
65

Дискретная математика и математическая кибернетика
Discrete Mathematics and Mathematical Cybernetics

О б р а з е ц   ц и т и р о в а н и я:
Матвейчук НМ, Сотсков ЮН. Оптимальный выбор и пла-
нирование работ с неопределенными длительностями для 
двух сотрудников. Журнал Белорусского государственного 
университета. Математика. Информатика. 2024;2:65–80 
(на англ.).
EDN: LCOGKF

F o r  c i t a t i o n:
Matsveichuk NM, Sotskov YuN. Optimal selection and sche
duling of jobs with uncertain durations for two employees. 
Journal of the Belarusian State University. Mathematics and 
Informatics. 2024;2:65–80. 
EDN: LCOGKF

А в т о р ы:
Наталья Михайловна Матвейчук – кандидат физико-ма-
тематических наук, доцент; заведующий кафедрой автома-
тизированных систем управления производством агроэнер-
гетического факультета.
Юрий Назарович Сотсков – доктор физико-математических 
наук, профессор; главный научный сотрудник лаборатории 
математической кибернетики.

A u t h o r s:
Natalja M. Matsveichuk, PhD (physics and mathematics), do-
cent; head of the department of automated systems of produc-
tion control, agri-power faculty.
matsveichuk@tut.by
https://orcid.org/0000-0002-4991-4271 
Yuri N. Sotskov, doctor of science (physics and mathematics), 
full professor; chief researcher at the laboratory of the mathe-
matical cybernetics.
sotskov48@mail.ru
https://orcid.org/0000-0002-9971-6169

Матвейчук Н. М., Сотсков Ю. Н. Оптимальный выбор 
и планирование работ с неопределенными длительностями 
для двух сотрудников	 65

Matsveichuk  N.  M., Sotskov  Yu.  N. Optimal selection and 
scheduling of jobs with uncertain durations for two employees	
80

УДК 681.32
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Аннотация. Количество потенциальных пользователей тайм-менеджмента в мире неуклонно возрастает в связи 
с необходимостью удаленной работы (в домашних условиях), учебы, преподавания, обслуживания и в целом орга-
низации профессиональной деятельности и частной жизни с минимумом личных контактов из-за распространения 
в 2020 г. коронавирусной инфекции COVID-19 и других опасных инфекций. Требуются совершенствование методик 
тайм-менеджмента и разработка новых алгоритмов и программных средств, которые позволят учитывать особен-
ности и потребности новых пользователей тайм-менеджмента. Такие задачи возникают в тайм-менеджменте при 
оптимальном выборе важных работ для двух исполнителей на определенный период времени и при составлении 
расписаний выполнения выбранных работ в условиях неопределенности длительностей планируемых операций. 
Представлены достаточные условия, алгоритмы, результаты компьютерных экспериментов по оптимальному вы-
бору и планированию взаимосвязанных работ для двух исполнителей (руководителя и подчиненного). 
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Abstract. The number of potential users of time-management in the world is steadily growing due to the emerging need 
for remote work (in a home office), distance learning, teaching, service and, in general, the organisation of professional 
activities and a private life with a minimum of personal contacts due to the spread of the coronavirus infection COVID-19 
since 2020 and other dangerous infections. This will require the improvement of the time-management techniques and 
the developments of new algorithms and software for them, which will take into account the peculiarities and needs of 
new users of time-management. Such problems arise in time-management for optimally selecting jobs for a given time 
interval and for constructing optimal schedules for processing jobs under conditions of uncertain operation durations. This 
article presents sufficiency conditions, algorithms, and computational results for selecting and scheduling connected jobs 
by two employees. 

Keywords: time-management; optimal schedule; uncertain processing times.
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Introduction
Time-management is used for optimally choosing and planning jobs with respect to personal goals and pro-

fessional activity. It includes choosing personal goals and objectives, long-term and short-term planning and 
the operational management of person’s affairs. 

Related works and research motivations. Article [1] examines the role of schedules in a social life. It brings 
into focus the main principles underlying a schedule, namely a temporal regularity involving the standardisation 
of the temporal locations of events and activities and their rates of recurrence and sequential. The discussion 
includes the constraints and the conveniences involved in using a personal schedule. As S. Eilon [2] notes, the 
use of time-management allows an employee to save up to 50 % of her (his) time on completing planned works, 
spending no more than 10 % of her (his) time on analysing and planning works during a day. Effective planning 
and scheduling can reduce the wasted time [3–5]. Article [3] suggests a structured approach based on the stra-
tegic and tactical time-management. The strategy is to write down a list of activities, establish priorities, and 
eliminate inessentials. The tactic is how to carry out essential activities with time-efficiency. Time-management 
is underpinned by the principle: there is no point in efficiently doing something that should not be done at all. 
There is a Pareto principle as follows: find out what is required and the value of alternatives. It is founded that 
80 % of the value can be achieved from 20 % of the effort (80/20 rule) [3].

As it is written in [4], managers can improve their managerial performance significantly through time-ma
nagement, which is a process that has to be proposed and understood by a manager since the inception of the 
managerial career. Prioritising tasks, preparing a to-do list, building a schedule and daily planning apart from 
being a good listener lead to managers who practice effective time-management and are generally successful 
in their profession and other domains. The 80/20 rule (a Pareto principle) is one of the most helpful of all con-
cepts of time-management. Understanding time-management habits and practicing effective time-management 
techniques help in improving one’s personal and managerial effectiveness.

There are articles [6–8] that examine results of time-management, and in particular, the impact of time-mana
gement on a student’s academic success. The hypothesis of study [6] was that efficient time-management, under 
the guidance of an educational counselor, leads to significant increases in students’ academic performances and 
so leads to academic success. Participants using time-management had above average or superior intellectual 
abilities. The educational counselor elaborated individualised and flexible programmes for each participant in 
the experimental condition according to students’ learning styles, circadian and eating rhythms and daily and 
weekly effort curves. The results of the conducted experiments confirmed the hypothesis showing the efficiency 
of time-management individualised programmes [6]. 

Descriptive study in [7] was conducted to determine nursing and midwifery students’ time-management 
skills in terms of their age, gender, and anxiety levels. It was demonstrated that nursing and midwifery students’ 
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time-management skills are at a mid-level point; female students were able to manage time better than male 
ones. The time-management skills of the students decreased as the anxiety level increased. The conclusion 
in [7] was that students are required to learn to manage time so that they are able to apply the same degree of 
efficiency in the profession they choose after completing their education.

Article [8] found that the indicator of a person’s creative abilities is significantly correlated with the use of 
a time-management technology. Thus, time-management is a technique that almost any individual can use to in
crease the effectiveness and efficiency of the working time including creative and scientific activities.

Selecting and scheduling most important jobs. People often strive to solve several problems at the same 
time, combining complex tasks during working hours. Situations arise when a person puts off important and ur-
gent work, which may be unpleasant or unusual for her (him), and strives to perfectly complete unimportant and 
even useless work. Such habits lead to a decrease in the likelihood of completing important tasks on time [9–11]. 
One of the valuable strategies often used for an effective implementation of time-management is the selection of 
mostly important jobs and their optimal planning [1; 4–6; 9; 12]. 

The importance of helping employees to plan their work from the very beginning is widely stated in the litera-
ture [4–7; 9]. A supervisor should assist the supervisee to devise a proposed schedule for activities to be undertaken 
and ensure that the schedule is followed. Such a plan will allow the structured and disciplined use of time of an 
employer [5]. It is suggested that dividing the work into smaller and more manageable units, which can be 
planned and controlled, makes a huge task more attainable. Identifying the expected dates for the completion of 
each phase is important. When devising a schedule, it is helpful to start with the expected date of the completion 
and work the phases from the deadline backwards [5]. Safety time can be built into the plan to allow for catch-up 
periods. Though it may seem tedious to plan time in such a detailed way, the results will be worthwhile. 

As written in [9], one of the key components of an organisation is maintaining an individual calendar. Many 
employees let their schedules dictate them. The first step is to make a to-do list and prioritise each item. One 
needs to be realistic about what one can achieve over the next day, week, or month. If the employee is (on one’s 
own) going over schedule, she (he) will be disappointed when she (he) fails to complete every job. The to-do 
list should be reviewed regularly, daily if possible, and revised as necessary. One needs to set aside time to plan, 
either first thing each morning or last thing in the evening to plan for the next day. It is important to do this daily 
or weekly as priorities may change over time [9].

Time-management makes it possible to more effectively select, plan and complete a significant number of 
jobs of varying complexity, which has a positive effect on the timing of necessary job, educational achieve-
ments and an increase in the quality of life [13; 14]. Optimal planning is a complex process, which requires 
time resources and human intellectual abilities. Organising the selected jobs can be a difficult task for the per-
former, requiring both additional time and certain skills. In addition, the user has to carry out the prioritisation 
of the planned jobs, as well as the ordering of the still unfulfilled and newly received jobs, many times over the 
entire planning horizon. It is advisable to use a personal computer (laptop or smartphone) as much as possible 
to automate the process of scheduling the planned jobs. 

A problem of minimising the total (average) weighted completion time of the planned jobs by one employee 
is considered in [15] provided that only lower and upper bounds of the possible processing time of each job 
are known before scheduling. Algorithms and software have been developed for constructing a permutation of 
the chosen jobs with the largest relative semi-perimeter of the optimality parallelepiped. Computational expe
riments on the computer showed the effectiveness of the developed algorithms for time-management. 

We consider the problems of creating optimal schedules for two employees. It will be shown how schedu
ling algorithms can be used to optimal time-management.

Optimal selection and scheduling jobs for two employees
The discussed publications [1; 3; 4; 6; 9; 12; 14; 15] include different techniques and procedures for time-

management, which are recommended to be used for planning the working time of a single employee. In our 
paper, we develop scheduling algorithms for two employees having a set of common jobs, e. g., for a supervisor 
and a subordinate. The aim of time-management is to create a job schedule for both employees during their 
working hours.

Consider the main features of such scheduling. The entire set of jobs consists of jobs of four types. Jobs 
that are performed firstly by a supervisor and then by a subordinate (e. g., a supervisor formalises a problem, 
outlines possible ways for solving it and delegates it to a subordinate). Jobs that are performed first by the su
bordinate and then by the supervisor (e. g., a supervisor checks the result of the job performed by a subordinate). 
There are jobs that are completely performed by a supervisor and jobs that are completely performed by a su
bordinate. It is naturally to assume that performing such a job consists of the execution of two or one opera-
tions. No repetition of the same concrete job is considered.



68

Журнал Белорусского государственного университета. Математика. Информатика. 2024;2:65–80
Journal of the Belarusian State University. Mathematics and Informatics. 2024;2:65–80 

The following key peculiarity is an uncertainty of the operation durations. Indeed, it is difficult to determine an 
exact time, which will be required for processing a job by a human. On the other hand, one can determine a lower 
bound and upper bound of the operation duration. In general, the duration of each operation may remain un-
known until the moment of completion of this job. At the moment of constructing an optimal schedule, a closed 
interval is known, which definitely contains all the possible operation durations of the planned job.

As it is written in [11; 12] and in many other papers on time-management, interruptions should be avoided 
while completing a job in progress (avoid unscheduled meetings, phone calls, and visitors). In addition to the 
direct loss of time, such interruptions cause the need to spend additional time for re-preparing the interrupted job. 

The selection of jobs to perform from the entire list of available tasks can be made in accordance with their 
importance for the employee. The different levels of importance of the jobs can be represented in the form of 
the weights of the jobs to be fulfilled in the planning horizon. The criterion for the effectiveness of time-ma
nagement is not only to achieve the goals set by a person, but also to complete her (his) work in the minimum 
possible time [16].

The constructed schedule must have a minimum length (it is the minimisation of makespan). Other criteria 
are to maximise the total weight of the completed jobs and to maximise the number of jobs completed in time. 
We use the terminology of the scheduling theory from [17] and the � � � classification from [18] for denoting 
the scheduling problems, where α specifies machine environments, β – job characteristics, and γ – objective 
functions. 

Setting of the scheduling problem. Let the set of jobs �� �� �J J Jn1 2, , ,  have to be processed by two 
performers � �� �M M1 2, . A weight (an importance) wi of the job Ji��  is determined. The supervisor is the 
first performer M1. The subordinate is the second performer M2. Jobs in the set ℑ may have different (techno-
logical) routes. This processing system is called a job-shop. The number of stages (operations) ni in the route 
of a job Ji�� does not exceed two (since there are two employees). The duration of operation Oij is denoted 
by pij, where Ji��, j�� �1 2, . The lower and upper bounds of possible duration pij are denoted as aij and bij, 
respectively. Thus, the uncertain (interval) job-shop problem is considered, where possible duration pij of the 
operation Oij must belong to the closed interval a bij ij, .�� ��

Remark. It is assumed that in the uncertain (interval) scheduling problem under consideration, all durations 
of the jobs are unknown before scheduling, i. e. the strict inequality aij < bij holds for each job Ji�� and each 
machine Mj ��.

Let Ci denote a moment of the completion of the job Ji��. We consider the following three ordered criteria: 
minimising a schedule length, i. e. makespan C C Ji imax max : ,� ��� �  maximising a sum of the weights of the 
completed jobs wi∑  and maximising a total number of jobs Ui∑  that are completed before their due dates Di, 
where Ui is equal to 1, if Ci ≤ Di, and Ui is equal to 0, if Ci > Di. Using the three-field notation � � �, the 
problem with uncertain operation durations is denoted as follows: J a p b n C w Uij ij ij i i i2 2� � � � �, , , ,max  
where three criteria Cmax, wi∑  and Ui∑  are linearly ordered, i. e. the main criterion is Cmax, the second crite-
rion is wi∑  and the third criterion is Ui∑ .

This paper continues the previous research works started in [15; 19–21] via extending the obtained results 
to the job-shop problem with three ordered criteria. In [15], the time-management problem for a single em-
ployee was investigated with the single criterion of minimising the weighted sum of the job completion times. 
The properties of optimal permutations existing for a flow-shop scheduling problem with the single criterion of 
the minimisation of a schedule length were investigated in [20; 21]. A similar properties of optimal permutations 
existing for a job-shop scheduling problem were investigated in [19]. It should be noted that papers [19–21] 
were devoted to the uncertain shop scheduling problems where non-strict inequalities a bij ij≤  hold for all given 
jobs Ji��, j�� �1 2, .

Uncertain (interval) scheduling problems 
Employees in time-management correspond to machines in the scheduling theory [15; 17–19; 22]. For schedu

ling jobs for a working day, we consider the uncertain two-machine job-shop problem J a p b n Cij ij ij i2 2≤ ≤ ≤, .max
 

The machine set � �� �M M1 2,  has to process the job set �� � �� �� ��1 2 1 2 2 1, , , where the subset ℑ1 2,  
includes jobs with the machine route M M1 2, ,� �  � �1 2 1 2, , .n  The subset ℑ2 1,  includes jobs with the opposite 
machine route M M2 1, ,� �  � �2 1 2 1, , .n  The subset ℑ1 (the subset ℑ2 ) includes jobs that must be processed by 
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the machine M1 (by the machine M2, respectively). Here � �1 1n , � �2 2n  and n = n1, 2 + n2, 1 + n1 + n2. All jobs 
are available for processing from the initial time t = 0. A preemption of any operation Oij of the job Ji�� on 
the machine Mj �� is not allowed. Probability distributions of random durations are unknown. In the reali-
sation of a schedule, a value of the processing time pij may be equal to any real number no less than the lower 
bound aij and no larger than the upper bound bij. 

A set of all possible vectors p p p p pn n� �� �1 1 1 2 1 2, ,, , , ,  of the operation durations is denoted as follows: 

T p a p b J Mij ij ij i j� � � �� �� �: , , .�  Such a vector p ∈ T of the possible durations is called a scenario. For 
a fixed scenario p ∈ T, the uncertain scheduling problem J a p b n Cij ij ij i2 2≤ ≤ ≤, max turns out into the deter-
ministic scheduling problem, which is the individual scheduling problem J p n Ci2 2, max≤  associated with the 
scenario p. 

The deterministic problem J p n Ci2 2, max≤  is solvable in 

O n n n nmax , log max ,, , , ,1 2 2 1 1 2 2 1� � � � �� �� �
time as it is noted in [22]. An optimal schedule for the individual scheduling problem J p n Ci2 2, max≤  may be 
determined by a Jackson’s pair of job permutations � ��� �� �,  such that the permutation � � � �� � � �1 2 1 2 1, ,, ,  de-

termines an optimal sequence for processing jobs on the machine M1 and the permutation �� � � �� � � �2 1 2 1 2, ,, ,  
determines an optimal sequence for processing jobs on the machine M2. The job Ji belongs to the permutation 
πh, if the inclusion Ji h��  holds. 

In Jackson’s pair of permutations, for the sequence �1 2 1 2 1 2
, , , ,

,

� �� �J J Ji i in  (and the sequence �2 1 1 2 2 1
, , , , ,

,

� �� �J J Ji i in

�2 1 1 2 2 1
, , , , ,

,

� �� �J J Ji i in  respectively) of the jobs from the set ℑ1, 2 (from the set ℑ2, 1), the following condition 

must hold for all indices k and m, 1 ≤ k < m ≤ n1, 2 (1 ≤ k < m ≤ n2, 1):

	 min , min ,p p p pi i i ik m m k1 2 1 2� �� � � 	 (1)

	 (min , min , ),p p p pi i i ik m m k2 1 2 1� �� � � 	

where the permutation π1, 2 (and permutation π2, 1) is called a Johnson’s permutation [22].
The optimal order of jobs from the set ℑ1 and jobs from the set ℑ2 may be arbitrary [22]. Therefore, in what 

follows, we consider only one permutation π1 (one permutation π2, respectively) of the jobs from the set ℑ1 that 
are located in the non-increasing order of their weights (from the set ℑ2 that are located in the non-increasing 
order of their weights). 

Let the set S1, 2 (the set S2, 1, respectively) denote a  set of all permutations of jobs from the set ℑ1, 2 
(the set ℑ2, 1). Let S S S= 1 2 2 1, ,,  denote a subset of the Cartesian product S S S S1 2 1 2 1 2 1 2 1 2, , , ,, , , ,� �� � � � � 
such that each element in the set S is a pair of job permutations � ��� ��� �, ,S  where �� � �� � � �1 2 1 2 1, ,, ,

i j  and ��� � �� � � �2 1 2 1 2, ,, , ,
i i

��� � �� � � �2 1 2 1 2, ,, , ,
i i  1 ≤ i ≤ n1, 2!, 1 ≤  j ≤ n2, 1!.

For the uncertain (interval) job-shop scheduling problem J a p b n Cij ij ij i2 2≤ ≤ ≤, ,max  we will consider 
only semi-active schedules which are determined by the set S. 

Definition 1 [17]. A schedule is semi-active if no operation can be processed earlier without changing the 
processing order or violating some given constraints. 

It is known that for any regular criterion [17; 18], there exists a semi-active schedule which is optimal. 
For any fixed scenario p ∈ T, there exists Jackson’s pair of job permutations (belonging to the set S ) that is 

optimal for the individual job-shop scheduling problem J p n Ci2 2, .max≤  It is clear that in most cases, a single 
pair of job permutations, which is optimal for all possible scenarios p ∈ T for the uncertain (interval) job-shop 
scheduling problem J a p b n Cij ij ij i2 2≤ ≤ ≤, ,max  does not exist. Due to this fact, we will look for a dominant 
set of the job permutations based on the following definition. 

Definition 2. A set of pairs of job permutations DS T S� � �  is a dominant set for the uncertain (interval) 
scheduling problem J a p b n Cij ij ij i2 2≤ ≤ ≤, max with the set ℑ of jobs, if for each scenario p ∈ T, the set DS T� � 
contains at least one pair � ��� ��� �, S  of the job permutations that is optimal for the individual deterministic 
problem J p n Ci2 2, .max≤
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The sufficient conditions for a pair of job permutations � ��� ��� �, S  to be an optimal pair of job permutations 
for any individual deterministic problem J p n Ci2 2, max≤  with any fixed scenario p ∈ T that is feasible for the 
uncertain (interval) problem J a p b n Cij ij ij i2 2≤ ≤ ≤, max have been investigated in [19, theorem 7, corolla
ries 3 and 4]. It has been proven that if one of the following conditions holds: 

	 b a a bi
J

j
J

i
J

j
Ji j i j

1 2 2 1

1 2 2 2 1 1 2 1 2 1�� �� � � �� �� � �
� � � �� �

, , , ,

,and 	 (2)

	 b a a bi
J

j
J

i
J

j
Ji j i j

2 1 1 2

2 1 1 1 2 2 1 2 1 2�� �� � � �� �� � �
� � � �� �

, , , ,

,and 	 (3)

then any permutation π1, 2 from the set S1, 2 and any permutation π2, 1 from the set S2, 1 form a single-element 
dominant set DS T� � for the uncertain problem J a p b n Cij ij ij i2 2≤ ≤ ≤, .max

If the first inequality in condition (2) (in condition  (3), respectively) holds, then �1 2 2 1, ,,� � �S S  

( , ), ,S S1 2 2 1�� � �  is a dominant set of schedules for the uncertain problem J a p b n Cij ij ij i2 2≤ ≤ ≤, .max  One 
needs to determine only orders for processing jobs from the set ℑ2, 1 (the set ℑ1, 2, respectively). In each this set 
all jobs have the same machine route.

The uncertain flow-shop problem F a p b Cij ij ij2 ≤ ≤
max

 is a special case of the uncertain job-shop prob-
lem J a p b n Cij ij ij i2 2≤ ≤ ≤, .max  In  the flow-shop problem, all jobs have the same machine route on both 
machines and a schedule is determined by the permutation πk . The uncertain (interval) flow-shop problem 
F a p b Cij ij ij2 ≤ ≤

max
 with the job set � ��1 2,  ( ),� � � � � � �2 1 1 2  and the uncertain (interval) flow-shop 

problem F a p b Cij ij ij2 ≤ ≤
max

 with the job set � ��2 1,  ( ),� � � � � � �1 2 1 2  are associated with the uncertain 
(interval) job-shop problem J a p b n Cij ij ij i2 2≤ ≤ ≤, .max  As shown in [20], solving the uncertain (interval) 
job-shop problem J a p b n Cij ij ij i2 2≤ ≤ ≤, max may be based on solving two associated uncertain flow-shop 
problems. It is sufficient to construct dominant sets for two associated uncertain (interval) flow-shop problems 
F a p b Cij ij ij2 ≤ ≤

max
. The dominant set for the uncertain (interval) flow-shop problem F a p b Cij ij ij2 ≤ ≤

max
 

turns out to a set of job permutations, which contains at least one optimal permutation for the deterministic 
flow-shop problem F p C2

max
 for each fixed scenario p ∈ T.

Theorem 1 [19]. Let the set � �S S1 2 1 2, ,  be a set of permutations from the dominant set for the uncertain 
flow-shop problem F a p b Cij ij ij2 ≤ ≤

max
 with the job set � ��1 2, . And let � �S S2 1 2 1, ,  be a set of permutations 

from the dominant set for the uncertain flow-shop problem F a p b Cij ij ij2 ≤ ≤
max

 with the job set � ��2 1, . 
Then the set � � �S S S1 2 2 1, ,,  is a dominant set for the uncertain job-shop problem J a p b n Cij ij ij i2 2≤ ≤ ≤, max 
with the job set � �� �� �� ��1 2 1 2 2 1, , .

We next consider the uncertain flow-shop problem F a p b Cij ij ij2 ≤ ≤
max

 with the job set � ��1 2, . Due to 
remark, the following partition holds: � � � �� ���1 2 1 2

1

1 2

2

1 2, , , , , where � � �� �� �1 2

1

1 2 1 2, , ,J b ai i i  � � �� �� �1 2

2

1 2 2 1, , ,J b ai i i

� � �� �� �1 2

2

1 2 2 1, , ,J b ai i i  � � �� � �� ��
1 2 1 2 1 2 2 1, , , .J b a b ai i i i i

We prove the following necessary and sufficient conditions for the existence of a Johnson’s permutation, which 
is optimal for any scenario p ∈ T, which is possible for the uncertain flow-shop problem F a p b Cij ij ij2 ≤ ≤

max
 

with the job set � ��1 2, .
Theorem 2. There exists a Johnson’s permutation, which is optimal for any scenario p ∈ T for the uncer-

tain (interval) flow-shop scheduling problem F a p b Cij ij ij2 ≤ ≤
max

 with the job set � ��1 2, , if and only if, the 
following conditions hold: 

a) for each pair of jobs Ji��1 2
1

,  and Jj ��1 2
1

,  ( jobs Ji��1 2
2

,  and Jj ��1 2
2

, , respectively), either b ai j1 1≤  or 
b aj i1 1≤  (either b ai j2 2≤  or b aj i2 2≤ , respectively);

b) inequality � ��
1 2 1,  holds, and for job Ji� ��

�
1 2,  (if any), both inequalities a b Ji i i� � ��� �1 1 1 2

1
max ,  and 

a b Ji i i� � ��� �2 2 1 2

2
max ,  hold. 
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P r o o f. Sufficiency. We consider the permutation � � �k iJ� � ��
1 2
, ,  such that, in the permutation π1, jobs 

from the set ℑ1 2
1

,  are located in the increasing order of the values bi1, and in the permutation π2, jobs from the 
set ℑ1 2

2

,  are located in the decreasing order of the values bi2. If  � ��
1 2 0, , then � � �k � � �1 2

, . Due to remark, the 
permutation � � �k iJ� � ��

1 2
, ,  is uniquely determined. 

For the considered permutation �k i i iJ J J
n

� �� �1 2 1 2

, , , ,
,

 condition (1) holds for any scenario p ∈ T. Indeed, 
for all indices k and m, 1 1 2� � �k m n , , both inequalities (4) hold 

	 min , min , min , min ,p p b b a a p pi i i i i i i ik m k m m k m k1 2 1 2 1 2 1� �� � � � ��and 22� �. 	 (4)

If the inclusion Jim�� ���1 2

1

1 2, ,  holds, then the inequality b ai ik m1 1≤  holds. This assertion follows from condi-
tions a) or b) and from constructing the permutation π1. If the inclusion Jim��1 2

2

,  holds, then inequality b ai im m2 1
≤  

holds. Obviously, inequality k < m holds as well. If inequalities (4) hold, then condition (1) holds for all fea
sible durations p p p pi i i ik m k m1 1 2 2, , , .

Similarly, one can analyse the case when Jik�� ���
1 2 1 2

2

, ,  and Jim��1 2
2

, , where k < m.
Necessity. Based on the contradiction method, we assume that the permutation �k i i iJ J J

n
� �� �1 2 1 2

, , ,
,

 
exists such that condition (1) holds for all indices k and m, 1 ≤ k < m ≤ n1, 2, for any scenario p ∈ T, and at least 
one condition a) or b) does not hold.

Assume that condition a) does not hold. If there exists a pair of jobs Jik��1 2
1

,  and Jim��1 2
1

,  with k < m, such that 
both inequalities b ai ik m1 1>  and b ai im k1 1>  hold, we consider feasible operation durations a p p bi i i im m k k1 1 1 1

� � � . 
Due to remark, there exists a real number pim 2 such that inequalities p b a pi i i im m m m1 1 2 2

� � �  hold. Condition (1) 
does not hold for indices k and m. Hence, the permutation πk is not a Johnson’s one for scenarios T. Similarly 
a contradiction may be obtained, if there exists a pair of jobs Jik��1 2

2

,  and Jim��1 2
2

, , k < m.
Now, assume that condition b) does not hold. If there exist two jobs Jik��

�
1 2,  and Jim��

�
1 2, , k < m, we con-

sider feasible operation durations p pi im m1 2
<  and p pi ik k2 1

< . Condition (1) does not hold for indices k and m for 
all scenarios ��p T. For a job Jim��

�
1 2,  with inequality a bi im k1 1< , where Jik��1 2

1

, , we consider feasible opera-
tion durations p pi im m1 2

<  and p pi im k1 1
< . Condition (1) does not hold for indices k and m for all scenarios ��p T.

Similarly, one can test the case, when for job Jik��
�
1 2, , inequality a bi ik m2 2<  holds, where Jim��1 2

2

, . We 

obtain the contradiction to the assumption that for the considered permutation �k i i iJ J J
n

� �� �1 2 1 2

, , , ,
,

 condi-

tion (1) holds for all indices k and m, 1 ≤ k < m ≤ n1, 2, and for any fixed scenario p ∈ T. Theorem 2 is proved.
Theorem 2 implies the following claim. 
Corollary 1. If the conditions of theorem 2 hold, then there exists a permutation �1 2 1 2, ,�S , which is the 

dominant singleton �1 2 1 2, ,� � � � �DS T , DS T1 2 1, � � � ,  for the uncertain (interval) flow-shop scheduling prob-
lem F a p b Cij ij ij2 ≤ ≤

max
 with the job set �� �1 2, .

Uncertain (interval) two-machine flow-shop scheduling problems 
We consider the binary relation A



1 2,  on the set ℑ1 2,  based on the following definition.
Definition 3. For two jobs Ju��1 2,  and Jv��1 2, , u ≠ v, inclusion J J Au v,

,� ��


1 2 holds if and only if for any 
scenario p ∈ T, condition (1) holds with ik = u and im = v.

Due to definition 3, if inclusion J J Au v,
,� ��


1 2 holds, then for every scenario p ∈ T, there exists a Johnson’s 
permutation of the jobs from set ℑ1 2,  such that the job  Ju  locates before job  Jv , u ≠ v. In [20], it is shown 
that for any scenario p ∈ T, there exists a Johnson’s permutation such that job Jx��1 2,  locates before the job 
Jy��1 2, , x ≠ y, if and only if at least one of the following conditions holds:
	 b a b ax x x y1 2 1 1≤ ≤and , 	 (5)

	 b a b ay y y x2 1 2 2
≤ ≤and . 	 (6)

For constructing the binary relation A


1 2,
, one can check conditions (5) and (6) for pairs of jobs from the set 

ℑ1 2, . Next, we prove two theorems about properties of the relation A


1 2,
.
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Theorem 3. If J J Au v,
,� ��


1 2, then there exists a dominant set for the uncertain (interval) flow-shop sche
duling problem F a p b Cij ij ij2 ≤ ≤

max
 with the job set ℑ1 2, , such that job Ju  locates before job Jv , u ≠ v, in all 

permutations from the dominant set DS T1 2, .� �
P r o o f. Let the inclusion J J Au v,

,� ��


1 2 hold. We consider an arbitrary possible scenario ��p T. Due to 
definition 3, there exists a  Johnson’s permutation ��  of the jobs from the set ℑ1 2,  with the job Ju located 
before the job Jv , u ≠ v. The permutation  ��  is an optimal permutation for the individual flow-shop problem 
F p C2 ′

max
 with the job set �� �1 2, . Let DS T1 2, � � be a set of all such permutation constructed for all scenarios 

p ∈ T. Thus, the set DS T1 2, � � contains at least one optimal permutation for the individual deterministic problem 
F p C2

max
 for each scenario p ∈ T. Therefore, the set DS T1 2, � � is a dominant set for the uncertain (interval) 

flow-shop problem F a p b Cij ij ij2 ≤ ≤
max

 with the job set �� �1 2, . In each permutation from the set DS T1 2, ,� �  
job Ju locates before job Jv , u ≠ v. This completes the proof of theorem 3. 

Theorem 4. The binary relation A


1 2,  is a strict order.
P r o o f. We have to show that the binary relation A



1 2,  is anti-reflexive, asymmetric, and transitive. Due to 
definition 3, the binary relation A



1 2,  is defined only for u ≠ v. Thus, the relation A


1 2,  is anti-reflexive. If the inclu-
sion J J Au v,

,� ��


1 2 holds, then condition (1) holds with ik = u and im = v for any scenario p ∈ T and the following 
inequalities hold: 
	 min , min , min , min , .p p b b a a p pu v u v v u v u1 2 1 2 1 2 1 2� � � � � � � � � � � 	 (7)

On the other hand, due to remark, the following inequalities hold:

	 min , min , min , min , .a a b b a a b bu v u v v u v u1 2 1 2 1 2 1 2� � � � � � � � � �and 	 (8)

From inequalities (7) and (8), we conclude that min , min ,b b a av u u v1 2 1 2� � � � � and inequality (1) does not 
hold for ik = v and im = u for scenarios p ∈ T. Thus, J J Av u,

,� ��


1 2 and the binary relation A


1 2,  is asymmetric.
We prove the transitivity. Let there exist three jobs Ju ��1 2, , Jv��1 2,  and Jw��1 2,  with the inclusions 
J J Au v, ,

,� ��


1 2  J J Av w,
,� ��


1 2  and condition J J Au w, .
,� ��


1 2  For the jobs Ju and Jv , similarly as for the jobs 
Jv and Jw , at least one of conditions (5) and (6) holds with x = u and y = v, and x = v and y = w, respectively. 
We must consider the following four cases:

	 (I) b au u1 2≤ , b au v1 1≤ , b av v1 2
≤  and b av w1 1≤ ;

	 (II) b au u1 2≤ , b au v1 1≤ , b aw w2 1
≤  and b aw v2 2≤ ;

(III) b av v2 1≤ , b av u2 2≤ , b av v1 2
≤  and b av w1 1≤ ;

(IV) b av v2 1≤ , b av u2 2≤ , b aw w2 1
≤  and b aw v2 2

≤ .

In case (III), we obtain the contradiction to remark. Indeed, in case (III) due to remark, we obtain the fol-
lowing contradictory inequalities: b a b a bv v v v v2 1 1 2 2

� � � � .

We have to consider the remaining three cases (I), (II) and (IV). 
Note that for the jobs Ju and Jw , neither condition (5), nor condition (6) holds with x = u and y = w, which 

could happen only in one of the following four cases.
1. Inequalities b au u1 2

>  and b aw w2 1
>  contradict to the cases (I), (II) and (IV). 

2. Inequalities b au u1 2
>  and b aw u2 2>  contradict to the cases (I) and (II). 

Furthermore, from the inequalities of case  (IV) and remark, we obtain the contradictory inequalities as 
follows: b a b a bw u v v w2 2 2 2 2

� � � � .

3. Inequalities b au w1 1>  and b aw w2 1
>  contradict to cases (II) and (IV). 

Furthermore, from case (I) and remark, we obtain the contradictory inequalities as follows: b a b a bu w v v u1 1 1 1 1
� � � � .

b a b a bu w v v u1 1 1 1 1
� � � � .

4. Consider inequalities b au w1 1>  and b aw u2 2
> .

From the inequalities of cases (I) and (IV), we obtain the same contradictions as in the cases 3 and 2, respec-
tively. From case (II), we obtain the following contradictory inequalities: a b a b au w w u u2 2 1 1 2

� � � � .

Thus, for any three jobs Ju ��1 2, , Jv��1 2,  and Jw��1 2, , we obtain that the inclusions J J Au v,
,� ��


1 2 and 
J J Av w,

,� ��


1 2 imply the inclusion J J Au w, .
,� ��


1 2  Therefore, the binary relation A


1 2,  is transitive. Theorem 4 
is proved.
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Definition  4. Two jobs Jx��1 2,  and Jy��1 2, , x ≠  y, are conflict jobs if the following relations hold: 

J J Ax y,
,� ��


1 2 and J J Ay x, .
,� ��


1 2

Definition 5. The subset � � �x 1 2,  is called a conflict set of jobs if for any job Jy x�� �1 2, ,\  either relation 
J J Ax y,

,� ��


1 2 or relation J J Ay x,
,� ��


1 2 holds for each job Jx x�� , provided that any proper subset of the 
set ℑx does not possess such a property.

Obviously, there may exist several conflict sets in the set ℑ1 2, . The permutation �k nJ J J� �� �[ ] [ ] [ ], , ,
,1 2 1 2

 
is determined by the partial strict order A



1 2,  if each inclusion J J Ax y,
,� ��


1 2 implies the following form of this 
permutation: �k x yJ J� � � �� �, , , , .

Let Π1 2,  denote a set of all permutations determined by the partial strict order A


1 2,
.

Theorem 5. There exists a dominant set DS T1 2 1 2, ,� � � �   for the uncertain (interval) flow-shop scheduling 
problem F a p b Cij ij ij2 ≤ ≤

max
 with the job set ℑ1 2, .

P r o o f. Based on the contradiction method, we assume that for an arbitrary scenario p ∈ T, there is no 
Johnson’s permutation in the set Π1 2,  for the deterministic flow-shop scheduling problem F p C2

max
 with the 

scenario p. 
Due to constructing permutations of the set Π1 2, , the above assumption means that there exists at least one 

pair of jobs Jx��1 2,  and Jy��1 2,  such that inclusion J J Ax y,
,� ��


1 2 holds, whereas condition (1) with ik = y 
and im = x holds as the following strict inequality: 

	 min , min , .p p p py x x y1 2 1 2� � � � � 	 (9)

Due to definition 3, we obtain the following non-strict inequality:

	 min , min , .b b a ax y y x1 2 1 2� � � � � 	 (10)

From inequalities (9) and (10), we obtain the following contradicted inequalities:

min , min , min , min , minp p p p b b a a py x x y x y y x y1 2 1 2 1 2 1 2 1� � � � � � � � � � � � ,, .px2� �
Therefore, there exists a Johnson’s permutation for the problem F p C2

max
 in the set Π1 2, . Due to the arbi-

trariness of the choice of the possible scenario p ∈ T, the set Π1 2,  contains an optimal Johnson’s permutation 
for the individual deterministic flow-shop problem F p C2

max
 for each fixed scenario p ∈ T. Due to defini-

tion 2, the set Π1 2,  is a dominant set for the uncertain problem F a p b Cij ij ij2 ≤ ≤
max

 with the job set ℑ1 2, . 
Theorem 5 is proved. 

Let the strict order A


1 2,  for the uncertain (interval) flow-shop scheduling problem F a p b Cij ij ij2 ≤ ≤
max

 
with the job set ℑ1 2,  be represented as follows: 

	 J J J J J J J J Jk k k k r k r k r n1 2 1 2 1 2 1 2
, , , , , , , , , , , ,

,
� �� � �� � � � � � � 	 (11)

where all jobs between the brackets are conflict jobs and each of these jobs is found in relation A


1 2,  with any 
job located outside the brackets. Thus, jobs in the brackets make up the conflict set. The order of jobs in the 
brackets may be different in the optimal permutation (depending on the used scenario p ∈ T ) but they still cor-
respond to the binary relation A



1 2,
.

The following sufficient conditions for checking the optimal order for processing jobs of the conflict set 
were proved in [19, theorems 10–12].

Let the strict order A


1 2,  over the set ℑ1 2,  have form (11). If for the permutation � � � � �� ��� � � � �J J J J J J Jk k k k r k r n1 1 2 1 1 21 2
, , , , , , , , , ,

, ,�

� � � � �� ��� � � � �J J J J J J Jk k k k r k r n1 1 2 1 1 21 2
, , , , , , , , , ,

, ,�  one of the following inequalities holds:

	 b a ai
i

k r

i
J

j
j

k

i

, , ,

,

,1

1

2 2

12 2 1�

�

�� � � �
� � �� � 	 (12)

	 b a a b s rk s i
J

j j
j

k s

i

�
�� � � �

� �

� � �� � � �� �� �, , , ,

,

, , , , ,1 2 2 1

1

1

2 2 1

1 2 	 (13)
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	 a b s rk i
i r s

r

k j
j r s

r

�
� � �

�

�
� � �

� �� � �� �, , , , , , ,1

2

1

2

1

1 2 	 (14)

then the set �� � � �S S� , ,�2 1  is a dominant set of schedules for the uncertain (interval) job-shop problem 
J a p b n Cij ij ij i2 2≤ ≤ ≤, max with the job set ℑ. 

Condition (12) does not use the order of the jobs in the conflict set. So, the order of jobs in the conflict set 
J J Jk k k r� � ��� �1 2, , ,  may be arbitrary. Based on the second criterion of the maximisation of the sum wi∑  

of weights of the completed jobs, if condition (12) holds, we propose to locate the jobs in the conflict set in the 
non-increasing order of their weights. 

On the other hands, to check conditions (13) and (14), one must first determine the order of jobs in the con-
flict set J J Jk k k r� � ��� �1 2, , , , e. g., as J J Jk k k r� � ��� �1 2, , , . Therefore, to check conditions (13) and (14), 
it may be needed to consider all r! possible permutations of the conflicting jobs. In [20], it is noted that it is 
enough to check conditions (13) and (14) for only one permutation, and it is also shown how such permutations 
can be constructed (see the algorithm from [19]). The following procedures 1 and 2 are close to the algorithms de-
scribed in [19] and are intended to constructing permutations to check the fulfillment of conditions (13) and (14), 
respectively. Procedure 1 (procedure 2) constructs a permutation such that condition (13) (condition (14), respec-
tively) are most likely to be satisfied.

Procedure 1. Construction of the permutation of conflict jobs by checking condition (13). 
Step 1: for each job Ji from the conflict set, test if inequality a bi i, ,2 1 0� �  holds then Ji��1 else Ji��2.
Step 2: construct the permutation π1 as follows: if inequality b bi j, ,1 1≤  holds then �1 � � � �� �, , , , .J Ji j

Step 3: construct the permutation π2 as follows: if inequality a ai j, ,2 2≥  holds then �2 � � � �� �, , , , .J Ji j

Procedure 2. Construction of the permutation of conflict jobs by checking condition (14). 
Step 1: for each job Ji from the conflict set, test if inequality a bi i, ,1 2 0� �  holds then Ji��1 else Ji��2.
Step 2: construct the permutation π1 as follows: if inequality b bi j, ,2 2≥  holds then �1 � � � �� �, , , , .J Ji j

Step 3: construct the permutation π2 as follows: if inequality a ai j, ,1 1≤  holds then �2 � � � �� �, , , , .J Ji j

Note that if there exist several conflict sets in the job set ℑ1 2, , one can check conditions (12) – (14) sequentially 
for each conflict set. Indeed, conditions (12) – (14) do not use the order of jobs from the set J Jk r n� � �� �2 1 2

, , .
,

 
On the other hand, if the job set J J Jk1 2, , ,�� � (the job set J Jk r n� � �� �1 1 2

, , ,
,

 respectively) is empty, one 
cannot check condition (13) (condition (14), respectively).

One can consider the uncertain (interval) flow-shop problem F a p b Cij ij ij2 ≤ ≤
max

 with the job set � ��2 1, . 
The partial binary relation A



2 1,  determined on the set ℑ2 1,  of the jobs may be introduced similar to definition 3. 
Note that conditions of theorems 2–5, corollary 1, and conditions (5), (6) and inequalities (12) – (14) may 

be reformulated similarly. The conflict jobs Jx��2 1,  and Jy��2 1,  and a conflict set of jobs � � �x 2 1,  can be 
investigated similarly.

Note that theorems 2–5 and corollary 1 are proved for the uncertain (interval) flow-shop problem F a p b Cij ij ij2 ≤ ≤ max,

F a p b Cij ij ij2 ≤ ≤ max, where all jobs have interval durations unknown before scheduling. If there exists a non-empty 
subset of the jobs with fixed durations known before scheduling, then the binary relation A



1 2,  on the set ℑ1 2,  
may become different. 

Scheduling algorithms
For scheduling jobs for a long period (e. g., for a month), we consider the uncertain (interval) two-machine 

job-shop scheduling problem J a p b n C w Uij ij ij i i i2 2� � � � �, , ,max  with the following ordered criteria: 
minimising the makespan (it is a main criterion), maximising the sum wi∑  of job weights (the second crite-
rion) and maximising the total number of the jobs Ui∑  that are completed not later their due dates (the third 
criterion). 

Each day, both employees have 8 working hours of 800 units of time. Each unit of time corresponds to 30 s 
(10 min for each hour is set aside for the rest). It is assumed that 20 new jobs are arrived every day. Some of 
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these jobs should be processed only by one of the employees (first or second), some jobs should be processed 
by the first employee and then by the second employee. The remaining jobs should be processed by the second 
employee and then by the first employee. 

For every job, the lower bound aij and the upper bound bij, 0 < <a bij ij, of the operation processing times 
and the job weights wi are determined before scheduling. 

Due dates for all jobs are assumed to be equal to 800. The integer weight wi from 1 to 5 is assigned to each 
job that determines the importance of this job. The set ℑ0 of jobs available at the beginning of the new working 
day is sorted in the non-increasing order of the weights of jobs. The set �� �d  of jobs that will be completed on 

that day are selected as long as the following inequality holds: a ai i
Ji d

, , .1 2 2 800�� � � �
��
�

Based on the sufficient conditions presented in the previous sections, algorithm 1 has been developed, for 
constructing a daily pair of permutations of the selected jobs for both employees. As a  result of executing 
algorithm 1, a pair of job permutations � ��� �� �,  of the form � � � � � �1 2 1 2 1 2 1 2 1 2, , , ,, , , , ,� � � �� � will be con-
structed. First, we check sufficient conditions (2) and (3) and conditions of theorem 2 that the pair of job per-
mutations � ��� �� �,  is optimal for the individual deterministic scheduling problem J p m Ci2 2, max≤  with any 
fixed scenario p ∈ T. If the pair of job permutations � ��� �� �,  is not constructed, the binary relation A



1 2,  on the 
set ℑ1 2,  (the binary relation A



2 1,  on the set ℑ2 1, , respectively) must be constructed and conflict sets of jobs are 
identified. Then, conditions (12) – (14) must be checked to resolve the conflicts. We arrange jobs from the sets 
ℑ1 and ℑ2, and in some cases jobs from the sets ℑ1 2,  and ℑ2 1, , in the non-increasing order of their weights to 
improve the value of the second criterion. The constructed pair of permutations � ��� �� �,  may be optimal for 
all scenarios (with the proof of the optimality, if the above sufficient conditions hold), or the constructed pair 
of permutations � ��� �� �,  may be optimal for the factual scenario but without the proof of the optimality, or the 
constructed pair of permutations � ��� �� �,  is non-optimal for the makespan criterion. 

Algorithm 1
Step 1: construct the permutation π1 of jobs of the set ℑ1 and the permutation π2 of jobs of the set ℑ

1
.

Step 2: if the first inequality in (2) holds then begin to construct the permutation π1, 2 of jobs from the  
set ℑ1 2,  if the second inequality in (2)

 
holds then construct the permutation π2, 1 of jobs from the set ℑ2 1,  endif.

Step 3: if the first inequality in (3) holds then begin to construct the permutation π2, 1 of jobs from the  
set ℑ2 1,  if the second inequality in (3) holds then construct the permutation π1, 2 of jobs from the set ℑ1 2,  endif.

Step 4: if both permutations π1, 2 and π2, 1 are constructed then goto step 13.
Step 5: if the permutation π1, 2 is constructed then goto step 12.
Step 6: if for jobs from the set ℑ1 2,  conditions  a) and b) hold then construct the permutation � � �1 2 1 2

1

1 2 1 2

2

, , , ,, , ,� �� ��

� � �1 2 1 2

1

1 2 1 2

2

, , , ,, , ,� �� ��  where π1 2
1

,  is a permutation of jobs from the set ℑ1 2
1

,  located in the non-decreasing order 

of values bi, 1 and π1 2
2

,  is a permutation of jobs from the set ℑ1 2
2

,  in the non-increasing order of the values bi, 2 
goto step 11.

Step 7: construct binary relations A


1 2,  over the set ℑ1 2,  using conditions (5) and (6).
Step 8: select all conflict sets of jobs in the set ℑ1 2, .
Step 9: for each conflict set of jobs do if condition (12) holds then construct the permutation of the conf

lict jobs else begin to implement procedure 1 and construct the permutation � �1 2,� � if condition (13) does 
not hold then begin to implement procedure 2 and construct the permutation � �2 1, ;� �  if condition (14) does not 

hold then construct a Johnson’s permutation for the conflict jobs for their processing times p
a b

ij
ij ij�
�

2
.  endif, 

endif, endif, enddo, endfor. 
Step 10: construct a permutation π1, 2 generated by the linear order A



1 2,  with permutations obtained in 
step 9 for jobs from the conflict sets.

Step 11: if the permutation π2, 1 is constructed then goto step 13.
Step 12: repeat steps 6–11 by replacing the set ℑ1 2,  by the set ℑ2 1, , the machine M1 by the machine M2, the 

strict order A


1 2,  by the strict order A


2 1,
, and vice versa.

Step 13: construct pair of permutations � ��� � � � � � �� �� � � � � � � �, , , , , , ., , , ,1 2 1 2 1 2 1 2 1 2
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Note that steps 2 and 3 take O max ,, ,n n1 2 2 1� �� � time. Step 6 takes O n n1 2 1 2, ,log� � time. The construction 
of a binary relation at step 7 is based on comparing no more than n n1 2 1 2 1, , �� � pairs of jobs from the set ℑ1 2, , 
which takes no more than O n n1 2 1 2 1, , �� �� � time. Checking conditions  (12) – (14) at step  9 requires O r� � 
time, where the conflict set contains r jobs. Constructing a permutation of r jobs (procedures 1 and 2) takes 
O r rlog� � time. Therefore, the total complexity of step 9 is O r rlog .� �  Since step 7 is performed at most once 
per set ℑ1 2,  and per set ℑ2 1, , we conclude that the complexity of algorithm 1 is O n2� �.

The jobs are processed respecting to the constructed permutations � ��� �� �,  until the beginning the next job 
does not go beyond the working hours for each employee. 

For the uncertain (interval) job-shop problem J a p b n C w Uij ij ij i i i2 2� � � � �, , ,max  with ordered cri-

teria Cmax, wi∑  and Ui∑ , one calculates the values of criteria C dmax ,� �  w di � ��  and U di � ��  per day d. 
After a schedule realisation, the actual durations pij∗ of all the operations become known. From that time, it 
becomes possible to determine the optimal Jackson’s pair of permutations and calculate the factual values of 
criteria w di

�� ��  and U di
�� ��  per day d. Relative errors of the constructed schedules respecting to the fac

tually optimal schedules are calculated as follows:

� �C d
C d C d

C d
w d

w d w d
wi

i i

i
max

max max

max

,� � � � � � � �
� �

� � � � � � � ��

�

�

� � �
��

�

�� �
� � � � � � � �

� �� � � �
�d

U d
U d U d

U di
i i

i
, .�

All jobs that were not selected, as well as jobs that were not completed during the working day are available 
for processing next day. New 20 jobs will be added to them.

Computational experiments and results
We next describe the conducted computational experiments and discuss the computational results obtained 

for randomly generated instances of the uncertain job-shop problem J a p b n Cij ij ij i2 2≤ ≤ ≤, .max  The follo
wing algorithm was used in the experiments. 

Algorithm 2 for computational experiments
Input: job set �� � �� �� ��1 2 1 2 2 1, , . Lower bound aij  and upper bound bij, 0 < <a bij ij, of feasible du

rations of operations Oij for jobs Ji�� and machines Mj ��.
Output: conclusion that the problem J a p b n Cij ij ij i2 2≤ ≤ ≤, max was solved either exactly or heuristically. 

Total number of conflict sets and number of properly resolved conflict sets.
Step 1: set a = 0, b = 0, c = 0, cs = 0.
Step 2: if the first inequality in (2)

 
holds then begin a := a + 1 if the second inequality in (2) holds then 

b := b + 1 endif.
Step 3: if the first inequality in (3) holds then begin b := b + 1; if the second inequality in (3) holds then 

a := a + 1 endif.
Step 4: if a ≥ 1 and b ≥ 1 then goto step 17.
Step 5: if a ≥ 1 then goto step 14.
Step 6: if for jobs from the set ℑ1 2,  conditions a) and b) hold, then begin a := a + 1 goto step 13 endif.
Step 7: construct binary relations A



1 2,  over the set ℑ1 2,  using conditions (5) and (6).
Step 8: select all conflict sets of jobs in the set ℑ1 2, .
Step 9: set number of conflict sets nc = 0 and n = 0.
Step 10: for each conflict set of jobs if condition (12) holds then n := n + 1 else implement procedure 1 

for constructing the permutation � �1 2,� � if condition (13) holds then n := n + 1 else implement procedure 2 for 
constructing the permutation � �2 1,� � if condition (14) holds then n := n + 1 endif, endif, endif, endfor.

Step 11: set c := c + n; cs := cs + nc.
Step 12: if n = nc then a := a + 1.
Step 13: if b ≥ 1 then goto step 17.
Step 14: perform steps 6–12 by replacing the set ℑ1 2,  by the set ℑ2 1, , machine M1 by machine M2, the strict 

order A


1 2,  by strict order A


2 1,
, a by b, and vice versa.

Step 15: if a ≥ 1 and b ≥ 1 then goto step 17.
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Step 16: stop. «The problem is solved heuristically; total number of conflict sets c», «number of properly 
resolved conflict sets cs». 

Step 17: stop. «The problem is solved exactly; total number of conflict sets c», «number of properly re-
solved conflict sets cs». 

Algorithm 2 is polynomial in the number n of jobs and its asymptotic complexity is O n2� �. All developed 
algorithms were coded in C# and tested on a personal computer with Intel Core i7-7700™ 4 Quad, 3.6 GHz, 
and 32.00 GB RAM. In the computational experiments, we tested series of randomly generated instances for 
the 1000-day period. Generated instance for every day consisted of 20 jobs. 

The generation of lower bounds aij and upper bounds bij for possible values of the durations pij of the ope
rations Oij, p a bij ij ij� �� ��, , was organised as follows. A value of the lower bound aij was randomly chosen from 
the segment [10, 1000] using the uniform distribution. With the given value of the maximum relative length δ 
of a segment of possible durations of the operations Oij, the upper bound bij was calculated using the following 

equality: b aij ij� ��
�
�

�
�
�1

100

�
. A maximum relative length δ of the segment of possible durations of operations Oij 

was equal to the following values: 5 %, 10 %, 11 %, 12 %, 13 %, 14 %, 15 %, 16 %, 17 %, 18 %, 19 %, 20 %, 
30 %, 40 %, 50 %. The bounds aij and bij were decimal fractions with the maximum possible number of digits 
after the decimal point. 

Based on remark, for instances of the problem J a p b n Cij ij ij i2 2≤ ≤ ≤, ,max  a strict inequality aij < bij was 
guaranteed for each job Ji�� and each machine Mj��. We tested 9 classes of the randomly generated in-
stances of the problem J a p b n Cij ij ij i2 2≤ ≤ ≤, max with different ratios between values n1 : n2 : n1, 2 : n2, 1 of 
jobs in the subsets ℑ1, ℑ2, ℑ1, 2, ℑ2, 1 of the set ℑ. The computational results are presented in the following table.

Computational results for the randomly generated instances

Class of the tested  
instances

δ

5 % 10 % 11 % 12 % 13 % 14 % 15 % 16 % 17 % 18 % 19 % 20 % 30 % 40 % 50 %

n1 : n2 : n1, 2 : n2, 1 = 25 % : 25 % : 25 % : 25 %

Solved tests, % 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

Conflict sets 6 19 22 25 28 22 35 35 53 51 60 70 139 250 339

Solved conflicts 6 19 22 25 28 22 35 35 53 51 60 70 139 250 339

Solved conflicts, % 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

n1 : n2 : n1, 2 : n2, 1 = 10 % : 10 % : 40 % : 40 %

Solved tests, % 100 100 100 100 100 100 100 100 99.9 100 100 100 100 99.9 99.5

Conflict sets 235 531 567 645 692 743 811 807 851 952 992 1032 1341 1450 1424

Solved conflicts 235 531 567 645 692 743 811 807 850 952 992 1032 1341 1449 1419

Solved conflicts, % 100 100 100 100 100 100 100 100 99.88 100 100 100 100 99.93 99.65

n1 : n2 : n1, 2 : n2, 1 = 10 % : 40 % : 10 % : 40 %

Solved tests, % 99.7 99.6 99.3 99.5 99.3 99 99.3 99.1 98.2 98.5 98.3 98.5 95.3 91 84.6

Conflict sets 466 830 884 887 1002 1008 1057 1116 1166 1166 1176 1244 1433 1467 1501

Solved conflicts 463 826 877 882 995 998 1049 1107 1148 1151 1158 1229 1385 1375 1345

Solved conflicts, % 99.36 99.52 99.21 99.44 99.30 99.01 99.24 99.19 98.46 98.71 98.47 98.79 96.65 93.73 89.61

n1 : n2 : n1, 2 : n2, 1 = 10 % : 30 % : 10 % : 50 %

Solved tests, % 99.9 99.4 99.5 99.2 99.3 99.3 98.4 98 97.9 98.1 97.8 97.5 94.7 85.6 75.1

Conflict sets 767 1232 1235 1361 1399 1436 1489 1596 1623 1627 1638 1680 1762 1770 1724
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Class of the tested  
instances

δ

5 % 10 % 11 % 12 % 13 % 14 % 15 % 16 % 17 % 18 % 19 % 20 % 30 % 40 % 50 %

Solved conflicts 766 1226 1230 1351 1392 1429 1472 1576 1601 1608 1615 1653 1709 1622 1468

Solved conflicts, % 99.87 99.51 99.60 99.27 99.50 99.51 98.86 98.75 98.64 98.83 98.60 98.39 96.99 91.64 85.15

n1 : n2 : n1, 2 : n2, 1 = 10 % : 20 % : 10 % : 60 %

Solved tests, % 99.7 98.8 99.2 99.6 98.3 98.6 98.8 99 97.7 98.2 97.8 97.6 89.9 80.4 63

Conflict sets 1034 1601 1653 1758 1829 1880 1904 1949 2013 2054 2012 1984 2113 1968 1845

Solved conflicts 1031 1588 1645 1754 1812 1865 1891 1939 1990 2035 1989 1959 2010 1770 1471

Solved conflicts, % 99.71 99.19 99.52 99.77 99.07 99.20 99.32 99.49 98.86 99.07 98.86 98.74 95.13 89.94 79.73

n1 : n2 : n1, 2 : n2, 1 = 10 % : 10 % : 10 % : 70 %

Solved tests, % 99.8 99.3 99.4 98.6 98.5 98.4 97.2 97.7 96.6 96 96.6 95.5 85.9 67.5 50.7

Conflict sets 1432 1988 2043 2156 2192 2234 2273 2306 2324 2342 2376 2345 2222 2119 1952

Solved conflicts 1430 1981 2035 2142 2176 2218 2245 2283 2289 2301 2338 2299 2080 1786 1447

Solved conflicts, % 99.86 99.65 99.61 99.35 99.27 99.28 98.77 99.00 98.49 98.25 98.40 98.04 93.61 84.29 74.13

n1 : n2 : n1, 2 : n2, 1 = 5 % : 20 % : 5 % : 70 %

Solved tests, % 98.8 96.7 96.8 96.4 94.1 93.9 93.3 92.6 90.4 90.1 88.2 86.9 71.4 52.1 34.8

Conflict sets 1353 1993 2119 2165 2210 2247 2325 2337 2263 2355 2286 2343 2210 2091 1941

Solved conflicts 1340 1959 2081 2126 2147 2182 2257 2261 2164 2252 2164 2206 1909 1591 1268

Solved conflicts, % 99.04 98.29 98.21 98.20 97.15 97.11 97.08 96.75 95.63 95.63 94.66 94.15 86.38 76.09 65.33

n1 : n2 : n1, 2 : n2, 1 = 5 % : 15 % : 5 % : 75 %

Solved tests, % 99 96.5 95.6 95.8 94.2 92.2 93.4 91 89.6 90.9 88.2 84.7 68.7 49.2 30.8

Conflict sets 1475 2242 2330 2354 2411 2360 2450 2532 2489 2516 2580 2514 2340 2103 1952

Solved conflicts 1465 2207 2285 2309 2352 2278 2381 2436 2377 2419 2456 2351 2014 1577 1244

Solved conflicts, % 99.32 98.44 98.07 98.09 97.55 96.53 97.18 96.21 95.50 96.14 95.19 93.52 86.07 74.99 63.73

n1 : n2 : n1, 2 : n2, 1 = 5 % : 5 % : 5 % : 85 %

Solved tests, % 98.8 94.9 95.8 93.7 92.8 93.7 90.4 88.9 87.8 87.9 85.8 82.2 61.1 41.9 24.2

Conflict sets 1896 2585 2627 2688 2714 2810 2763 2766 2827 2808 2791 2777 2532 2220 2063

Solved conflicts 1883 2532 2583 2623 2638 2743 2658 2647 2701 2681 2641 2591 2111 1599 1272

Solved conflicts, % 99.31 97.95 98.33 97.58 97.20 97.62 96.20 95.70 95.54 95.48 94.63 93.30 83.37 72.03 61.66

For each class of the tested instances and for a fixed value of the maximum relative length δ, the computatio
nal results are presented in four rows. The row «Solved tests, %» determines the percentage of days from the 
1000-day period when the pair � ��� �� �,  of the job permutations constructed using algorithm 2 for a daily schedule 
was optimal for all possible scenarios p ∈ T for the generated uncertain problem J a p b n Cij ij ij i2 2≤ ≤ ≤, .max

The row «Conflict sets» presents a total number of conflict sets of the jobs in the partial strict orders A


1 2,  
on the job sets ℑ1 2,  and partial strict orders A



2 1,  on the job sets ℑ2 1,  constructed by algorithm 2 for 1000 days. 
The row «Solved conflicts» is equal to the total number of cases, where algorithm 2 constructed the permutation 
of all jobs from the conflict set, which was optimal for all possible scenarios p ∈ T. Note, the instance may 
have be more than one conflict set, and failure to resolve even one of them leads to unoptimality of the entire 
instance. The row «Solved conflicts, %» presents a percentage of the ratio of solved conflicts to the total num-
ber of conflict sets in 1000-day series. Average percentages of the instances solved optimally by algorithm 2 
are presented in figure. 

E n d i n g  o f  t h e  t a b l e
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From figure, one can conclude that if value δ does not exceed 20 %, algorithm 2 found the optimal permu-
tation in more than 90 % of tested instances. As δ increases, this value begins to fall. At δ = 50 % for some 
classes, the number of optimally solved instances is more than 20 %. For some classes of problems (25 % : 
25 % : 25 % : 25 % and 10 % : 10 % : 40 % : 40 %) algorithm 2 optimally solved all tested examples for all 
relative errors δ.

Conclusions
We investigated the uncertain problems of constructing schedules for the execution of selected jobs by two 

performers. Only the lower bound aij and the upper bound bij for durations of any job Ji�� were known before 
scheduling. We proved theorem 2 for necessary and sufficient conditions for the existing optimal schedules for 
two performers and theorems 3 and 5 for sufficient conditions for the existing dominant set of schedules with 
a fixed order of two jobs. For the existing dominant set of schedules with fixed orders for job pairs, the binary 
relation was constructed. It was proven that this binary relation is a strict order (theorem 4). 

Based on the proven results, efficient algorithms were developed for solving the uncertain job-shop prob-
lem J a p b n Cij ij ij i2 2≤ ≤ ≤, max either exactly or heuristically. For testing the effectiveness of the developed 
algorithms for time-management, the computational experiments were conducted for evaluation of a 1000-day 
period for drawing up daily schedules for two performers. Every day, 20 jobs were received for the execution. 
For planning jobs for a day, the uncertain job-shop problem J a p b n Cij ij ij i2 2≤ ≤ ≤, max was solved. The job-
shop problem J a p b n C w Uij ij ij i i i2 2� � � � �, , ,max  was solved for time-management during a month. 

In the uncertain scheduling problem, three criteria C wimax, ∑  and Ui∑  were optimised in the fixed priority 
order. Minimisation of the schedule length Cmax was a main criterion, maximisation of the wi∑  was a second 
criterion, and maximisation of the Ui∑  was a third criterion. A personal computer was used for selecting im-
portant jobs for two performers and drawing up optimal schedules for their implementation. 

The computational experiments conducted on randomly generated uncertain scheduling problems showed 
that the use of the job permutations constructed by the developed algorithms provided optimal schedules in 
more than 90 % tested cases (20 % tested cases, respectively) if a maximum relative length of job duration 
segments  a bij ij,�� �� does not exceed 20 % (50 %, respectively). 

A promising research direction may be connected with the application of the mixed graph colouring me
thod [23] to scheduling personal jobs in the time-management framework. One can assume that the scheduling 
problems arising in the time-management have equal processing times of the operations since breaks are needed 
for people after approximately equal times of the activity. 

Percentages of the optimally solved instances for different classes of instances
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