Математическая логика, алгебра и теория чисел

Mathematical logic, algebra and number theory

УДК 512.542

КВАЗИНОРМАЛЬНЫЕ КЛАССЫ ФИТТИНГА КОНЕЧНЫХ ГРУПП

А. В. МАРЦИНКЕВИЧ 1)

1)Витебский государственный университет им. П. М. Машерова, пр. Московский, 33, 210038, г. Витебск, Беларусь

Пусть $\mathbb P$ — множество всех простых чисел, Z_n — циклическая группа порядка n и X wr Z_n — регулярное сплетение группы X с Z_n . Класс Фиттинга $\mathfrak F$ называется квазинормальным в классе конечных групп $\mathfrak X$, или $\mathfrak X$ -квазинормальным, если $\mathfrak F \subseteq \mathfrak X$ и из $G \in \mathfrak F$, G wr $Z_p \in \mathfrak X$, где $p \in \mathbb P$, следует G^m wr $Z_p \in \mathfrak F$ для некоторого $m \in \mathbb N$. Если $\mathfrak X$ — класс всех разрешимых групп, то $\mathfrak F$ — нормальный класс Фиттинга. В работе получено обобщение известной в теории нормальных классов Фиттинга теоремы Блессеноля — Гашюца: доказано, что пересечение любого множества неединичных $\mathfrak X$ -квазинормальных классов Фиттинга является неединичным $\mathfrak X$ -квазинормальным классом Фиттинга. В частности, существует наименьший неединичный $\mathfrak X$ -квазинормальный класс Фиттинга. Также подтвержден обобщенный вариант гипотезы Локетта о структуре класса Фиттинга для $\mathfrak X$ -квазинормальных классов в случае, когда $\mathfrak X$ — локальный класс Фиттинга конечных частично разрешимых групп.

Ключевые слова: класс Фиттинга; квазинормальный класс Фиттинга; гипотеза Локетта; локальный класс Фиттинга.

Благодарность. Работа выполнена при финансовой поддержке Белорусского республиканского фонда фундаментальных исследований (грант № Ф17М-064).

Автор выражает искреннюю благодарность профессору Н. Т. Воробьеву за постановку задачи и обсуждение результатов работы.

Образец цитирования:

Марцинкевич АВ. Квазинормальные классы Фиттинга конечных групп. Журнал Белорусского государственного университета. Математика. Информатика. 2019;2:18–26. https://doi.org/10.33581/2520-6508-2019-2-18-26

For citation:

Martsinkevich AV. Quasinormal Fitting classes of finite groups. *Journal of the Belarusian State University. Mathematics and Informatics*. 2019;2:18–26. Russian. https://doi.org/10.33581/2520-6508-2019-2-18-26

Автор:

Анна Веславовна Марцинкевич — аспирантка кафедры алгебры и методики преподавания математики факультета математики и информационных технологий. Научный руководитель — доктор физико-математических наук, профессор Н. Т. Воробьев.

Author:

Anna V. Martsinkevich, postgraduate student at the department of algebra and methods of teaching mathematics, faculty of mathematics and information technology.

anna.martsinkevich@tut.by

https://orcid.org/0000-0002-2930-1056

QUASINORMAL FITTING CLASSES OF FINITE GROUPS

A. V. MARTSINKEVICH^a

^aP. M. Masherov Vitebsk State University, 33 Maskoŭski Avenue, Vitebsk 210038, Belarus

Let $\mathbb P$ be the set of all primes, Z_n a cyclic group of order n and X wr Z_n the regular wreath product of the group X with Z_n . A Fitting class $\mathfrak F$ is said to be $\mathfrak X$ -quasinormal (or quasinormal in a class of groups $\mathfrak X$) if $\mathfrak F \subseteq \mathfrak X$, p is a prime, groups $G \in \mathfrak F$ and G wr $Z_p \in \mathfrak X$, then there exists a natural number m such that G^m wr $Z_p \in \mathfrak F$. If $\mathfrak X$ is the class of all soluble groups, then $\mathfrak F$ is normal Fitting class. In this paper we generalize the well-known theorem of Blessenohl and Gaschütz in the theory of normal Fitting classes. It is proved, that the intersection of any set of nontrivial $\mathfrak X$ -quasinormal Fitting classes is a nontrivial $\mathfrak X$ -quasinormal Fitting class. In particular, there exists the smallest nontrivial $\mathfrak X$ -quasinormal Fitting class. We confirm a generalized version of the Lockett conjecture about the structure of a Fitting class for the case of $\mathfrak X$ -quasinormal classes, where $\mathfrak X$ is a local Fitting class of partially soluble groups.

Keywords: Fitting class; quasinormal Fitting class; the Lockett conjecture; local Fitting class.

Acknowledgements. Research is supported by the Belarusian Republican Foundation for Fundamental Research (grant No. Φ17M-064).

The author would like to express sincere gratitude to professor N. T. Vorob'ev for the formulation of the problem and discussion of the results of work.

Введение

В работе рассматриваются только конечные группы, если не оговорено обратное. Множество групп \mathfrak{X} называют *классом групп* [1, определение II, (1.1)], если для любой группы $G \in \mathfrak{X}$ и всякой группы $H \cong G$ следует $H \in \mathfrak{X}$.

 $\mathit{Классом}\ \mathit{Фиттинга}\ [1,\ \mathsf{oпределениe}\ \mathrm{II},\ (2.8)\ (a)]$ называют класс групп $\mathfrak F$, замкнутый относительно нормальных подгрупп и произведений нормальных $\mathfrak F$ -подгрупп. Если $\mathfrak F$ — непустой класс $\mathfrak F$ — непустой класс $\mathfrak F$ — для любой группы G существует наибольшая из нормальных $\mathfrak F$ -подгрупп G, ее называют $\mathfrak F$ -радикалом G и обозначают $G_{\mathfrak F}$.

В построении и развитии структурной теории классов Фиттинга многие исследования связаны с применением так называемых нормальных классов Фиттинга (см. главы IX–XI в [1]).

Пусть \mathfrak{X} – класс групп. Класс Фиттинга \mathfrak{F} называется нормальным в \mathfrak{X} , или \mathfrak{X} -нормальным [2, определение 1.1], если $\mathfrak{F} \subseteq \mathfrak{X}$ и для любой группы $G \in \mathfrak{X}$ ее \mathfrak{F} -радикал \mathfrak{F} -максимален в G. В случае когда $\mathfrak{X} = \mathfrak{S}$, где \mathfrak{S} – класс всех разрешимых групп, \mathfrak{F} называют нормальным классом Фиттинга.

Пусть G и H – группы. Тогда символами G wr H и G^* будем обозначать peryлярноe cnлетение G с H и базисную группу G wr H соответственно. Если $K \leq G$, то K^* – подгруппа базисной группы G wr H, которая изоморфна прямому произведению |H| копий группы K.

Основополагающими результатами в теории разрешимых нормальных классов Фиттинга являются теоремы Блессеноля — Гашюца [3, теорема 6.2] и Блессеноля — Гашюца — Макана [4]. В первой из них было установлено, что пересечение любого множества неединичных нормальных классов Фиттинга есть неединичный нормальный класс Фиттинга. В частности, в $\mathfrak S$ существует наименьший неединичный нормальный класс Фиттинга $\mathfrak S_*$. Во второй получена следующая характеризация свойства нормальности в терминах регулярных сплетений групп: класс Фиттинга $\mathfrak S$ является нормальным тогда и только тогда, когда для любой группы $G \in \mathfrak S$ и каждого простого р из условия $G \in \mathfrak S$ следует G^n wr $Z_p \in \mathfrak F$ для некоторого натурального п. Данная характеризация была использована $\mathfrak I$. Хауком (в универсуме $\mathfrak S$) для обобщения понятия нормального класса Фиттинга в смысле следующего определения [5, определение 5.1].

Пусть $\mathbb P$ — множество всех простых чисел. Класс Фиттинга $\mathfrak F$ называется квазинормальным в классе групп $\mathfrak X$, или $\mathfrak X$ -квазинормальным, если $\mathfrak F\subseteq \mathfrak X$ и из $G\in \mathfrak F$, G wr $Z_p\in \mathfrak X$, где $p\in \mathbb P$, следует G^m wr $Z_p\in \mathfrak F$ для некоторого $m\in \mathbb N$

Очевидно, что если $\mathfrak{X} = \mathfrak{S}$, то \mathfrak{F} – нормальный класс Фиттинга.

В настоящей работе установлено, что существуют \mathfrak{X} -нормальные классы Фиттинга, которые не \mathfrak{X} -квазинормальны, и \mathfrak{X} -квазинормальные классы Фиттинга, которые не \mathfrak{X} -нормальны (см. теорему 1).

В связи с этим возникает следующий вопрос.

Вопрос 1. Верно ли, что пересечение любого множества неединичных квазинормальных в \mathfrak{X} классов Фиттинга — неединичный квазинормальный в \mathfrak{X} класс Фиттинга?

Положительный ответ на этот вопрос дает следующая теорема.

Теорема 1. Пересечение любого множества неединичных \mathfrak{X} -квазинормальных классов Фиттинга является неединичным \mathfrak{X} -квазинормальным классом Фиттинга. В частности, существует наименьший неединичный \mathfrak{X} -квазинормальный класс Фиттинга \mathfrak{X}_{\oplus} .

Заметим, что в случае $\mathfrak{X} = \mathfrak{S}$ следствием теоремы 1 является теорема Блессеноля — Гашюца. Кроме того, как показано в [6, пример 0.2], аналог этой теоремы для \mathfrak{X} -нормальных классов Фиттинга в общем случае неверен.

Ф. П. Локеттом [7] были определены операторы «*» и «*». Напомним, что оператор «*» сопоставляет каждому непустому классу Фиттинга $\mathfrak F$ наименьший из классов Фиттинга $\mathfrak F^*$, содержащий $\mathfrak F$, такой, что для всех групп G и H справедливо равенство $(G \times H)_{\mathfrak F^*} = G_{\mathfrak F^*} \times H_{\mathfrak F^*}$, а оператор «*» сопоставляет $\mathfrak F$ класс групп $\mathfrak F_* = \bigcap \left\{ \mathfrak X : \mathfrak X -$ класс Фиттинга, $\mathfrak F^* = \mathfrak X^* \right\}$. Если класс Фиттинга $\mathfrak F = \mathfrak F^*$, то $\mathfrak F$ называют классом Локетта [1, определение $\mathfrak X$, (1.12)].

Произведением классов Фиттинга $\mathfrak F$ и $\mathfrak S$ называют класс групп $\mathfrak F\mathfrak S = (G:G/G_{\mathfrak F}\in \mathfrak S)$. Хорошо известно, что произведение классов Фиттинга является классом Фиттинга и операция умножения классов Фиттинга ассоциативна [1, IX, (1.12) (a), (c)].

Отображение $f: \mathbb{P} \to \{$ классы Фиттинга $\}$ называют функцией Хартли, или H-функцией [8]. Множество $Supp(f) = \{p \in \mathbb{P}: f(p) \neq \emptyset\}$ — носитель H-функции f. Пусть LR(f) — класс Фиттинга такой, что $LR(f) = \mathfrak{E}_{\pi} \cap (\bigcap_{p \in \pi} f(p)\mathfrak{R}_p\mathfrak{E}_{p'})$, где $p' = \mathbb{P} \setminus \{p\}$, $\pi = Supp(f)$ и \mathfrak{E}_{π} , \mathfrak{R}_p и $\mathfrak{E}_{p'}$ — классы всех π -, p- и p'-групп соответственно. Класс Фиттинга \mathfrak{F} называют локальным, если $\mathfrak{F} = LR(f)$ для некоторой H-функции f.

Класс групп \mathfrak{X} имеют разрешимым, если $\mathfrak{X} \subset \mathfrak{S}$.

Важное место в описании структуры классов групп занимает следующая проблема Локетта (см. [7, с. 135, проблема]), известная под названием гипотезы Локетта.

Гипотеза Локетта. Каждый разрешимый класс Фиттинга \mathfrak{F} определяется равенством $\mathfrak{F} = \mathfrak{F}^* \cap \mathfrak{X}$, где \mathfrak{X} – некоторый нормальный класс Фиттинга.

Гипотеза Локетта была подтверждена Р. А. Брайсом и Дж. Косси [9] для локальных классов Фиттинга, замкнутых относительно подгрупп; Дж. С. Бейдельманом и П. Хауком [10] для локальных классов Фиттинга вида $\mathfrak{X}\mathfrak{N}$ и $\mathfrak{X}\mathfrak{S}_{\pi}\mathfrak{S}_{\pi'}$ (\mathfrak{N} и \mathfrak{S}_{π} – классы всех нильпотентных групп и разрешимых π -групп соответственно); Н. Т. Воробьевым [11] для произвольных локальных классов Фиттинга. Класс Фиттинга, для которого верна гипотеза Локетта, называют \mathfrak{L} -классом [12].

Р. А. Брайсом и Дж. Косси было доказано [1, предложение X, (6.1)], что класс Фиттинга $\mathfrak{F} \subseteq \mathfrak{X}$ является \mathfrak{L} -классом в классе групп \mathfrak{X} , т. е. $\mathfrak{L}_{\mathfrak{X}}$ -классом, в точности тогда, когда $\mathfrak{F}_* = \mathfrak{F}^* \cap \mathfrak{X}_*$.

Как следует из теоремы 1, в общем случае $\mathfrak{F}_* \neq \mathfrak{F}_\oplus$.

Пусть $\mathfrak F$ и $\mathfrak X$ – классы Фиттинга и $\mathfrak F$ квазинормален в $\mathfrak X$. Естественной является постановка следующих взаимосвязанных вопросов.

Вопрос 2. *Каковы классы* \mathfrak{F} *и* \mathfrak{X} , *для которых* $\mathfrak{F}_* = \mathfrak{F}_\oplus$?

Вопрос 3. Для каких классов $\mathfrak F$ и $\mathfrak X$ справедлива $\mathfrak L_{\mathfrak X}$ -гипотеза Локетта?

Для решения вопросов 2 и 3 мы будем использовать следующие понятия, связанные со свойствами сплетений групп, которые были предложены П. Хауком [5].

Пусть $p \in \mathbb{P}$. Класс Фиттинга \mathfrak{F} называют классом с ограниченным p-свойством сплетения, если из условия $1 \neq G \in \mathfrak{F}$ и $O^{p'}(G) = G$ следует G^n wr $Z_p \in \mathfrak{F}$ для некоторого $n \in \mathbb{N}$. Пусть $\pi \subseteq \mathbb{P}$. Класс Фиттинга \mathfrak{F} назовем классом с ограниченным π -свойством сплетения, если для каждого $p \in \pi$ из условия $1 \neq G \in \mathfrak{F}$ и $O^{p'}(G) = G$ следует G^n wr $Z_p \in \mathfrak{F}$ для некоторого $n \in \mathbb{N}$. В случае когда $\pi = \mathbb{P}$, \mathfrak{F} называют классом Фиттинга с ограниченным свойством сплетения [5, определение 2.7].

Следующая теорема дает ответ на вопросы 2 и 3 для класса Фиттинга $\mathfrak X$ частично разрешимых групп (в частности, разрешимых групп) в случае, когда $\mathfrak X^*$ – класс Фиттинга с ограниченным π -свойством сплетения, и подтверждает обобщенный вариант гипотезы Локетта для широкого семейства квазинормальных классов Фиттинга, когда $\mathfrak F$ и $\mathfrak X$ – локальные классы Фиттинга. Доказана следующая теорема.

Теорема 2. Пусть $\emptyset \neq \pi \subseteq \mathbb{P}$ и классы Фиттинга \mathfrak{F} и \mathfrak{X} таковы, что $\mathfrak{F} \subseteq \mathfrak{X} \subseteq \mathfrak{F}\mathfrak{S}_{\pi}$ и \mathfrak{F} квазинормален в \mathfrak{X} . Тогда справедливы следующие утверждения:

- (1) если \mathfrak{X}^* является классом с ограниченным π -свойством сплетения, то $\mathfrak{X}_\oplus = \mathfrak{X}_*$;
- (2) если \mathfrak{F} и \mathfrak{X} локальные классы Фиттинга, то \mathfrak{F} является $\mathfrak{L}_{\mathfrak{X}}$ -классом.

Следствие 1. Если классы Фиттинга \S и X таковы, что $\S \subseteq X \subseteq S$ и \S квазинормален в X, тогда справедливы следующие утверждения:

- (1) если \mathfrak{X}^* является классом с ограниченным свойством сплетения, то $\mathfrak{X}_\oplus = \mathfrak{X}_*$;
- (2) если $\mathfrak F$ и $\mathfrak X$ локальные классы Фиттинга, то $\mathfrak F$ является $\mathfrak L_{\mathfrak X}$ -классом.

В случае когда $\pi = \mathbb{P}$ и $\mathfrak{X} = \mathfrak{S}$, получаем основной результат работы [11].

Следствие 2 [11, с. 166, теорема]. Гипотеза Локетта верна для любого локального разрешимого класса Фиттинга.

Напомним, что класс Фиттинга $\mathfrak F$ называют наследственным, если для любой группы $G \in \mathfrak F$ и $H \leq G$ верно $H \in \mathfrak F$.

Каждый класс Фиттинга будем считать 0-кратно локальным. Класс Фиттинга \mathfrak{F} называют n-кратно локальным $(n \ge 1)$ [8], если все непустые значения его локальной H-функции являются (n-1)-кратно локальными классами Фиттинга. Класс Фиттинга \mathfrak{F} называют momansho локальным [8], если \mathfrak{F} n-кратно локален для любого натурального n.

Как установлено в [13, теорема 1.1], каждый разрешимый наследственный класс Фиттинга является формацией. По теореме из [14] получаем, что каждый непустой разрешимый наследственный класс Фиттинга является локальным. Кроме того, непустой разрешимый класс Фиттинга $\mathfrak F$ является наследственным тогда и только тогда, когда $\mathfrak F$ тотально локален [8] или в терминологии Брайса — Косси является примитивной насыщенной формацией. Поэтому из теоремы 2 получаем третье следствие.

Следствие 3 [9, теорема 4.1]. *Каждая разрешимая примитивная насыщенная формация Фиттинга удовлетворяет гипотезе Локетта*.

Предварительные сведения

Мы будем использовать результаты П. Хаука [15] о свойствах сплетений групп в теории классов Фиттинга, которые приведем в качестве лемм.

Лемма 1 [1, теорема X, (2.9)]. Пусть \S – класс Фиттинга и $G \in \S$; P_0 – неединичная p-группа для некоторого $p \in \mathbb{P}$ и G wr $P_0 \in \S^*$. Тогда для любой p-группы P справедливы следующие утверждения:

- (1) G^2 wr $P \in \mathcal{F}$;
- (2) если $p \neq 2$, то G wr $P \in \mathcal{F}$.

Лемма 2. Справедливы следующие утверждения:

- (1) [1, лемма X, (2.3)] если \S класс Фиттинга, G группа, H нильпотентная группа и G wr $H \in \S$, то G^n wr $H \in \S$ для любого $n \in \mathbb{N}$;
- (2) [16, следствие 2.2] пусть G группа, N \unlhd G и C добавление κ N в G такое, что $C/(C \cap N)$ нильпотентна и $N \cap C$ центрально в N. Если класс Фиттинга $\mathfrak F$ замкнут относительно подпрямых произведений и G ∈ $\mathfrak F$, то C ∈ $\mathfrak F$.

Лемма 3. Справедливы следующие утверждения:

- (1) [1, предложение X, (2.1) (a)] если \S класс Локетта, G группа и $G \notin \S$, то $(G \text{ wr } H)_{\S} = (G_{\S})^*$ для любой группы H;
 - (2) [1, лемма A, (18.2) (d)] если G и H группы, W = G wr H и $K \leq G$, то $W/K^* \cong (G/K)$ wr H;
 - (3) [1, лемма A, (18.2) (c)] если G и H группы, W = G wr H и $K \le G$, то $K^*H \cong K$ wr $H \le W$.

Характеристикой класса \mathfrak{F} называют множество $Char(\mathfrak{F}) = \{p \in \mathbb{P} : Z_p \in \mathfrak{F}\}.$

Лемма 5. Пусть $\mathfrak{F} = LR(f)$ для некоторой H-функции f c носителем π . Тогда справедливы следующие утверждения:

- (1) [17, лемма 2.3] $\pi = Char(\mathfrak{F});$
- (2) [18, теорема 1] $LR(f) = LR(f^*)$, где f^* такая H-функция, что $f^*(p) = (f(p))^*$ для всех $p \in \pi$;
- (3) [11, лемма 5] § класс Локетта.

Лемма 6 [7, лемма 2.1 (c)]. Пусть \mathfrak{F} – класс Фиттинга и G – группа. Тогда $\mathrm{Aut}\left(G_{\mathfrak{F}}^{*}\right)$ централизует факторгруппу $G_{\mathfrak{F}}^{*}$.

Лемма 7 [1, теорема X, (3.7)]. Пусть \S – разрешимый класс Фиттинга. Класс \S является нормальным тогда и только тогда, когда для любой группы $G \in \mathfrak{S}$ и всех $p \in \mathbb{P}$ из условия $G \in \S$ следует G^n wr $Z_p \in \S$ для некоторого $n \in \mathbb{N}$.

Напомним, что через Soc(G) обозначают цоколь группы G, т. е. произведение всех минимальных нормальных подгрупп G, F(G) – подгруппа Фиттинга группы G, т. е. \Re -радикал G.

Лемма 8 [1, теорема IX, (2.8)]. Пусть $\mathfrak{X} = (G : \operatorname{Soc}(G) \leq Z(G))$. Тогда $\mathfrak{X} - \kappa$ ласс Фиттинга, замкнутый относительно подпрямых произведений.

Напомним, что класс групп $\mathfrak F$ называется гомоморфом, если каждая факторгруппа любой группы из $\mathfrak F$ принадлежит $\mathfrak F$. Пусть $\mathfrak F$ – гомоморф, тогда $\mathfrak F$ называется насыщенным, если из условия $G/\Phi(G) \in \mathfrak F$ следует $G \in \mathfrak F$, где $\Phi(G)$ – подгруппа Фраттини группы G.

Свойства операторов Локетта «*» и «*» представляет следующая лемма.

Лемма 10. Пусть § и \$ – классы Фиттинга. Тогда справедливы следующие утверждения:

- (1) [1, теоремы X, (1.15) и (1.8) (а)] $\mathfrak{F}_* \subseteq \mathfrak{F} \subseteq \mathfrak{F}^* = (\mathfrak{F}_*)^* = (\mathfrak{F}^*)^*$;
- (2) [1, теорема X, (1.8) (b)] если $\mathfrak{F} \subseteq \mathfrak{H}$, то $\mathfrak{F}^* \subseteq \mathfrak{H}^*$;
- (3) [11, лемма 3] если \mathfrak{H} насыщенный гомоморф, то $(\mathfrak{F}\mathfrak{H})^* = \mathfrak{F}^*\mathfrak{H}$.

Лемма 11 [20, теорема 3]. *Каждый локальный класс Фиттинга* \S является $\mathfrak{L}_{\mathfrak{x}}$ -классом.

ж-нормальные и ж-квазинормальные классы

Пусть \mathfrak{X} – класс групп. Подгруппу V группы G называют \mathfrak{X} -инъектором G, если $V \cap N$ является \mathfrak{X} -максимальной подгруппой для любой субнормальной подгруппы N группы G.

Теорема 3. Существуют \mathfrak{X} -квазинормальные классы Фиттинга, которые не \mathfrak{X} -нормальны, и \mathfrak{X} -нормальные классы Фиттинга, которые не \mathfrak{X} -квазинормальны.

Доказательство. Покажем вначале, что существуют \mathfrak{X} -квазинормальные классы Фиттинга, которые не \mathfrak{X} -нормальны.

Пусть \mathfrak{R} – класс всех нильпотентных групп и $\mathfrak{X} = (G : \operatorname{Soc}(G) \leq Z(G))$.

Докажем, что класс \mathfrak{R} является \mathfrak{X} -квазинормальным. Для этого достаточно установить, что \mathfrak{R} квазинормален в $\mathfrak{X} \cap \mathfrak{R}^2$. Из леммы 8 следует, что $\mathfrak{X} \cap \mathfrak{R}^2$ – разрешимый класс Фиттинга. Пусть $G \in \mathfrak{X} \cap \mathfrak{R}^2$ и $p \in \mathbb{P}$ таковы, что G wr $Z_p \in \mathfrak{X} \cap \mathfrak{R}^2$. Докажем, что G - p-группа.

Если G wr $Z_p \in \mathfrak{N}$, то по лемме 9 G-p-группа. Предположим, что G wr $Z_p \in (\mathfrak{X} \cap \mathfrak{N}^2) \backslash \mathfrak{N}$. Тогда согласно утверждению (1) леммы 3 F(G wr $Z_p) = F(G^*) = F(G)^*$. Ввиду леммы 9 (G wr $Z_p) / F(G$ wr $Z_p) \cong G/F(G)$ wr $Z_p - p$ -группа.

Пусть $O_{p'}ig(\mathrm{F}ig(G\ wr\ Z_p ig) ig) \ne 1$. Тогда $O_{p'}ig(\mathrm{F}ig(G ig) ig) \ne 1$ и для простого $q \ne p$ существует минимальная нормальная q-подгруппа N группы G. Так как $N \le Z(G)$, то $N^*Z_p/ig(G^* \cap N^*Z_p ig) = N^*Z_p/N^* \in \mathfrak{R}$ и $G^* \cap N^*Z_p = N^* \le Z(G^*)$. Таким образом, N^*Z_p — дополнение к G^* в группе G wr $Z_p \in \mathfrak{X} \cap \mathfrak{R}^2$. Исходя из леммы S и утверждения (2) леммы 2, получаем $N^*Z_p \in \mathfrak{X} \cap \mathfrak{R}^2$. Значит, $N^*Z_p \cong N$ wr Z_p . Так как $q \ne p$, $N^* \le \mathrm{Soc}ig(N^*Z_p ig)$. Отсюда $N^* \le Z(N^*Z_p)$. Следовательно, $N^*Z_p \cong N$ wr Z_p — абелева группа, что невозможно ввиду $N \ne 1$. Данное противоречие доказывает, что $Fig(G\ wr\ Z_p ig)$ — p-группа.

Так как $(G \ wr \ Z_p)$ / $\mathbf{F}(G \ wr \ Z_p)$ – p-группа, то G – p-группа и $G \in \mathfrak{N}$. Следовательно, класс \mathfrak{N} квазинормален в $\mathfrak{X} \cap \mathfrak{N}^2$, и поэтому \mathfrak{N} – \mathfrak{X} -квазинормальный класс Фиттинга.

Докажем, что \mathfrak{R} не является \mathfrak{X} -нормальным классом Фиттинга. Так как $GL(2,3) \in \mathfrak{X}$, то 2-силовская подгруппа GL(2,3) выступает \mathfrak{R} -инъектором GL(2,3). Но 2-силовская подгруппа группы GL(2,3) ненормальна в GL(2,3), и, следовательно, класс \mathfrak{R} не является \mathfrak{X} -нормальным.

Докажем существование \mathfrak{X} -нормальных классов Фиттинга, которые не \mathfrak{X} -квазинормальны. Пусть $\emptyset \neq \pi \subseteq \mathbb{P}, \mathfrak{S}_{\pi}$ – класс всех π -групп и $\mathfrak{X} = \mathfrak{S}_{\pi} \mathfrak{S}_{\pi} \cap \mathfrak{S}^{\pi}$, где \mathfrak{S}^{π} – класс всех π -разрешимых групп.

Покажем, что \mathfrak{E}_{π} является \mathfrak{X} -нормальным классом Фиттинга. Пусть $G \in \mathfrak{X}$ и $V - \mathfrak{E}_{\pi}$ -инъектор группы G. Тогда V - холлова π -подгруппа G. Так как $G/G_{\mathfrak{E}_{\pi}} \in \mathfrak{E}_{\pi'}$, то по теореме Чунихина [21] $G_{\pi} \leq G_{\mathfrak{E}_{\pi}} \leq V \leq G_{\pi}$ и $V = G_{\mathfrak{E}}$. Следовательно, $V \leq G$ и \mathfrak{E}_{π} является \mathfrak{X} -нормальным классом Фиттинга.

Докажем, что класс \mathfrak{S}_{π} не является квазинормальным в \mathfrak{X} . Пусть $G \in \mathfrak{S}_{\pi}$ и G wr $Z_p \in \mathfrak{X}$ для $p \in \mathbb{P}$. Если $W = G^2$ wr Z_p и $p \in \pi'$, то $W/\left(G^2\right)^* \cong Z_p \in \mathfrak{S}_{\pi'}$. Так как $\left(G^2\right)^* \in \mathfrak{S}_{\pi}$, то $W \in \mathfrak{S}_{\pi}\mathfrak{S}_{\pi'}$. Поскольку $\mathfrak{S}_{\pi} \subset \mathfrak{S}_{\pi}\mathfrak{S}_{\pi'}$ и $\pi' \neq \emptyset$, то $W \notin \mathfrak{S}_{\pi}$. Значит, \mathfrak{S}_{π} не является квазинормальным в \mathfrak{X} . Теорема доказана.

Замечание. Методы построения \mathfrak{X} -нормальных классов Фиттинга, которые не являются \mathfrak{X} -квазинормальными, и Х-квазинормальных классов Фиттинга, которые не являются Х-нормальными, в универсуме & всех групп можно описать, используя [22, замечание 3.20]. Пусть \S – класс Фиттинга всех групп, неабелева компонента цоколя которых – прямой фактор. Тогда \S нормален в $\mathfrak E$ и не является \mathfrak{C} -квазинормальным. С другой стороны, для множества простых π такого, что $|\pi| \geq 2$, класс $\mathfrak{S}_{\pi} - \mathfrak{C}_{\pi}$ квазинормальный, но при этом не \mathfrak{C}_{π} -нормален.

Обобщение теоремы Блессеноля – Гашюца

Доказательство теоремы 1. Пусть $\{\mathfrak{F}_i\}_{i\in I}$ – семейство неединичных классов Фиттинга таких, что \mathfrak{F}_i квазинормален в \mathfrak{X} для любого $i \in I$, и $\mathfrak{F} = \bigcap_{i \in I} \mathfrak{F}_i$. Докажем, что \mathfrak{F} квазинормален в \mathfrak{X} .

Очевидно, что $\mathfrak{F}\subseteq\mathfrak{X}$. Пусть группа $G\in\mathfrak{F}$ и G wr $Z_p\in\mathfrak{X}$ для $p\in\mathbb{P}$. Покажем, что существует натуральное число m такое, что G^m $wr Z_p \in \mathfrak{F}$.

Ввиду выбора группы G имеем $G \in \S_i$ для всех $i \in I$. Так как \S_i квазинормален в $\mathfrak X$ для любого $i \in I$, то существует натуральное число m такое, что G^m wr $Z_p \in \mathfrak{F}_i$ для всех $i \in I$. Таким образом, G^m wr $Z_p \in \mathfrak{F}$. Следовательно, § квазинормален в £.

Покажем, что класс $\mathfrak{F} \neq (1)$, где (1) – класс всех единичных групп. Для этого докажем, что $Char(\mathfrak{F}_i)$ = $= Char(\mathfrak{X})$ для любого $i \in I$. Предположим, что существует простое $p \in Char(\mathfrak{X}) \setminus Char(\mathfrak{F}_i)$ для $i \in I$. Тогда $1\ wr\ Z_{p}\in\mathfrak{X}\backslash\mathfrak{F}_{i}$. Поэтому \mathfrak{F}_{i} не является \mathfrak{X} -квазинормальным для $i\in I$. Полученное противоречие показывает, что $Char(\mathfrak{X}) \subseteq Char(\mathfrak{F}_i)$ для всех $i \in I$. Включение $Char(\mathfrak{F}_i) \subseteq Char(\mathfrak{X})$ очевидно. Следовательно, $Char(\mathfrak{F}_i) = Char(\mathfrak{X})$ для любого $i \in I$.

Так как \mathfrak{F} квазинормален в \mathfrak{X} , то $Char(\mathfrak{F}) = Char(\mathfrak{X}) = Char(\mathfrak{F}_i)$ для любого $i \in I$. По условию $\mathfrak{F}_i \neq (1)$ для всех $i \in I$. Значит, существует простое p такое, что $Z_p \in \mathfrak{F}_i$ для любого $i \in I$. Следовательно, $Z_p \in \mathfrak{F}$ и $\mathfrak{F} \neq (1)$. Это доказывает существование наименьшего нетривиального \mathfrak{X} -квазинормального класса \mathfrak{X}_{\oplus} . Теорема доказана.

Операторы «_∗» и «_⊕»

Предварительно установим некоторые общие свойства квазинормальных классов Фиттинга, которые мы будем использовать.

Лемма 12. Если классы Фиттинга \mathfrak{F}_1 и \mathfrak{F}_2 таковы, что $\mathfrak{F}_1 \subseteq \mathfrak{F}_2$ и $\mathfrak{F}_1^* = \mathfrak{F}_2^*$, то \mathfrak{F}_1 квазинормален в \mathfrak{F}_2 .

Доказательство. Пусть $G \in \mathfrak{F}_1$ и G wr $Z_p \in \mathfrak{F}_2$ для $p \in \mathbb{P}$. Докажем, что существует натуральное число m такое, что G^m wr $Z_p \in \mathfrak{F}_1$. По условию $\mathfrak{F}_1^* = \mathfrak{F}_2^*$. Значит, G wr $Z_p \in \mathfrak{F}_2 \subseteq \mathfrak{F}_2^* = \mathfrak{F}_1^*$. Согласно лемме 1 имеем G^2 wr $Z_p \in \mathfrak{F}_1$. Лемма доказана.

Лемма 13. Отношение квазинормальности транзитивно.

Доказательство. Пусть \mathfrak{F}_1 , \mathfrak{F}_2 и \mathfrak{F}_3 – классы Фиттинга такие, что $\mathfrak{F}_1 \subseteq \mathfrak{F}_2 \subseteq \mathfrak{F}_3$. Докажем, что если \mathfrak{F}_1 квазинормален в \mathfrak{F}_2 , \mathfrak{F}_2 квазинормален в \mathfrak{F}_3 , то \mathfrak{F}_1 квазинормален в \mathfrak{F}_3 .

Заметим, что ввиду [1, теорема X, (2.12)] определение \mathfrak{X} -квазинормального класса Фиттинга равносильно следующему: класс Фиттинга \S называется квазинормальным в классе групп \mathfrak{X} , если $\S \subseteq \mathfrak{X}$ и из $G \in \mathfrak{F}, \ G \ wr \ Z_p \in \mathfrak{X},$ где $p \in \mathbb{P},$ следует $G^2 \ wr \ Z_p \in \mathfrak{F}.$

Пусть $G \in \S_1$ и G wr $Z_p \in \S_3$ для $p \in \mathbb{P}$. Докажем, что G^2 wr $Z_p \in \S_1$. Так как \S_2 квазинормален в \S_3 , то из $G \in \S_2$ и G wr $Z_p \in \S_3$ для $p \in \mathbb{P}$ следует G^2 wr $Z_p \in \S_2$. Ввиду того что G^2 wr $Z_p \in \mathfrak{F}_2$ и G^*Z_p субнормально вложена в $\left(G^2\right)^*Z_p = \left(G^*\right)^2Z_p$, получаем G wr $Z_p \in \mathfrak{F}_2$. Теперь из квазинормальности \mathfrak{F}_1 в \mathfrak{F}_2 имеем G^2 wr $Z_p \in \mathfrak{F}_1$. Следовательно, \mathfrak{F}_1 квазинормален в \mathfrak{F}_3 . Лемма доказана.

Лемма 14. Пусть \S , $\mathfrak X$ и $\mathfrak Y$ — классы Фиттинга. Если $\mathfrak Y$ $\subseteq \mathfrak X$ и \S квазинормален в $\mathfrak X$, то $\mathfrak Y$ $\bigcap \mathfrak S$ квази-

Доказательство. Пусть $G \in \mathfrak{Y} \cap \mathfrak{F}$ и G wr $Z_p \in \mathfrak{Y}$ для $p \in \mathbb{P}$. Докажем, что G^m wr $Z_p \in \mathfrak{Y} \cap \mathfrak{F}$ для некоторого $m \in \mathbb{N}$. По условию $\mathfrak{Y} \subseteq \mathfrak{X}$ и \mathfrak{F} квазинормален в \mathfrak{X} . Значит, из $G \in \mathfrak{F}$ и G wr $Z_p \in \mathfrak{Y} \subseteq \mathfrak{X}$ $(p \in \mathbb{P})$ следует G^m wr $Z_p \in \mathfrak{F}$ для $m \in \mathbb{N}$. Ввиду утверждения (1) леммы 2 G^m wr $Z_p \in \mathfrak{Y}$. Следовательно, G^m wr $Z_p \in \mathfrak{Y} \cap \mathfrak{F}$ и $\mathfrak{Y} \cap \mathfrak{F}$ квазинормален в \mathfrak{Y} . Лемма доказана.

Лемма 15. Пусть \S и \mathfrak{X} – классы Фиттинга. Если \S квазинормален в \mathfrak{X} , то \S квазинормален в \mathfrak{X}^* .

Доказательство. По утверждению (1) леммы 10 имеем $\mathfrak{X} \subseteq \mathfrak{X}^*$ и $(\mathfrak{X}^*)^* = \mathfrak{X}^*$. Значит, используя лемму 12, получаем, что $\mathfrak X$ квазинормален в $\mathfrak X^*$. Следовательно, по лемме 13 $\mathfrak X$ квазинормален в $\mathfrak X^*$. Лемма доказана.

Многие свойства оператора Локетта «"» (см. [1, теорема X, (1.15)]) аналогичны свойствам оператора

Теорема 4. Пусть \S и \mathfrak{X} – классы Фиттинга. Тогда справедливы следующие утверждения:

- (1) если $\mathfrak{F} \subseteq \mathfrak{X}$, то $\mathfrak{F}_{\oplus} \subseteq \mathfrak{X}_{\oplus}$;
- (2) $\mathfrak{X}_{\oplus} = (\mathfrak{X}_{\oplus})_{\oplus}$;
- $(3) \left(\mathfrak{X}_* \right)_{\scriptscriptstyle \square} = \left(\mathfrak{X}_{\scriptscriptstyle \oplus} \right)_*;$

(4) если $\mathfrak{X}_{\oplus} \subseteq \mathfrak{F} \subseteq \mathfrak{X}$, то $\mathfrak{F}_{\oplus} = \mathfrak{X}_{\oplus}$. Доказательство. (1) По определению оператора « $_{\oplus}$ » имеем, что \mathfrak{X}_{\oplus} квазинормален в \mathfrak{X} . Ввиду леммы 14 $\mathfrak{F} \cap \mathfrak{X}_{\oplus}$ квазинормален в \mathfrak{F} . Так как \mathfrak{F}_{\oplus} – наименьший из классов Фиттинга, квазинормальных в \mathfrak{F} , то $\mathfrak{F}_\oplus \subseteq \mathfrak{F} \cap \mathfrak{X}_\oplus \subseteq \mathfrak{X}_\oplus$. Следовательно, $\mathfrak{F}_\oplus \subseteq \mathfrak{X}_\oplus$. Утверждение (1) доказано.

- (2) Так как $(\mathfrak{X}_{\oplus})_{\oplus}$ и \mathfrak{X}_{\oplus} квазинормальны в \mathfrak{X}_{\oplus} и \mathfrak{X} соответственно, то по лемме 13 $(\mathfrak{X}_{\oplus})_{\oplus}$ квазинормален в \mathfrak{X} . Поскольку \mathfrak{X}_{\oplus} – наименьший из классов Фиттинга, квазинормальных в \mathfrak{X} , имеем $\mathfrak{X}_{\oplus} \subseteq (\mathfrak{X}_{\oplus})_{\oplus}$. Очевидно, что $(\mathfrak{X}_{\scriptscriptstyle\oplus})_{\scriptscriptstyle\oplus}\subseteq\mathfrak{X}_{\scriptscriptstyle\oplus}$. Итак, $\mathfrak{X}_{\scriptscriptstyle\oplus}=(\mathfrak{X}_{\scriptscriptstyle\oplus})_{\scriptscriptstyle\oplus}$. Утверждение (2) доказано.
- (3) По утверждению (1) леммы 10 получаем $\left(\left(\mathfrak{X}_{\oplus}\right)_{*}\right)^{*}=\left(\mathfrak{X}_{\oplus}\right)^{*}$. Применяя лемму 12, имеем, что $\left(\mathfrak{X}_{\oplus}\right)_{*}$ квазинормален в \mathfrak{X}_{\oplus} . Ввиду леммы 13 $(\mathfrak{X}_{\oplus})_*$ квазинормален в \mathfrak{X} . Так как \mathfrak{X}_{\oplus} – наименьший из классов Фиттинга, квазинормальных в \mathfrak{X} , то $\mathfrak{X}_{\oplus} \subseteq (\mathfrak{X}_{\oplus})_*$. По утверждению (1) леммы 10 $(\mathfrak{X}_{\oplus})_* \subseteq \mathfrak{X}_{\oplus}$. Следовательно, $(\mathfrak{X}_{\oplus})_* = \mathfrak{X}_{\oplus}$.

По лемме 12 \mathfrak{X}_* квазинормален в \mathfrak{X} . Следовательно, $\mathfrak{X}_\oplus \subseteq \mathfrak{X}_* \subseteq \mathfrak{X}$, и, используя утверждение (1), полу- $\mathsf{чаем}\left(\mathfrak{X}_{\oplus}\right)_{\!\oplus}\subseteq\left(\mathfrak{X}_{*}\right)_{\!\oplus}\subseteq\mathfrak{X}_{\oplus}.\ \mathsf{По}\ \mathsf{утверждению}\ (2)\ \mathfrak{X}_{\oplus}=\left(\mathfrak{X}_{\oplus}\right)_{\!\oplus}.\ \mathsf{Таким}\ \mathsf{образом},\ \mathfrak{X}_{\oplus}=\left(\mathfrak{X}_{*}\right)_{\!\oplus}=\left(\mathfrak{X}_{\oplus}\right)_{\!*}.\ \mathsf{Утверж-$

(4) Пусть $\mathfrak{X}_{\oplus} \subseteq \mathfrak{F} \subseteq \mathfrak{X}$. По утверждению (1) имеем $\mathfrak{X}_{\oplus} = (\mathfrak{X}_{\oplus})_{\oplus} \subseteq \mathfrak{F}_{\oplus} \subseteq \mathfrak{X}_{\oplus}$. Значит, $\mathfrak{X}_{\oplus} = \mathfrak{F}_{\oplus}$. Утверждение (4) доказано. Теорема доказана.

Гипотеза Локетта для квазинормальных классов

Доказательство теоремы 2. (1) Пусть \Re квазинормален в \Re . Предположим, что $\Re^* \neq \Re^*$ и G – группа минимального порядка из класса $\mathfrak{X}^* \setminus \mathfrak{F}^*$. Так как $\mathfrak{X} \subseteq \mathfrak{FS}_{\pi}$, то по утверждениям (2) и (3) леммы 10 $\mathfrak{X}^* \subseteq \left(\mathfrak{F}\mathfrak{S}_\pi\right)^* = \mathfrak{F}^*\mathfrak{S}_\pi$. Значит, $G/G_{\mathfrak{F}^*} \in \mathfrak{S}_\pi$ и $\left|G/G_{\mathfrak{F}^*}\right| = p$ для некоторого простого $p \in \pi$.

По условию \mathfrak{X}^* – класс с ограниченным π -свойством сплетения. Следовательно, для группы $1 \neq G \in \mathfrak{X}^*$ с $O^{p'}(G) = G$ для любого простого $p \in \pi$ существует натуральное n такое, что G^n wr $Z_p \in \mathfrak{X}^*$.

Ввиду леммы 6 $G_{g^*}/G_{g} \le Z(G/G_{g})$. Так как G_{g^*} – единственная максимальная нормальная подгруппа G, то G/G_{\S} – циклическая p-группа. Значит, по утверждению (3) леммы 3 G_{\S} wr $Z_p \cong \left(G_{\S}\right)^* Z_p \preceq G^* Z_p \cong G^* Z_$ $\cong G \ wr \ Z_p \in \mathfrak{X}^*$. Так как \mathfrak{F} квазинормален в \mathfrak{X} , то по лемме 15 \mathfrak{F} квазинормален в \mathfrak{X}^* . Таким образом, $\left(G_{\mathfrak{F}}\right)^2$ $wr\ Z_p\in \mathfrak{F}\subseteq \mathfrak{F}^*$. Следовательно, исходя из леммы 4, имеем $G_{\mathfrak{F}}\ wr\ Z_p\in \mathfrak{F}^*$. Поскольку согласно утверждению (3) леммы 3 $\left(G_{\mathfrak{F}}\right)^*Z_p \in \mathfrak{F}^*$ и $\left(G_{\mathfrak{F}}\right)^*Z_p \leq G$ wr Z_p , $\left(G_{\mathfrak{F}}\right)^*Z_p \leq \left(G$ wr $Z_p\right)_{\mathfrak{F}^*}$. По условию $G \notin \mathfrak{F}^*$. Следовательно, по утверждению (1) леммы 3 $\left(G \ wr \ Z_p\right)_{\mathfrak{F}^*} = \left(G_{\mathfrak{F}^*}\right)^*$. Получили противоречие.

Значит, $\mathfrak{X}^* = \mathfrak{F}^*$ и $\mathfrak{X}_* \subseteq \mathfrak{F}$. Так как по лемме 12 \mathfrak{X}_* квазинормален в \mathfrak{X} , то $\mathfrak{X}_\oplus = \mathfrak{X}_*$.

Поскольку \mathfrak{F} — произвольный квазинормальный класс Фиттинга в \mathfrak{X} и $\mathfrak{F}^* = \mathfrak{X}^*$, \mathfrak{X}_\oplus содержится в секции Локетта \mathfrak{X} . Следовательно, \mathfrak{X}_{\oplus} содержит наименьший элемент секции Локетта \mathfrak{X}_{*} и $\mathfrak{X}_{\oplus} = \mathfrak{X}_{*}$. Утверждение (1) доказано.

(2) Так как \Re – локальный класс Фиттинга, то $\Re = LR(f)$ для некоторой H-функции f с носителем π . Покажем вначале, что \Re обладает ограниченным π -свойством сплетения.

Пусть $G \in \mathfrak{F}$ с комонолитом M индекса p ($p \in \pi$) и W = G wr Z_p . Так как \mathfrak{F} – локальный класс Фиттинга, то $G \in \mathfrak{E}_{\pi} \cap (\bigcap_{p \in \pi} f(p)\mathfrak{R}_p\mathfrak{E}_{p'})$.

Очевидно, что $O^{p'}(G) \neq 1$. Действительно, если $O^{p'}(G) < G$, то $O^{p'}(G) \leq M$ и |G:M| = p'. Получили противоречие с выбором G. Следовательно, $O^{p'}(G) = G$ для всех $p \in \pi$. Так как $G \in \mathfrak{E}_{\pi}$, то по утверждению (1) леммы 5 получаем $W \in \mathfrak{E}_{\pi}$.

Покажем, что $W \in \bigcap_{p \in \pi} f(p) \mathfrak{N}_p \mathfrak{E}_{p'}$ для всех $p \in \pi$. Так как $G \in \mathfrak{F}$, то $G \in f(p) \mathfrak{N}_p \mathfrak{E}_{p'}$ для любого $p \in \pi$. По утверждению (2) леммы 5 и утверждению (1) леммы 10 получаем $f(p) \mathfrak{N}_p \mathfrak{E}_{p'} = f^*(p) \mathfrak{N}_p \mathfrak{E}_{p'}$ и $f^*(p) = \left(f^*(p)\right)^*$ для всех $p \in \pi$. Следовательно, без ограничения общности мы можем предположить, что f - H-функция такая, что f(p) – класс Локетта для всех $p \in \pi$.

Если $G \in f(p)$, то $G \in f(p)\mathfrak{N}_p\mathfrak{E}_{p'}$. Пусть $G \in f(p)\mathfrak{N}_p \setminus f(p)$. Тогда по утверждению (1) леммы 3 $W_{f(p)} = \left(G_{f(p)}\right)^*$ и $W/W_{f(p)} = W/\left(G_{f(p)}\right)^*$. Следовательно, по утверждению (2) леммы 3 $W/W_{f(p)} \cong \left(G/G_{f(p)}\right)$ wr Z_p . Значит, $W \in f(p)\mathfrak{N}_p \subseteq f(p)\mathfrak{N}_p\mathfrak{E}_{p'}$.

Если $G \in f(p)\mathfrak{N}_p\mathfrak{E}_{p'} \setminus f(p)\mathfrak{N}_p$, то аналогичным образом получаем $W/W_{f(p)\mathfrak{N}_p} \cong \left(G/G_{f(p)\mathfrak{N}_p}\right)wr\ Z_p$. Так как $1 \neq O^{p'}(G) = G$, то $W \in f(p)\mathfrak{N}_p\mathfrak{E}_{p'}$ и $W = G\ wr\ Z_p \in \mathfrak{F}$. Следовательно, по утверждению (1) леммы $2G^n\ wr\ Z_p \in \mathfrak{F}$ для любого $n \in \mathbb{N}$. Значит, \mathfrak{F} обладает ограниченным π -свойством сплетения. Исходя из утверждения (3) леммы $5, \mathfrak{F} = \mathfrak{F}^*$ и \mathfrak{F}^* обладает ограниченным π -свойством сплетения. Следовательно, по утверждению (1) теоремы получаем $\mathfrak{F}_{\oplus} = \mathfrak{F}_*$.

Пусть $\mathfrak{X} = LR(x)$ и $\sigma = Supp(x)$. Так как класс \mathfrak{X} локален и квазинормален в \mathfrak{X} , то, рассуждая аналогично, получаем, что \mathfrak{X}^* обладает ограниченным σ -свойством сплетения. Следовательно, по утверждению (1) теоремы имеем $\mathfrak{X}_{\oplus} = \mathfrak{X}_*$.

Ввиду леммы 11 локальный класс Фиттинга $\mathfrak F$ удовлетворяет гипотезе Локетта в классе $\mathfrak X$, т. е. $\mathfrak F_* = \mathfrak F^* \cap \mathfrak X_*$. Теорема доказана.

Библиографические ссылки

- 1. Doerk K, Hawkes T. Finite Soluble Groups. Berlin: Walter de Gruyter; 1992.
- 2. Laue H. Über nichtauflösbare normale Fittingklassen. *Journal of Algebra*. 1977;45(2):274–283. DOI: 10.1016/0021-8693(77) 90327-1.
- 3. Blessenohl D, Gaschütz W. Über normale Schunck- und Fittingklassen. *Mathematische Zeitschrift.* 1970;118(1):1–8. DOI: 10.1007/BF01109888.
- 4. Makan AR. Fitting classes with the wreath product property are normal. *Journal of the London Mathematical Society.* 1974; s2-8(2):245–246. DOI: 10.1112/jlms/s2-8.2.245.
 - 5. Hauck P. Zur Theorie der Fittingklassen endlicher auflösbarer Gruppen [dissertation]. Mainz: [s. n.]; 1977.
- 6. Марцинкевич АВ. О проблеме Дёрка Хоукса для локально нормальных классов Фиттинга. *Проблемы физики, математики и техники*. 2018;4(37):90–97.
 - 7. Lockett FP. The Fitting class §*. *Mathematische Zeitschrift*. 1974;137(2):131–136. DOI: 10.1007/BF01214854.
- 8. Воробьев НТ. О предположении Хоукса для радикальных классов. Сибирский математический журнал. 1996;37(6): 1296–1302.
- 9. Bryce RA, Cossey J. A problem in the theory of normal Fitting classes. *Mathematische Zeitschrift*. 1975;141(2):99–110. DOI: 10.1007/BF01218821.
- 10. Beidleman JC, Hauck P. Über Fittingklassen und die Lockett-vermutung. *Mathematische Zeitschrift*. 1979;167(2):161–167. DOI: 10.1007/BF01215119.
 - 11. Воробьев НТ. О радикальных классах конечных групп с условием Локетта. Математические заметки. 1988;43(2):161–168.
- 12. Zhu L, Yang N, Vorob'ev NT. On Lockett pairs and Lockett conjecture for π -soluble Fitting classes. *Bulletin of the Malaysian Mathematical Sciences Society.* 2013;36(3):825–832.
- 13. Bryce RA, Cossey J. Subgroup closed Fitting classes are formations. *Mathematical Proceedings of the Cambridge Philosophical Society.* 1982;91(2):225–258. DOI: 10.1017/S0305004100059272.
 - 14. Воробьев НТ. Локальность разрешимых наследственных классов Фиттинга. Математические заметки. 1992;51(3):3-8.
 - 15. Hauck P. Fittingklassen und Kranzprodukte. Journal of Algebra. 1979;59(2):313–329. DOI: 10.1016/0021-8693(79)90130-3.
- 16. Bryce RA, Cossey J. Subdirect product closed Fitting classes. In: Newman MF, editor. Proceedings of the Second International Conference on the Theory of Groups; 1973 August 13–24; Canberra, Australia. [S. I.]: Springer; 1974. p. 158–164.
 - 17. Guo W, Liu X, Li B. On π-radicals of finite π-soluble groups. Algebra and Discrete Mathematics. 2006;3:49–54.
- 18. Воробьев НТ. О максимальных и минимальных групповых функциях локальных классов Фиттинга. *Вопросы алгебры*. 1992;7:60–69.

- 19. Frick M, Newman MF. Soluble linear groups. *Bulletin of the Australian Mathematical Society.* 1972;6(1):31–44. DOI: 10.1017/S0004972700044233.
- 20. Залесская ЕН, Воробьев НН. О решетках частично локальных классов Фиттинга. Сибирский математический журнал. 2009;50(6):1319–1327.
 - 21. Чунихин СА. Подгруппы конечных групп. Минск: Наука и техника; 1964. 157 с.
- 22. Pérez-Ramos MD. On *A*-normality, strong normality and *§*-dual pronormal subgroups in Fitting classes. *Journal of Group Theory.* 2000;3(2):127–145. DOI: 10.1515/jgth.2000.011.

References

- 1. Doerk K, Hawkes T. Finite Soluble Groups. Berlin: Walter de Gruyter; 1992.
- 2. Laue H. Über nichtauflösbare normale Fittingklassen. *Journal of Algebra*. 1977;45(2):274–283. DOI: 10.1016/0021-8693(77) 90327-1.
- 3. Blessenohl D, Gaschütz W. Über normale Schunck- und Fittingklassen. *Mathematische Zeitschrift*. 1970;118(1):1–8. DOI: 10.1007/BF01109888.
- 4. Makan AR. Fitting classes with the wreath product property are normal. *Journal of the London Mathematical Society.* 1974; s2-8(2):245–246. DOI: 10.1112/jlms/s2-8.2.245.
 - 5. Hauck P. Zur Theorie der Fittingklassen endlicher auflösbarer Gruppen [dissertation]. Mainz: [s. n.]; 1977.
- 6. Martsinkevich AV. [On the problem of Doerk and Hawkes for locally normal Fitting classes]. *Problemy fiziki, matematiki i tekhniki*. 2018;4(37):90–97. Russian.
 - 7. Lockett FP. The Fitting class §*. Mathematische Zeitschrift. 1974;137(2):131–136. DOI: 10.1007/BF01214854.
 - 8. Vorob'ev NT. [On Hawkes's conjecture for radical classes]. Sibirskii matematicheskii zhurnal. 1996;37(6):1296–1302. Russian.
- 9. Bryce RA, Cossey J. A problem in the theory of normal Fitting classes. *Mathematische Zeitschrift*. 1975;141(2):99–110. DOI: 10.1007/BF01218821.
- 10. Beidleman JC, Hauck P. Über Fittingklassen und die Lockett-vermutung. *Mathematische Zeitschrift*. 1979;167(2):161–167. DOI: 10.1007/BF01215119.
 - 11. Vorob'ev NT. Radical classes of finite groups with the Lockett condition. Mathematical Notes. 1988;43(2):161-168. Russian.
- 12. Zhu L, Yang N, Vorob'ev NT. On Lockett pairs and Lockett conjecture for π -soluble Fitting classes. *Bulletin of the Malaysian Mathematical Sciences Society.* 2013;36(3):825–832.
- 13. Bryce RA, Cossey J. Subgroup closed Fitting classes are formations. *Mathematical Proceedings of the Cambridge Philosophical Society*, 1982;91(2):225–258. DOI: 10.1017/S0305004100059272.
 - 14. Vorob'ev NT. [Locality of solvable subgroup-closed Fitting classes]. Matematicheskie zametki. 1992;51(3):3-8. Russian.
 - 15. Hauck P. Fittingklassen und Kranzprodukte. Journal of Algebra. 1979;59(2):313-329. DOI: 10.1016/0021-8693(79)90130-3.
- 16. Bryce RA, Cossey J. Subdirect product closed Fitting classes. In: Newman MF, editor. Proceedings of the Second International Conference on the Theory of Groups; 1973 August 13–24; Canberra, Australia. [S. 1.]: Springer; 1974. p. 158–164.
 - 17. Guo W, Liu X, Li B. On *§*-radicals of finite π-soluble groups. *Algebra and Discrete Mathematics*. 2006;3:49–54.
 - 18. Vorob'ev NT. [On maximal and minimal group functions of local Fitting classes]. Voprosy algebry. 1992;7:60-69. Russian.
- 19. Frick M, Newman MF. Soluble linear groups. Bulletin of the Australian Mathematical Society. 1972;6(1):31–44. DOI: 10.1017/S0004972700044233.
- 20. Zalesskaya EN, Vorob'ev NN. [Lattices of partially local Fitting classes]. Sibirskii matematicheskii zhurnal. 2009;50(6): 1319–1327. Russian.
 - 21. Chunikhin SA. Podgruppy konechnykh grupp [Subgroups of finite groups]. Minsk: Nauka i tekhnika; 1964. 157 p. Russian.
- 22. Pérez-Ramos MD. On *A*-normality, strong normality and *§*-dual pronormal subgroups in Fitting classes. *Journal of Group Theory.* 2000;3(2):127–145. DOI: 10.1515/jgth.2000.011.

Статья поступила в редколлегию 21.02.2019. Received by editorial board 21.02.2019.