems where non-strict inequalities a; < b; hold for all given

jobs J; €3, jell, 2}.

max?

Zwi and ZUZ. are linearly ordered, i. e. the main criterion is C,

Uncertain (interval) scheduling problems

Employees in time-management correspond to machines in the scheduling theory [15; 17-19; 22]. For schedu-
m <2|C

ij° max*

The machine set M ={M,, M, } has to process the job set I=3, UJ, UST, , UT,, where the subset J, ,

ling jobs for a working day, we consider the uncertain two-machine job-shop problem J2 ‘al.j < p; b

includes jobs with the machine route (M}, M, ),
machine route (M 2, M, ),

51’2‘ =n ,. The subset 3, | includes jobs with the opposite

32,1‘ =n, ;. The subset J; (the subset J,) includes jobs that must be processed by
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the machine M, (by the machine M,, respectively). Here |Sl | =n, 32| =myandn=n, ,+n, ;+n;+n,. All jobs
are available for processing from the initial time # = 0. A preemption of any operation Oy of the job J; € J on
the machine M; € M is not allowed. Probability distributions of random durations are unknown. In the reali-
sation of a schedule, a value of the processing time p;; may be equal to any real number no less than the lower
bound a;; and no larger than the upper bound b;.

A set of all possible vectors p = ( Pi1> Pras o> P an) of the operation durations is denoted as follows:
T:{p:aij <py Sbij,

a fixed scenario p € 7, the uncertain scheduling problem J Z‘aij < p; <by,

ministic scheduling problem, which is the individual scheduling problem J2
scenario p.
The deterministic problem J2

J, €3, M; e M} Such a vector p € T of the possible durations is called a scenario. For

n; < Z‘Cmax turns out into the deter-

P, 1, < 2| Cyay associated with the

max

P, 1; < 2|Cpyy s solvable in

ax

O(max{nl,z, ”2,1} . log(max{nl,z, nz,l}))
time as it is noted in [22]. An optimal schedule for the individual scheduling problem J 2| P, m; < 2| C,ax Mmay be
determined by a Jackson’s pair of job permutations (', ") such that the permutation 7’ = (nl, 25 Ty Ty, 1) de-

termines an optimal sequence for processing jobs on the machine M, and the permutation n" = (th’ 1> Ty Ty, 2)
determines an optimal sequence for processing jobs on the machine A,. The job J; belongs to the permutation
m,,, if the inclusion J; € 3, holds.

In Jackson’s pair of permutations, for the sequence &, , = (Jil, Jisoonsd b ) (and the sequence m, | =

= (Jl.], Jl.z, e Ji” ), respectively) of the jobs from the set T, , (from the set J, ), the following condition

must hold for all indices kand m, 1 <k<m<n; ,(1<k<m<n,,):
min{pikl, pimz} Smin{piml, pl.kz} (1)

(min{pikZ’ bPi } < min{l’imza Pi }),

where the permutation 7, , (and permutation 7, ;) is called a Johnson’s permutation [22].

The optimal order of jobs from the set 3, and jobs from the set J, may be arbitrary [22]. Therefore, in what
follows, we consider only one permutation 7, (one permutation 7,, respectively) of the jobs from the set J, that
are located in the non-increasing order of their weights (from the set J, that are located in the non-increasing
order of their weights).

Let the set S) , (the set S, ;, respectively) denote a set of all permutations of jobs from the set J; ,

(the set 3, ). Let § =<S1,2, S2,1> denote a subset of the Cartesian product (SI,Z’ T, S2’1) X (Sz,p T, S1,z)

such that each element in the set S'is a pair of job permutations (7', ") € S, where n’'= (ni 5y Ty, T 1) and "=
i i . .
z(nm, Ty, n1,z)a 1<i<n ,,1<j<n,,.

For the uncertain (interval) job-shop scheduling problem J 2‘aij Sp;<b we will consider

U b
only semi-active schedules which are determined by the set S.
Definition 1 [17]. A schedule is semi-active if no operation can be processed earlier without changing the
processing order or violating some given constraints.
It is known that for any regular criterion [17; 18], there exists a semi-active schedule which is optimal.
For any fixed scenario p € T, there exists Jackson’s pair of job permutations (belonging to the set ) that is

optimal for the individual job-shop scheduling problem J2|p, n, < 2| C_... Itis clear that in most cases, a single

pair of job permutations, which is optimal for all possible scenarios p ZaxT for the uncertain (interval) job-shop
scheduling problem J 2‘al.j <Sp;<by, m< Z‘Cmax,
set of the job permutations based on the following definition.

Definition 2. A set of pairs of job permutations DS (T ) c § is a dominant set for the uncertain (interval)

n, < 2‘ C..x With the set 3 of jobs, if for each scenario p € T, the set DS (T )

max

m <2|C

max?

does not exist. Due to this fact, we will look for a dominant

scheduling problem J 2‘%‘ <p; <b,

lj’
contains at least one pair (n', n”) € S of the job permutations that is optimal for the individual deterministic
problem J2|p, n; <2|C,,

ax*°
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The sufficient conditions for a pair of job permutations (n’, n”) € S to be an optimal pair of job permutations

P, n; < 2|Cm
uncertain (interval) problem J Z‘a,-j <py Sby, m < 2‘ C,

ries 3 and 4]. It has been proven that if one of the following conditions holds:

D by D> apand D oa,> Y by, ()

for any individual deterministic problem J2 with any fixed scenario p € T that is feasible for the

ax

have been investigated in [19, theorem 7, corolla-

ax

Jie3in Jie3p U3y, Ji €312 Jie3J vy,
2 bas D apand 3oayz X by, Q)
Ji €Sy Jie3JuT, Ji€3a, Ji €3 VT,

then any permutation m, , from the set S, , and any permutation =, ; from the set S, ; form a single-element

dominant set DS(7') for the uncertain problem J 2‘%’ <p; <by, n < 2‘ Ch

If the first inequality in condition (2) (in condition (3), respectively) holds, then <{751,2}, S2,1>gS
C_..One

max

ax*

(<S1, 25 {n2,1}> c §) is a dominant set of schedules for the uncertain problem J2‘aij <p;<b; n<2
needs to determine only orders for processing jobs from the set 3, | (the set T, ,, respectively). In each this set
all jobs have the same machine route.

The uncertain flow-shop problem F Z‘aij Spy < bij‘C

max

is a special case of the uncertain job-shop prob-

lem J Z‘ay. < pySby, m < 2‘Cmax. In the flow-shop problem, all jobs have the same machine route on both

machines and a schedule is determined by the permutation ;. The uncertain (interval) flow-shop problem
F 2‘aij < p; < b,.j‘CmaX with the job set I=3, , (J,,=37,=3, =) and the uncertain (interval) flow-shop
problem F2‘alj <p; < by.‘Cmax

(interval) job-shop problem J 2‘% <p;<b

ij’
job-shop problem J Z‘a,.j <p;<by, n< 2‘ C,

problems. It is sufficient to construct dominant sets for two associated uncertain (interval) flow-shop problems
F 2‘aij < p; < b,.j‘CmaX. The dominant set for the uncertain (interval) flow-shop problem F 2‘%’ <p; < bij‘CmaX
turns out to a set of job permutations, which contains at least one optimal permutation for the deterministic

with the jobset 3=3, | (3, , =3, =3, =) are associated with the uncertain

n; < 2‘C . As shown in [20], solving the uncertain (interval)

max

may be based on solving two associated uncertain flow-shop

ax

flow-shop problem F 2| p| C,,.x for each fixed scenario p € 7.

Theorem 1 [19]. Let the set S| , S, , be a set of permutations from the dominant set for the uncertain
flow-shop problem F2‘aij <p; < b[j‘C

max

with the job set 3=, ,. And let S, | = S, | be a set of permutations

Jrom the dominant set for the uncertain flow-shop problem F Z‘aij S p; S bl.j‘Cm

Then the set <S1' 2 S > c S is a dominant set for the uncertain job-shop problem J2‘al-j < p; < by,

with the job set 3=3, ,.
n, < 2‘C

max

ax

with the job set 3=3, U3, U3, ,UJ, .

We next consider the uncertain flow-shop problem F Z‘a,-j < p; < by" C,
remark, the following partition holds: 3, , =3, U3}, US| ,, where 3| ,= {Jl €3, by <a, }, 3;,=
_ ~ ~F ~
= {‘]1 € ~51,2|bi2 < ail}’ N {Jz € ~51,2|bi1 > ap, by > ail}‘

We prove the following necessary and sufficient conditions for the existence of a Johnson’s permutation, which

with the job set 3=73, ,. Due to

ax

is optimal for any scenario p € T, which is possible for the uncertain flow-shop problem F Z‘aij < p; <b; ‘ C,
with the job set I3=3 ,.

Theorem 2. There exists a Johnson'’s permutation, which is optimal for any scenario p € T for the uncer-
with the job set 3=3, ,, if and only if, the

ax

tain (interval) flow-shop scheduling problem FZ‘aij Sp; S bij"cmax
following conditions hold:
a) for each pair of jobs J, € S} ,and J; € Si , (jobs J, € 312 yand J; € 312 2, respectively), either b, < a; or

1

b; < ay (either b, < a;, or b, < ay, respectively);

b) inequality <1 holds, and for job J. e Siz (if any), both inequalities a. > max{bﬂ|Ji € S%z} and

a., = max{bl.2|Ji € 3122} hold.

~*
<32
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Proof. Sufficiency. We consider the permutation m, = (Tcl, I, n2) such that, in the permutation «t', jobs
from the set S} , are located in the increasing order of the values b,, and in the permutation 7%, jobs from the

3, ,|=0, then t, = (nl, n° ) Due to remark, the

i
permutation 7, = (Tcl, Jes nz) is uniquely determined.

For the considered permutation w, = (Jil, Jisooos ;. ), condition (1) holds for any scenario p € T. Indeed,
for all indices k and m, 1 <k <m < n, ,, both inequalities (4) hold

min{pikl, pl.mz} < mln{b, b b 2} and m1n{ a; 1, a, 2} < mm{p, 1> Pi2 } 4)

If the inclusion J; € S}’ » U 3] , holds, then the inequality b, < a; ; holds. This assertion follows from condi-

tions a) or b) and from constructing the permutation rt'. If the inclusion J, € 312 , holds, then inequality b, , <aq;, ,

holds. Obviously, inequality k£ < m holds as well. If inequalities (4) hold, then condition (1) holds for all fea-
sible durations p, y, p; 1, P;,2> P; »

Similarly, one can analyse the case when J, € RNV Jl ;and J; € Jl ,, where k < m.
Necessity. Based on the contradiction method, we assume that the permutation 7, = (Jl.l, Jisoees d; )

exists such that condition (1) holds for all indices k and m, 1<k <m <n, ,, for any scenario p € 7, and at least
one condition @) or b) does not hold.
Assume that condition @) does not hold. If there exists a pair of jobs J; € S{ ,and J; € S} , with k£ <m, such that

both inequalities b, , > g, ; and b, , > a;  hold, we consider feasible operatlon durations a; 1S P 1 <Pi1<by.
Due to remark, there exists a real number p; , such that inequalities p; ;< b, ;<a; , < p; ,hold. Condition (1)
does not hold for indices k and m. Hence, the permutation 7, is not a Johnson’s one for scenarios 7. Similarly
a contradiction may be obtained, if there exists a pair of jobs J; € 312 ,and J; € 312 2 k<m.

Now, assume that condition b) does not hold. If there exist two jobs J; € 31, and J, € J),, k<m, we con-
sider feasible operation durations p, ; < p; , and p; , < p; ;. Condition (1) does not hold for indices k and m for
all scenarios p'eT. Forajob J, € 3}, with inequality a; 1<b,,, where J, € \SL ,, we consider feasible opera-
tion durations p, ; < p, ,and p; ; < p; ;. Condition (1) does not hold for mdlces k and m for all scenarios p'e T.

Similarly, one can test the case, when for job J; € 31 5, inequality a; ,<b, , holds, where J;, € ~51 ,- We

obtain the contradiction to the assumption that for the considered permutation 7, = (Jil, AR A ), condi-

U] In,
tion (1) holds for all indices k and m, 1 <k <m <n, ,, and for any fixed scenario p € T. Theorem 2 is proved.

Theorem 2 implies the following claim.
Corollary 1. If the conditions of theorem 2 hold, then there exists a permutation 7, , € S, ,, which is the

dominant singleton {nl 2} =DS, ,( ‘DS1 2 )‘ =1, for the uncertain (interval) flow-shop scheduling prob-
lem FZ‘a[ <p;<h

l]‘ max

with the job set 3=, ,.

Uncertain (interval) two-machine flow-shop scheduling problems
We consider the binary relation 4% on the set 3., based on the following definition.
Definition 3. For two jobs J, € 3, , and J, € 3, ,, u # v, inclusion (J,,, J, ) € A"? holds if and only if for any
scenario p € T, condition (1) holds with i, =« and i,, = v.
Due to definition 3, if inclusion (J,, J, ) € A"? holds, then for every scenario p e T, there exists a Johnson’s

permutation of the jobs from set J; , such that the job J, locates before job J,, u # v. In [20], it is shown

that for any scenario p € 7, there exists a Johnson’s permutation such that job J, € T, , locates before the job
J, €3, 5, x #y, 1f and only if at least one of the following conditions holds:

by<a,, and b, <a,, (5)
b,<a, and b, <a,,. (6)
For constructing the binary relation AE , one can check conditions (5) and (6) for pairs of jobs from the set

3,.,- Next, we prove two theorems about properties of the relation A-2
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Theorem 3. [f (Ju, Jv) € AE 2 then there exists a dominant set for the uncertain (interval) flow-shop sche-
duling problem FZ‘aij < Dy < b,.j‘C

max

with the job set 3, ,, such that job J, locates before job J,, u # v, in all
permutations from the dominant set DS, ,(T).
Proof. Let the inclusion (J,, J,)e 4%? hold. We consider an arbitrary possible scenario p'e T. Due to

definition 3, there exists a Johnson’s permutation n’ of the jobs from the set J, , with the job J, located
before the job J,, u # v. The permutation ©’ is an optimal permutation for the individual flow-shop problem

F2|p'|C,
p € T. Thus, the set DS, , (T ) contains at least one optimal permutation for the individual deterministic problem

o With the job set =3, ,. Let DS, ,(7T) be a set of all such permutation constructed for all scenarios
F 2| p|Crnax for each scenario p € T. Therefore, the set DS; 2(T ) is a dominant set for the uncertain (interval)
flow-shop problem F 2‘a!-/- < p; s bij‘C

‘nax With the job set 3= 3, ,. In each permutation from the set DS, ,(T),
job J, locates before job J,, u # v. This completes the proof of theorem 3.

Theorem 4. The binary relation A-* is a strict order

Proof. We have to show that the binary relation AE ? is anti-reflexive, asymmetric, and transitive. Due to
definition 3, the binary relation AE 2 is defined only for u # v. Thus, the relation Ak % is anti-reflexive. If the inclu-
sion (J,, J, ) e A"%? holds, then condition (1) holds with i, = « and i, = v for any scenario p € T and the following
inequalities hold:

min{p,;, p,,} <min{b,, b, } <min{a,, a,,} <min{p,,, p,.}- (7
On the other hand, due to remark, the following inequalities hold:
min{a,,, a,,} <min{b,, b, } and min{a,, a,,} <min{b,, b,,}. )

From inequalities (7) and (8), we conclude that min{b b 2} > min{aul, av2} and inequality (1) does not

vl> “u
hold for i, = v and i,, = u for scenarios p € T. Thus, (J,, J, ) ¢ A"? and the binary relation 4 is asymmetric.

We prove the transitivity. Let there exist three jobs J, €3, ,, J, €3, , and J,, € 3, , with the inclusions
(J,, J,)e4:2, (J,, J,)e A%? and condition (J,, J, ) & A%>. For the jobs J, and J,, similarly as for the jobs

J, and J,, at least one of conditions (5) and (6) holds with x = u and y = v, and x = v and y = w, respectively.
We must consider the following four cases:

Ob,<a,,b,<a,,b,<a,andb,<a

ambs,<a,,b,<a

ul = u2s Yul = “vl»

(HI) bv2 aS ay, va = A5 bvl < %) and bvl = Ay

(IV) bv2 < a,, bv2 < s bw2 < a,, and be < Q.

In case (III), we obtain the contradiction to remark. Indeed, in case (III) due to remark, we obtain the fol-
lowing contradictory inequalities: b,, < a,, < b, < a,, <b,,.

We have to consider the remaining three cases (I), (II) and (IV).

Note that for the jobs J, and J,,, neither condition (5), nor condition (6) holds with x =« and y = w, which
could happen only in one of the following four cases.

1. Inequalities b,, > a,, and b, , > a,,, contradict to the cases (I), (II) and (IV).

2. Inequalities b,, > a,, and b, , > a,, contradict to the cases (I) and (II).

Furthermore, from the inequalities of case (IV) and remark, we obtain the contradictory inequalities as
follows: b, >a,, 2 b, >a,, >2b,,.

3. Inequalities b,, > a,,; and b, > a,, contradict to cases (II) and (IV).

Furthermore, from case (I) and remark, we obtain the contradictory inequalities as follows: b, > a,,, 2 b, >
>a,2b,.

41. Conlsider inequalities b, > a,,, and b, > a,,.

From the inequalities of cases (I) and (IV), we obtain the same contradictions as in the cases 3 and 2, respec-
tively. From case (II), we obtain the following contradictory inequalities: a,, <b,,<a,, <b,<a,,

w.

Thus, for any three jobs J, € T, ,, J, € 3, , and J € T, ,, we obtain that the inclusions (Ju, JV) e A% and

e

b,<a,andb,<a,,;

w2 —

(J,, J, ) e A%* imply the inclusion (J,, J, ) € A% 7. Therefore, the binary relation 4% is transitive. Theorem 4
is proved.
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Definition 4. Two jobs J, €3, , and J, €3, ,, x # y, are conflict jobs if the following relations hold:
(Jir J, )& A7 and (J,,, J, ) & 457,

Definition 5. The subset I, < J, , is called a conflict set of jobs if for any job J, € T, ,\T,, either relation
(Jx, J, ) € AE % or relation (Jy, J, ) € AE ? holds for each job J,. €3,, provided that any proper subset of the
set 3, does not possess such a property.

Obviously, there may exist several conflict sets in the set T, ,. The permutation 7, = (J[l]’ Jiaps oo I, 2])
is determined by the partial strict order 4% if each inclusion (Jx, J, ) e 4% implies the following form of this
permutation: T, =(..., Jes ooty Jy, )

Let I, , denote a set of all permutations determined by the partial strict order 452

Theorem 5. There exists a dominant set DS, 2(T ) =11, , for the uncertain (interval) flow-shop scheduling
problem FZ‘aij <p; < bl.j‘Cmax with the job set 3, ,.

Proof. Based on the contradiction method, we assume that for an arbitrary scenario p € 7, there is no

Johnson’s permutation in the set I, , for the deterministic flow-shop scheduling problem # 2| p| C,ax With the
scenario p.
Due to constructing permutations of the set I, ,, the above assumption means that there exists at least one

pair of jobs J. €3, , and J, € J, , such that inclusion (Jx, J, ) e 4" holds, whereas condition (1) with i, =y
and i,, = x holds as the following strict inequality:

min{p,,, po} <min{p,., p,,}. 9)
Due to definition 3, we obtain the following non-strict inequality:
min{b,, b,,} <min{a,,, a,}. (10)

From inequalities (9) and (10), we obtain the following contradicted inequalities:
min{pyl, sz} < min{pxl, Pyz} < rnin{bxl, byZ} < min{ayl, axz} < min{pyl, sz}-

Therefore, there exists a Johnson’s permutation for the problem F2|p|C,,, in the set IT, ,. Due to the arbi-
trariness of the choice of the possible scenario p € T, the set I1; , contains an optimal Johnson’s permutation

for the individual deterministic flow-shop problem F 2| p|Cm for each fixed scenario p € T. Due to defini-

ax
tion 2, the set II, , is a dominant set for the uncertain problem F 2‘% S p; S bij‘Cmax
Theorem 5 is proved. '

Let the strict order 4% for the uncertain (interval) flow-shop scheduling problem F Z‘aij <p; < bi,.‘Cmax
with the job set 3, , be represented as follows:

Jlﬂ J2’ AR Jk’ {Jk+1’ Jk+2’ R Jk+r}’ Jk+r+1’ Jk+r+2’ AR Jnl’zﬂ (11)

where all jobs between the brackets are conflict jobs and each of these jobs is found in relation AE ? with any
job located outside the brackets. Thus, jobs in the brackets make up the conflict set. The order of jobs in the
brackets may be different in the optimal permutation (depending on the used scenario p € T') but they still cor-
respond to the binary relation AE 2,

The following sufficient conditions for checking the optimal order for processing jobs of the conflict set
were proved in [19, theorems 10-12].

Let the strict order 4" * over the set 3,., have form (11). If for the permutation &t = (Jl, ceos s Sists s oen

with the job set 3, ,.

v Ty Sii g oo )eHLz, one of the following inequalities holds:

n,2
k+r k
ba< Y ant Yapn, (12)
i=1 JieJUJ,, j=1
k+s-1
by < a; 5 + (aj,z—bj,l),se{l, 2,...,r}, (13)
Ji €3, V3, Jj=1
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r+1

Z Aoin 2 Z bk+j,2,se{l,2,...,r}, (14)

i=r—s+2 Jj=r—s+1
then the set S'= <{ } IT,, 1> c § is a dominant set of schedules for the uncertain (interval) job-shop problem

J2‘alj <Sp;<by, m< 2‘ 'ax With the job set 3

Condition (12) does not use the order of the jobs in the conflict set. So, the order of jobs in the conflict set
{Jk IETS/ AT r} may be arbitrary. Based on the second criterion of the maximisation of the sum ZWI-

of weights of the completed jobs, if condition (12) holds, we propose to locate the jobs in the conflict set in the
non-increasing order of their weights.
On the other hands, to check conditions (13) and (14), one must first determine the order of jobs in the con-

flict set {Jk+17 Tt ens Jk+r}, €. g.,as (Jk+1, Jiiaseees Jk+,). Therefore, to check conditions (13) and (14),

it may be needed to consider all 7! possible permutations of the conflicting jobs. In [20], it is noted that it is
enough to check conditions (13) and (14) for only one permutation, and it is also shown how such permutations
can be constructed (see the algorithm from [19]). The following procedures 1 and 2 are close to the algorithms de-
scribed in [19] and are intended to constructing permutations to check the fulfillment of conditions (13) and (14),
respectively. Procedure 1 (procedure 2) constructs a permutation such that condition (13) (condition (14), respec-
tively) are most likely to be satisfied.

Procedure 1. Construction of the permutation of conflict jobs by checking condition (13).
Step 1: for each job J; from the conflict set, test if inequality a; , — b, | 2 0 holds then J, € &, else J; € T,.

1,

Step 2: construct the permutation 7, as follows: if inequality b, | < b< , holds then &, = (, A Jj, )

Step 3: construct the permutation 7, as follows: if inequality a; , > a; , holds then =, —( R A )

Procedure 2. Construction of the permutation of conflict jobs by checking condition (14).
Step 1: for each job J; from the conflict set, test if inequality a; ; — b, , > 0 holds then J; € &, else J; € 7,.

1,

Step 2: construct the permutation m, as follows: if inequality b, , > b; , holds then 7, = (, Jisoies Iy, )

Step 3: construct the permutation 7, as follows: if inequality a; < , holds then m, —( U A Jj, )

Note that if there exist several conflict sets in the job set J, ,, one can check conditions (12)—(14) sequentially
for each conflict set. Indeed, conditions (12)—(14) do not use the order of jobs from the set {Jk ire2s o I }
On the other hand, if the job set {J;, J,, ..., J; } (the job set {Jk+r+17 oo S 2}, respectively) is empty, one

cannot check condition (13) (condition (14), respectively).

One can consider the uncertain (interval) flow-shop problem F Z‘ay <p; < with the job set 3=3, ;.

The partial binary relation A ! determined on the set 3, of the jobs may be 1ntr0duccd similar to definition 3.
Note that conditions of thcorcms 2-5, corollary 1, and conditions (5), (6) and inequalities (12)—(14) may
be reformulated similarly. The conflict jobs J, € 3, ; and J, € 3, | and a conflict set of jobs T, = T, | can be
investigated similarly.
Note that theorems 2—5 and corollary 1 are proved for the uncertain (interval) flow-shop problem F Z‘a

<py<b C

max?

IS
where all jobs have interval durations unknown before scheduling. If there exists a non-empty
subset of the jobs with fixed durations known before scheduling, then the binary relation 4% on the set 3
may become different.

Scheduling algorithms

For scheduling jobs for a long period (e. g., for a month), we consider the uncertain (interval) two-machine
job-shop scheduling problem J Z‘ay < py<by, m < 2‘Cmax, Z ZUZ. with the following ordered criteria:

ij>
minimising the makespan (it is a main criterion), maximising the sum ZWi of job weights (the second crite-
rion) and maximising the total number of the jobs ZUI. that are completed not later their due dates (the third
criterion).

Each day, both employees have § working hours of 800 units of time. Each unit of time corresponds to 30 s
(10 min for each hour is set aside for the rest). It is assumed that 20 new jobs are arrived every day. Some of
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these jobs should be processed only by one of the employees (first or second), some jobs should be processed
by the first employee and then by the second employee. The remaining jobs should be processed by the second
employee and then by the first employee.

For every job, the lower bound a; and the upper bound b;, 0 <a; < b;, of the operation processing times
and the job weights w, are determined before scheduling.

Due dates for all jobs are assumed to be equal to 800. The integer weight w; from 1 to 5 is assigned to each
job that determines the importance of this job. The set 3, of jobs available at the beginning of the new working

day is sorted in the non-increasing order of the weights of jobs. The set S(d ) of jobs that will be completed on

that day are selected as long as the following inequality holds: z (ai’1 +a;, ) <2 -800.
Je3

Based on the sufficient conditions presented in the previous lseciions, algorithm 1 has been developed, for
constructing a daily pair of permutations of the selected jobs for both employees. As a result of executing
algorithm 1, a pair of job permutations (', ") of the form ((nl,z, T, 71:2,1), (nz,l, T, 751,2)) will be con-
structed. First, we check sufficient conditions (2) and (3) and conditions of theorem 2 that the pair of job per-
mutations (n', n’) is optimal for the individual deterministic scheduling problem J 2| p,m; < 2| ax With any
fixed scenario p € T. If the pair of job permutations (n , T ) is not constructed, the binary relation AL 2 on the
set 3, , (the binary relation A% on the set 3, 1> respectively) must be constructed and conflict sets of jobs are
identified. Then, conditions (12)—(14) must be checked to resolve the conflicts. We arrange jobs from the sets
3, and J,, and in some cases jobs from the sets 3, , and J, |, in the non-increasing order of their weights to
improve the value of the second criterion. The constructed i)air of permutations (n', n”) may be optimal for
all scenarios (with the proof of the optimality, if the above sufficient conditions hold), or the constructed pair
of permutations (n’, n”) may be optimal for the factual scenario but without the proof of the optimality, or the
constructed pair of permutations (7', ©") is non-optimal for the makespan criterion.

Algorithm 1

Step 1: construct the permutation 7, of jobs of the set J, and the permutation m, of jobs of the set J,.

Step 2: if the first inequality in (2) holds then begin to construct the permutation 7, , of jobs from the
set 3, , if the second inequality in (2) holds then construct the permutation n, | of jobs from the set T, ;| endif.

Step 3: if the first inequality in (3) holds then begin to construct the permutation 7, | of jobs from the
set 3, ; if the second inequality in (3) holds then construct the permutation , , of jobs from the set 3, , endif.

Step 4: if both permutations w; , and 7, ; are constructed then goto step 13.

Step 5: if the permutation n; , is constructed then goto step 12.

Step 6: if for jobs from the set 3,., conditions a) and b) hold then construct the permutation =, , =

= (Tc} 5 3, 2), where 7 , is a permutation of jobs from the set 3} , located in the non-decreasing order

of values b, | and ni , 1s a permutation of jobs from the set Sf , in the non-increasing order of the values b, ,
goto step 11.

Step 7: construct binary relations A1 % over the set 3,,, using conditions (5) and (6).

Step 8: select all conflict sets of JObS in the set 3,

Step 9: for each conflict set of jobs do if condltlon (12) holds then construct the permutation of the conf-

lict jobs else begin to implement procedure 1 and construct the permutation (nl, nz) if condition (13) does

not hold then begin to implement procedure 2 and construct the permutation (TC2, T ); if condition (14) does not

+ b
hold then construct a Johnson’s permutation for the conflict jobs for their processing times p;; = % 3 . endif,

endif, endif, enddo, endfor.

Step 10: construct a permutation m; , generated by the linear order Akz with permutations obtained in
step 9 for jobs from the conflict sets.

Step 11: if the permutation 7, , is constructed then goto step 13.

Step 12: repeat steps 6—11 by replacmg the set 3, , by the set 3, ;, the machine M, by the machine M,, the

strict order 4%% by the strict order 4%, and vice versa.

Step 13: construct pair of permutations (7', ©") =((n1’2, T, n2,1)’ (nz’l, T,, nl’z)).
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Note that steps 2 and 3 take O(max{nl’ 2 My }) time. Step 6 takes O(nl’ , logn 2) time. The construction
of a binary relation at step 7 is based on comparing no more than n; 2(”1, ,— 1) pairs of jobs from the set J, ,,
which takes no more than O(nl’z(nl’2 - 1)) time. Checking conditions (12)—(14) at step 9 requires O(r)
time, where the conflict set contains » jobs. Constructing a permutation of 7 jobs (procedures 1 and 2) takes
O(rlog r) time. Therefore, the total complexity of step 9 is O(rlog r). Since step 7 is performed at most once
per set 3, , and per set 3, ;, we conclude that the complexity of algorithm 1 is O(n2 )

The jobs are processed respecting to the constructed permutations (Tc', n") until the beginning the next job
does not go beyond the working hours for each employee.

For the uncertain (interval) job-shop problem J 2‘% < p;Sby,m< 2‘ ' nax Z ZUZ with ordered cri-

ZWi and ZUZ., one calculates the values of criteria C,,, (d), Zwi ) and ZU,- (d) per day d.

After a schedule realisation, the actual durations p} of all the operations become known. From that time, it
becomes possible to determine the optimal Jackson’s pair of permutations and calculate the factual values of
criteria Zwl* (d ) and ZUi*(d ) per day d. Relative errors of the constructed schedules respecting to the fac-
tually optimal schedules are calculated as follows:

Ao ()= Sl Conl D) 5 0) - 2D 20D 5y ) - 2800) - 2.019)
Cmax(d) ZWI (d) Zl]l (d)
All jobs that were not selected, as well as jobs that were not completed during the working day are available
for processing next day. New 20 jobs will be added to them.

teria C

max?

Computational experiments and results

We next describe the conducted computational experiments and discuss the computational results obtained

for randomly generated instances of the uncertain job-shop problem J2|a; < p; <b;, n; <2|C,,.. The follo-
wing algorithm was used in the experiments.

Algorithm 2 for computational experiments
Input: job set I=J, U I, U T, , U3, . Lower bound a; and upper bound b;, 0 < a; < b, of feasible du-

l] 2
rations of operations O, for jobs J; € I3 and machines M; € M
Output: conclusion that the problem J Z‘alj < p;j S by, n, <2|C,,,, was solved either exactly or heuristically.

l] > max

Total number of conflict sets and number of properly resolved conflict sets.

Stepl:seta=0,b=0,c=0,cs=0.

Step 2: if the first inequality in (2) holds then begin a := a + 1 if the second inequality in (2) holds then
b :=b+ 1 endif.

Step 3: if the first inequality in (3) holds then begin b := b + 1; if the second inequality in (3) holds then
a:=a+ 1 endif.

Step 4: if @ > 1 and b > 1 then goto step 17.

Step 5: if @ = 1 then goto step 14.

Step 6: if for jobs from the set J; , COl‘ldlthI‘lS a) and b) hold, then begin a := a + 1 goto step 13 endif.

Step 7: construct binary relations A over the set 3J, , using conditions (5) and (6).

Step 8: select all conflict sets of JObS inthe set 3, ,.

Step 9: set number of conflict sets nc = 0 and n =0

Step 10: for each conflict set of jobs if condition (12) holds then 7 := n + 1 else implement procedure 1

for constructing the permutation (nl, nz) if condition (13) holds then » := n + 1 else implement procedure 2 for
constructing the permutation (nz, nl) if condition (14) holds then » := n + 1 endif, endif, endif, endfor.

Step 11: set ¢ :=c+ n; cs :=cs + nc.

Step 12:if n=n_ thena:=a+ 1.

Step 13: if » > 1 then goto step 17.

Step 14: perform steps 612 by replacing the set 3, , by the set 3, |, machine M, by machine M,, the strict
order Ai 2 by strict order Ai’ La by b, and vice versa.

Step 15:if ¢ > 1 and b > 1 then goto step 17.
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Step 16: stop. «The problem is solved heuristically; total number of conflict sets ¢», «number of properly
resolved conflict sets cs».

Step 17: stop. «The problem is solved exactly; total number of conflict sets c¢», «number of properly re-
solved conflict sets cs».

Algorithm 2 is polynomial in the number 7 of jobs and its asymptotic complexity is O(n2 ) All developed

algorithms were coded in C# and tested on a personal computer with Intel Core 17-7700™ 4 Quad, 3.6 GHz,
and 32.00 GB RAM. In the computational experiments, we tested series of randomly generated instances for
the 1000-day period. Generated instance for every day consisted of 20 jobs.

The generation of lower bounds a;; and upper bounds b;; for possible values of the durations p;; of the ope-

rations Oij, Py € [aij, bij ], was organised as follows. A value of the lower bound a; was randomly chosen from

the segment [10, 1000] using the uniform distribution. With the given value of the maximum relative length &

of a segment of possible durations of the operations O, the upper bound b;; was calculated using the following

equality: b; =ay [l + %) A maximum relative length & of the segment of possible durations of operations Oy

was equal to the following values: 5 %, 10 %, 11 %, 12 %, 13 %, 14 %, 15 %, 16 %, 17 %, 18 %, 19 %, 20 %,
30 %, 40 %, 50 %. The bounds a;; and b;; were decimal fractions with the maximum possible number of digits
after the decimal point.

Based on remark, for instances of the problem J 2‘%‘ <p;<by,
guaranteed for each job J; € J and each machine M; € M. We tested 9 classes of the randomly generated in-
stances of the problem J2|a; < p; <b;, n; < 2‘ C,

jobs in the subsets 3, J,, 3, ,, I, | of the set J. The computational results are presented in the following table.

n; <2|C

max» @ Strict inequality a;; < b;; was

« With different ratios between values n; : n, : n; , : n, ; of

Computational results for the randomly generated instances

Class of the tested J

instances 5% [10% [ 11% [ 12% | 13% | 14% | 15% | 16 % | 17 % | 18 % | 19% | 20 % | 30 % | 40 % | 50 %

myinyiny gy =25%:25%:25%:25%
Solved tests, % 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100
Conflict sets 6 | 19 | 22 | 25 | 28 | 22 | 35 | 35 | 53 | 51 | 60 | 70 | 139 | 250 | 339
Solved conflicts 6 | 19 | 22 | 25 | 28 | 22 | 35 | 35 | 53 | 51 | 60 | 70 | 139 | 250 | 339
Solved conflicts, % | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100

npinying iy =10%:10%:40 % : 40 %
Solved tests, % 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 99.9 | 100 | 100 | 100 | 100 | 99.9 | 99.5
Conflict sets 235 | 531 | 567 | 645 | 692 | 743 | 811 | 807 | 851 | 952 | 992 | 1032|1341 | 1450 | 1424
Solved conflicts 235 | 531 | 567 | 645 | 692 | 743 | 811 | 807 | 850 | 952 | 992 | 1032|1341 | 1449 | 1419
Solved conflicts, % | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 [99.88| 100 | 100 | 100 | 100 |99.93|99.65
nyinying g iny =10%:40 % : 10 % : 40 %
Solved tests, % 99.7199.6 {99.3 9951993 | 99 |993]99.1 982 ]98.5[983]985|953| 91 |84.6
Conflict sets 466 | 830 | 884 | 887 | 1002|1008 | 1057|1116 | 1166|1166 | 1176 | 1244 | 1433 | 1467 | 1501
Solved conflicts 463 | 826 | 877 | 882 | 995 | 998 (1049|1107 | 1148 | 1151 | 1158 | 1229|1385 | 1375|1345
Solved conflicts, % {99.36(99.52199.21{99.44|99.30|99.01{99.24199.19|98.46|98.71(98.47|98.79|96.65[93.73 |89.61
nyinying iy =10%:30%:10%:50 %
Solved tests, % 99.9199.4199.5]99.2|99.3|993 (984 | 98 |97.9|98.1[97.8|97.5]|94.7|85.6]|75.1
Conflict sets 767 | 123212351361 | 1399|1436 | 1489 | 1596 | 1623 | 1627 | 1638 | 1680 | 1762|1770 | 1724
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Ending of the table

Class of the tested
Instances 5% [10% | 11% | 12% | 13% [ 14% | 15% | 16 % | 17% | 18 % | 19 % | 20 % | 30 % | 40 % | 50 %

Solved conflicts 766 | 1226 (1230|1351 1392|1429 |1472|1576|1601 | 1608 | 1615 | 1653 | 1709 | 1622 | 1468
Solved conflicts, % [99.87(99.51(99.60{99.27{99.50|99.51|98.86[98.75|98.64|98.83[98.60(98.39|96.99|91.64|85.15
nyinying o, iny=10%:20%:10 % : 60 %
Solved tests, % 99.7198.8199.2199.6 983 (98.698.8| 99 |97.7]|982]97.8]97.6|89.9|804| 63
Conflict sets 1034|1601 | 1653 | 1758 | 1829 | 1880 | 1904 | 1949 | 2013 | 2054 | 2012 | 1984 | 2113 | 1968 | 1845
Solved conflicts 1031|1588 | 1645|1754 | 1812|1865 | 1891 | 1939|1990 (2035|1989 | 1959 |2010|1770| 1471
Solved conflicts, % [99.71]99.19(99.52(99.77|99.07|99.20(99.32{99.49|98.86|99.07|98.86|98.74|95.13 |89.94|79.73
npinying iy =10%:10%:10 % :70 %
Solved tests, % 99.8199.3199.4|98.6|98.5(984|97.2|97.7|96.6| 96 |96.6|95.5|859 675|507
Conflict sets 1432119882043 | 2156 | 2192|2234 2273|2306 | 2324 | 2342|2376 | 2345 | 2222|2119 | 1952
Solved conflicts 1430 | 1981|2035 (2142|2176 |2218 | 2245 | 2283 | 2289 | 2301 | 2338|2299 | 2080 | 1786 | 1447
Solved conflicts, % [99.86[99.65(99.61|99.35(99.27|99.28|98.77(99.00|98.49|98.25(98.40|98.04|93.61|84.29|74.13
nyinying Ny =5%:20%:5%:70 %
Solved tests, % 98.8196.7196.8 964 |94.1 939 (93.3]92.6(90.4|90.1|88.2|86.9|71.4|52.1]|34.38
Conflict sets 1353|1993 |2119|2165|2210|2247 2325|2337 2263 | 2355|2286 (2343 2210|2091 | 1941
Solved conflicts 1340 | 1959|2081 2126|2147 2182|2257 2261 | 2164 | 2252|2164 | 2206 | 1909 | 1591 | 1268
Solved conflicts, % [99.04|98.29(98.21(98.20{97.15|97.11 {97.08(96.75|95.63|95.63|94.66|94.15|86.38|76.09|65.33
npinying iy =5%:15%:5%:75%
Solved tests, % 99 196.5[956[958(94.2(922193.4| 91 |89.6 909 |88.2|84.7|68.7|49.2]30.8
Conflict sets 147512242 (2330|2354 | 2411 | 2360 | 2450 | 2532 | 2489 | 2516 | 2580 | 2514 | 2340|2103 | 1952
Solved conflicts 1465|2207 |2285|2309 | 2352|2278 | 2381 | 2436 | 2377 | 2419|2456 | 2351 | 2014 | 1577 | 1244
Solved conflicts, % [99.32(98.44|98.07|98.09(97.55|96.53|97.18(96.21|95.50|96.14{95.19|93.52|86.07|74.99|63.73
npinying iy 1 =5%:5%:5%:85%
Solved tests, % 98.8 1949|958 (93.7(92.8(93.7(90.4|889|87.8|87.9|858|82.2|6l1.1|41.9|242
Conflict sets 1896 | 2585|2627 | 2688 | 2714|2810 (2763 | 2766 | 2827 | 2808 | 2791 | 2777 | 2532 | 2220 | 2063
Solved conflicts 188325322583 |2623 2638|2743 | 2658 | 2647 | 2701 | 2681|2641 | 2591 | 2111 | 1599 | 1272
Solved conflicts, % [99.31({97.95|98.33|97.58197.20|97.62|96.20(95.70|95.54|95.48|94.63(93.30|83.37|72.03|61.66

For each class of the tested instances and for a fixed value of the maximum relative length 8, the computatio-
nal results are presented in four rows. The row «Solved tests, %» determines the percentage of days from the

1000-day period when the pair (n’, n”) of the job permutations constructed using algorithm 2 for a daily schedule
was optimal for all possible scenarios p € T for the generated uncertain problem J2\a;; < p; < by, n, <2|C,

i i max”*

The row «Conflict sets» presents a total number of conflict sets of the jobs in the partial strict orders AEZ
on the job sets J; , and partial strict orders Ai’l on the job sets 3, | constructed by algorithm 2 for 1000 days.
The row «Solved conflicts» is equal to the total number of cases, where algorithm 2 constructed the permutation
of all jobs from the conflict set, which was optimal for all possible scenarios p € T. Note, the instance may
have be more than one conflict set, and failure to resolve even one of them leads to unoptimality of the entire
instance. The row «Solved conflicts, %» presents a percentage of the ratio of solved conflicts to the total num-
ber of conflict sets in 1000-day series. Average percentages of the instances solved optimally by algorithm 2
are presented in figure.
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From figure, one can conclude that if value 6 does not exceed 20 %, algorithm 2 found the optimal permu-
tation in more than 90 % of tested instances. As § increases, this value begins to fall. At & = 50 % for some
classes, the number of optimally solved instances is more than 20 %. For some classes of problems (25 % :
25 % :25% :25 % and 10 % : 10 % : 40 % : 40 %) algorithm 2 optimally solved all tested examples for all
relative errors 9.

Conclusions

We investigated the uncertain problems of constructing schedules for the execution of selected jobs by two
performers. Only the lower bound a;; and the upper bound b, for durations of any job J; € I were known before
scheduling. We proved theorem 2 for necessary and sufficient conditions for the existing optimal schedules for
two performers and theorems 3 and 5 for sufficient conditions for the existing dominant set of schedules with
a fixed order of two jobs. For the existing dominant set of schedules with fixed orders for job pairs, the binary
relation was constructed. It was proven that this binary relation is a strict order (theorem 4).

Based on the proven results, efficient algorithms were developed for solving the uncertain job-shop prob-

lem J2|a; < p; < by, n,<2|C,

lj >
algorithms for time-management, the computational experiments were conducted for evaluation of a 1000-day
period for drawing up daily schedules for two performers. Every day, 20 jobs were received for the execution.

n, < Z‘C was solved. The job-

either exactly or heuristically. For testing the effectiveness of the developed

ax

max

For planning jobs for a day, the uncertain job-shop problem J Z‘aij < p; <by,

shop problem J Z‘aij <Sp;<by, m< 2‘ Cax> ZWZ-, ZUI- was solved for time-management during a month.

jja

In the uncertain scheduling problem, three criteria C

max?

Zwi and ZU,- were optimised in the fixed priority
order. Minimisation of the schedule length C,,, was a main criterion, maximisation of the ZWI. was a second
criterion, and maximisation of the ZUZ. was a third criterion. A personal computer was used for selecting im-

portant jobs for two performers and drawing up optimal schedules for their implementation.

The computational experiments conducted on randomly generated uncertain scheduling problems showed
that the use of the job permutations constructed by the developed algorithms provided optimal schedules in
more than 90 % tested cases (20 % tested cases, respectively) if a maximum relative length of job duration

segments [aij, bl.j] does not exceed 20 % (50 %, respectively).

A promising research direction may be connected with the application of the mixed graph colouring me-
thod [23] to scheduling personal jobs in the time-management framework. One can assume that the scheduling
problems arising in the time-management have equal processing times of the operations since breaks are needed
for people after approximately equal times of the activity.
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