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SEQUENTIAL PROBABILITY RATIO TEST
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ON PARAMETERS OF TIME SERIES WITH TREND

T TTU', A Yu. KHARIN®

*Belarusian State University, 4 Niezalieznasci Avenue, Minsk 220030, Belarus
Corresponding author: T. T. Tu (tthattu@gmail.com)

The problem of sequential test for many simple hypotheses on parameters of time series with trend is considered.
Two approaches, including M-ary sequential probability ratio test and matrix sequential probability ratio test are used
for constructing the sequential test. The sufficient conditions of finite terminations of the test and the existence of finite
moments of their stopping times are given. The upper bounds for the average numbers of observations are obtained. With
the thresholds chosen suitably, these tests can belong to some specified classes of statistical tests. Numerical examples
are presented.

Key words: multiple hypothesis testing; M-ary sequential probability ratio test; matrix sequential probability ratio test;
time series with trend.

Introduction

Sequential probability ratio test (SPRT) proposed by Wald [1] is an effective approach for testing two
simple hypotheses, and it has many applications in practical problems because of the optimal properties [2].
The test characteristics of SPRT are well studied in the case of independent identically distributed observa-
tions [1; 3—5]. If the hypothetical model is distorted, robustness of sequential tests is studied in [6], and an
approach to robust sequential test construction is developed in [7]. However, in practice there are several si-
tuations, where it is natural to consider more than two hypotheses. For example, in the clinical trials, deciding
which of several possible medical treatments is the most effective as quick as possible is a multihypothesis
sequential problem. Most researches on this problem are based on two approaches: (1) construct a recursive
solution to the optimization problem to get the optimal sequential test in a Bayesian setting [8]; and (2) extend
and generalize the SPRT to the case of more than two hypotheses [5; 9—11]. Among the generalized versions of
SPRT, M-ary sequential probability ratio test (MSPRT) and matrix sequential probability ratio test (MaSPRT)
seem to be much simpler to construct and implement. Optimal properties of these methods have been well
studied in the case of independent identically distributed observations [5; 11]. In many applied problems, the
observed data can come from more complicated resources, such as time series. Sequential test for time series
with trend has also been studied by Kharin and Tu [12—14]. In this paper, we will use MSPRT and MaSPRT for
sequentially testing parameters of time series with trend.

Mathematical model
Let x,, x,, ... be the observations of time series with trend in the following form [15]:
x,=0"y(r)+ &, 121, (1)
where y(2) = (v, (1), v, (1), ... v, (t))T, t 21 are the vectors of basic functions of trend, 8 =(6,,0,, ...,6,, )Te

e R™ is an unknown vector of coefficients, and {Em t> 1} is a sequence of independent identically distributed
random variables, & ~ N (0, o’ )

Consider M simple hypotheses: ,

H,:0=0,i€eT, 2)

where 0" € R”, i € T, are known vectors, T={1, 2, ..., M} and &' # 6’ if i # j.

Firstly, we consider the called M-ary SPRT [11] for testing the multiple hypotheses (2). Assume that the
prior probabilities of the hypotheses are known. Put 7, = P(G =0, ), ie T,andforn=1, p = (pi, Pl P ),
where p/ = P(G =0/ |x, x,, ... xn) is the posterior probability of the hypothesis 7, given n observations

Xpy Xy ooy X,
The stopping time N, and the final decision d, for the MSPRT §, = (Na, da) can be described as follows:
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1
N, =infin>1, p*> for at least one k ¢, 3)
1+ 4,
d,=H,, m=arg max pj, (4)
1<jsm” e

where 4,, k € T, are specified constants, 4, € (0, 1].

M
1
Remark 1. Note that 2 pl=1and !

1 . )
> 5’ Vk e T. Thus, there is at most one index k € T such that
1 k=1 k

k
pn>

1+4,

When M = 2, the test 6, can be rewritten as follows:

) (xl, 0’ T\y(i), (52)
accept /|, H 1 ( )T < n&Al,
i<l nl(xi; (6‘) v (i), 62) 2
" n(x,.; 0°) (i), 02)
accept H,, [] l ( )T > n;l :
i=1 nl(xl_; (el) \|I(i), 62) T4,

This is the Wald’s sequential probability ratio test.
Let B= {bij }MxM be a fixed square matrix of size M, whose elements are positive except for the diagonal

M(M -1
elements which are zero. Next, we define the matrix SPRT 9, by building % one-sided SPRTs between
hypotheses H, and H , i, j € T, j # 1, as follows [5]:
stop at the first n > 0 such that, for some 7, An(i, j) > b, forall j#i, (5)

and accept H;, where i is the unique index satisfying these inequalities, and
AT

ﬁ nl(xk; (9 ) v (k), 62)

k=t'm, (xk; (ej)TW(k)’ 62)

For the test & = (N, d) let 0(17(8)=Pi (d=])),i#j,i, jeT, be the error probabilities of the test d, and
&i(S), i €T, be the probabilities of accepting hypothesis H, incorrectly. Note that the probabilities of rejecting

An(i, j) =In

the hypothesis H, when it is true, o, (8)= Z(xi].(S), ieT, are also of interest. In addition, we are interested
j#i

in the weighted error probabilities defined as [ j(S) = Z;W’VPi (d = j), where {wl.j }MxM is a given matrix of

weights, all positive except for the diagonal elements w; which are zero. We introduce four classes of tests:

C’(a)= {5 :P(accept H, incorrectly) <o, ie T},
C'([ory ])={8: 0, (8) < 0t iy je T, i j},

Clo)={8:0a,8)<a,ieT}, C(B)={5:B,(8)<P,ieT},
where [OLU.] is a matrix of given error probabilities that are positive numbers less than 1, o = (0(1, Oy, onny Oy, )T,

o _ T . T .
o= (ocl, Oys - oe) ocM) are two vectors of positive numbers less than 1, and B = (Bl, B, ... BM) is a vector of
positive numbers.
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Remark 2. There are some relations between four classes of tests defined above.
i) C°(a)=C(ax) if w, =m,sign(ji— j|)., i, jeT;

ii) C'([ o, ]) = C(01) if @, < ﬁ i, jeT, i#;

iii) C'([ oy, ]) c C*(01) if o, 2 Y a1y

Jj#i

1

iv) C'([a, ) = C(B) if w, < i, jeT, i+

5
(M -1)a,
Lemma 1 [16]. For positive semidefinite matrices A and B of the same order
0<tr(4B) < tr(A)tr(B).
Lemma 2 [17]. If X is a non-negative, integer valued random variable, then
+ o0
E(X)=) P(X=n).
n=1

Lemma 3 [17]. Let r > 0, and suppose that X is a non-negative random variable. Then the following ine-
qualities hold:

in"'P(X >n)<E(X")<1+ in“lp(x > n),
n=1 n=1

and

E(|X|r) <o if'and only if zn”lP(X > 1) < o,
n=1
Main results

M-ary sequential probability ratio test. Using Bayes’s rule, the posterior probabilities can be rewritten as:

nk,lj n, (xl.; (Ok)T\u(i), (52)

ﬁ_lﬂjl_[nl(xi; (6) w(i), 02)

i=1

p, = ,nz2l,keT,

where 7, (x; L, 62) is the probability density function of the normal distribution N (],L, c’ )
In practice, we can use the following recurrent formula for calculating the values of p:

“ | x, ;GkT +1), 2)
pr:P(O:Gk‘xl,xz,...,x an): pnl(XH( )W(” )G ,n=0,

" Mo AT
Y ol (5. (07) wln+1), 07
j=1

where py =m,, keT.

Clearly, the condition p* > can be rewritten as follows:

k

; - < 4,.
j-f-knk i=1 n](xi; (ek) W(Z)’ 62)

Denote I, = (Oi - 6’)(6i -0/ )T, i, jeT, and H = i\p(z’)qﬂ (i), n = 1. The following theorem will give
i=1

us a sufficient condition for the finite termination of the test (2)—(4).
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Theorem 1. If tr( Ean) — +ooasn — oo foralli,je T, i #j, then the test (2)—(4) will terminate finitely

with probability 1.
Proof. Letk e T be a fixed value. We have:

B(N,>n)=2| (1 z—f’]n(x

t=1leT | jeT\{1} T

AN “jﬁnl(xi; () w(i) 62)>A~ <P nl(x )>A <
- ter | jérgny i nl(xl.; (GI)TW(i), 62) T JeT\{k} Ty i 1n1(xl, Gk )_ a
[ AT AT
cr| U @ v0e) 4 () sl @) ve “2) SV
jerr) | T i n, (xi; (ek)T\]I(i), 02) M-1 jer\{k} i=1 p, (xl, (Gk)T\V(l), (52) T M-1

where y(k, j)= ln(n—"i].

T M-1
Obviously, fork, je T, k# j,

A, k)= —ﬁ{é,xi(@k— o) w(i)+(07) H,6'— (6¢) H,6" }

and under the hypothesis H,, statistic An( J, k) has the normal distribution with the following parameters:

EW(A,(j, k)= - (152 {2(ek_ 9./')T H 0" +(ej)THnef _(ek )THnek }: ~ tr(z;fn )
D(k)(An(j,k)):é " ((ek_ej)TW(i)f:@_
i=1

Under the conditions of this theorem we get:

v(k, /)~ ED(A, (), k)
DU(A,(ji k))

P(A k) 2 v (k) =1= q’[

]—)0, as n — +oo, Vj e T\{k},

which implies lim P, (Nu > n) = 0. This completes the proof.
Corollary 1. The conditional expectations of stopping time N, satisfy the following inequalities:

+oo 2 X
E9N)<1+ Y To 20 v(k, j)+ (T, H, )

jenk}n=1 ZGQItI‘(ijHn)

Proof. This is directly derived from the proof of theorem 1 and lemma 2.
Remark 3. Under the theorem 1 conditions, we have

keT.

ZZ‘VJ ) = +oo, as n — +oo.

i=1j=

39



ZKypnaa Besopycckoro rocynapcTBeHHOro yuupepcurera. Maremaruka. Madopmaruka. 2019;1:35-45
Journal of the Belarusian State University. Mathematics and Informatics. 2019;1:35-45

n

Proof. This is directly derived from lemma 1 and the fact that tr 2 Z

)ﬁ+oo as n — +oo, then

Theorem 2. If there exist positive constants K, i, j € T, i # j, such that

the stopping time N, has finite moments of all orders.
Proof. Letk e T be a fixed value. From the proof of theorem 1 and Markov’s inequality we have:

n nl(x,.; (Gj)Tw(i), 62) T, A

Pk(zva>n)s/_§\{k}a Hlnl(x,.; o T w0 02)>EM_1 <
(M-1) n nl(x,.; (Gj)Tlu(z’), 02)

T (k) _
<y ) EYT]

jeT\{k} =1 n (xi; (ek )Tllj(l)’ 62)

i z H n, (x,.; (91) y(i), o

jervk) T, A n, (xl_; (ek)T\V(l)7 02

~— I ~~—~———

On the other hand,
m(x: 0) w(i). o) 250~ /T w(i) + (0 w(i) (o) w))

- =E(k)exp - >
n, (xi; (91‘) W(i), Gz) 40

E(")

= oo _J; expy— . dx =
exp{— 2 [((91 )T \lf(l.))2 - ((ek )T W(i))z ]} +o0 x - x(Gk + 9’) \p(z) + ((Bk )T \4!(1))2
- e Jexp- 2 “=

= expq— ="
Therefore,
(M-1 tr(I, H
P(N,>n)< Mexp —(LZ”) . (6)
jeTVk} n, A4, 80

The result is derived from lemma 3 and the last inequality above.
Remark 4. The results of theorem 1 can be derived directly from the inequality (6).
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The relations between thresholds A4,, i € 7, of the test §, and its error probabilities are shown in theo-
rem 4.2 [11]. This theorem is still valid for the model of general independent observations. Now we can restate
this result with our notation above as follows.

Theorem 3 [11]. If the test (3)—(4) terminates finitely with probability one, then the following inequalities
hold:

a)a,(8,)= Y = )< A, forall k;
JeT, j#k
b)a(d Z a, (8 2 T A
k
_ Y|
c) if; in addztlon, A =A,=...=4,=A, then 0(3,) < o a
Corollary 2. Under the theorem 3 conditions the following inequality holds:
A, . .Mn
o (80 ) < max )
Amaxnmax + 7.[:min
M
where oc 2 = max{A,., ie T}; T = max{n,., ie T}; T, = Min {ni, ie T}.
- a, (3
Proof. From the proof of theorem 4.2 in [11] we have o, (3,) = k (A“), k €T, which implies
T Ay
l-o ol k eT.
()2 Y a(

max ‘¥max j#k

Taking summation over k£ we get:

M-o(8,)

T .
2w 3o (3,)= —Tmm(s,)
Amaxnmax k=1j+#k Amaxnmax
This completes the proof.
Remark 5. { —0

* If we choose the thresholds 4, = min Z } keT,thend, e CO( ), where 0’ = (6(?, ey O )T.
k

* If we set the maximum of total probability &(80) of an incorrect decision to be o, € (0, 1) in advance, then

0 }, keT,ord,=o,keT.

we can select 4, = minJ1,
M,

* [f we set the maximum of total probability oc(Sa ) of rejecting a hypothesis when it is true to be o, € (0, M )

a‘Onmin
—_—— T.
(M-« )} ke

max

in advance, then we can select 4, = min {1

Matrix sequential probability ratio test. Denote T, = inf {n eN:A, (i, j) >b;, forall jeT \{i}}, ieT.
Then, for the test 8, = (N,, d, ) the stopping time N, and the final decision d, can be rewritten as:
N,=min{t,ieT}, d,=iif N,=1,. (7)

Theorem 4. Under the theorem 1 conditions the test (7) will terminate finitely with probability one.
Proof Foreachie Tand n>1, we have:

plson=r(() U {nsnl] e[ U inensalls $ plaaen)
1jeT\{i} jeT\i} jeT\i}

Under hypothesis H,, statistic A, (i, /) has the normal distribution with the following parameters:
w(L4,)

26°

b

E(i) (An(i,j))z _%{2(9/'_ ei)THnei_l_ (e;)THnei_ (ej)T Hnej} =
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D (1) 300 win] - L

9

bo—EV(A (i i
From that we get B(’Cpn)g 2 D| 2 ( n(l,J))

_ —0, as n —> +oo. Therefore, B(N, > n)<
P! DY(A, (i, )

<P (ti > n) — 0 as n — +oo. This completes the proof.
Corollary 3. The conditional expectations of stopping time N, satisfy the following inequalities:

& | 20°%, - (T H,)

(N <1 @
b) +jg:‘{i},§ ZGW

Proof. This is directly derived from the proof of theorem 4 and lemma 2.
Theorem 5. Under the theorem 2 conditions the stopping time N, has finite moments of all orders.

Proof. Denote f(x)=®(x)—¢(x), xeR. We have f’(x)=(1+x)p(x)VxeR. Therefore, ®(x) <

< @(x) Vx < —1. Under the theorem conditions, we get:
2

ieT.

1| b= EV(A, ()

PO

— +oo, Vi, jeT,i# j, as n — +eoo,

and there exists an index n, € N such that

b,.j B E(i)(An(i’j))
DY(A,(i,7)

<-LVi jeTl,i#j n=n,.

From the proof of theorem 4 we obtain:
— £ ’(A (,-,,-))

/eT\{t \/D

The rest part of proof is derived directly from lemma 3.
The following known results are very useful to choose the threshold matrix B so that the test §, can belong

to one of the classes C ([ U]) C*(a), or C*(B) mentioned above.

P(N,>n)< ,ieT, n>n,

Lemma 4 [5]. The following assertions hold:
i) o, (3 )< e i, jeT, i)
zz)oc Ze nieT;

j-f-l

b, .
iii) B,(3 ZW,je nieT.

J#i

Remark 6 [5]. We have the following implications:

i) b, = h{%} i,jeT,i+jimpliesd, e c‘([aij]);

i) b= b, = ln(ﬁ/;_l), i,jeT,i#jimplies §, e C*(a);

J

wW,.
iii) b, = b, = ln(z —k’], i, jeT,i# jimplies §, € C*(B).
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Numerical examples
The model (1) is considered and the hypotheses (2) is tested with the following parameters:
t 1
M=3 m=4,c=10,y(t)=|1, — —, - |,
v () ( 10" 100 t)
6°=(1,1,1,1), 8'=(2,2,1,1), 8°=(3,3,1, 1)

With these values of parameters it is easy to check the conditions tr(l"l.j.Hn) — +o0 as n — +oo for all
i,je {1, 2, 3}, i # j,e. g. the tests 9, and §, terminate finitely with probability 1. Denote the Monte-Carlo esti-

mate of a characteristic ¥ by y. The number of experiments used in Monte-Carlo method is 50 000.
=0
For the test §,, from remark 5 we can use the thresholds A4, = min(l, %J, i e T, with different vectors
o’= (&?, e 6(34) and the fixed prior probabilities 7t = (0.2, 0.3, 0.5). In this case the test §, will be in class
CO(&O). The Monte-Carlo estimates of error probabilities 0(21(6a ), 0c31(6a ), and conditional average number

of observations #,(8, ) = E(NH|H1) are given in table 1, where &I(Sa )=m,0,,(8,) + 7, 05,(8, ) is an estimate

of P (accept H, incorrectly).

Table 1
Monte-Carlo estimates for the characteristics of the test J,

& 6, (3,) &y, (8,) a,(3,) 6,(3,) i\(8,) EV(N,) <
(0.1,0.1,0.1) 0.20986 0.01258 0.06925 0.11148 27.97730 63.58791
(0.05,0.1,0.1) 0.104 84 0.00222 0.03256 0.14548 33.41488 71.33009
(0.01, 0.1, 0.1) 0.01984 0.00006 0.00598 0.173 68 43.38288 85.48740
(0.05, 0.05, 0.1) 0.11448 0.00176 0.03522 0.0765 34.59546 71.33009
(0.05,0.01, 0.1) 0.11854 0.00224 0.03668 0.02822 3542372 71.33009
(0.05, 0.01, 0.05) 0.12136 0.00212 0.03747 0.01452 35.907 88 71.33009

In table 1, the inequality &I(Sa) < @, is satisfied with all given values of vector &.’. With the same levels of
0, 05 the decrease of 0., leads to the decrease of 4,, and as a result the conditional average number of obser-
vations #,(8, ) increases. The changes in probability @,(8,) = P (accept H, incorrectly) and probability o, (3,)
of rejecting hypothesis 7, when it is true are likely to be the opposite. Additionally, with the same levels of &,
the value of 31(8) changes negligibly with respect to &3, 63. Using corollary 1, we can get the upper bounds
for the conditional expected values of number of observations £ (k)(Na ), k € T. Because the dependence of the
upper bound of £ (k)(Na ) on the index k is expressed only by 4, and I, j # k, this value will not change if we

fix k-th element in vector a.".
For the test 8, we choose the matrix of thresholds B according to remark 6 as follows:

M-1) L
B={p} bl.j:bj:ln[ . }z,]e{l, 2,3}, i#).

i
In this case the test 8, will be in class C (oco ), where o’ = (ocl, oo ocM) is a given vector of upper bounds
for the error probabilities oc,.(ﬁ b ), i =1, 3. The Monte-Carlo estimates of error probabilities Ocl(Sb ), o, (Sb) and

conditional average number of observations #,(8,)= E (M ‘ Hl), ,(8,)=E (Nb ‘ Hz) are presented in table 2
with different vectors o,
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Table 2

Monte-Carlo estimates for the characteristics of the test 3,

o a,(3,) a,(8,) a,(8,) 7(3,) 7(3,) 7(8,) EV(N,) <
(0.1,0.1,0.1) 0.02122 0.07332 0.02056 44.48080 55.16492 44.58876 74.50947
(0.05,0.1,0.1) 0.01192 0.06942 0.02016 44.79036 57.14122 44.55326 74.50947
(0.01,0.1,0.1) 0.00272 0.07238 0.01642 45.04042 61.63928 44.71420 74.50947
(0.05, 0.05, 0.1) 0.01094 0.03428 0.01918 49.03696 58.23930 48.82716 78.33166
(0.05, 0.01, 0.1) 0.01100 0.006 66 0.02026 57.04046 59.004 56 56.73546 85.74248
(0.05, 0.01, 0.05) 0.01088 0.00622 0.01070 57.09078 60.861 86 57.01848 88.11351

In table 2 the inequalities &,(3,) < af, i= 1, 3, are satisfied with all given values of vector 0. If we fix

two elements in vector o, the increase or decrease of the rest one leads to the change of conditional average
number of observations under corresponding hypothesis in the opposite direction. Comparing with the results
of the test 9, in table 1, the test 6, need more observations to get the final decision, but it seems to have much
less error probabilities of rejecting a hypothesis when this hypothesis is true. Furthermore, we can use the

results in corollary 3 to get the upper bounds for £ (k)(Nb ), k € T. Note that from the expressions of the upper
bounds for £ (k)(Nb ), k €T, these values are independent of the index £, e. g. they do not change with respect

to k-th element of vector o
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